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ABSTRACT. This paper analyses the low-frequency temporal variation of unit land prices
in two single localities, the municipalities of Espoo and Nurmijirvi, of the Finnish real estate
markets by the use of the wavelet transforms. These transforms are nonparametric orthogonal
series estimators, which are capable of providing the necessary time and frequency informa-
tion of land prices simultaneously in a highly flexible fashion. In the empirical section of
this paper both the raw and the quality-adjusted unit price series are analysed. The estimated
cycles and trends are all nonlinear and, in particular, the behavior of cyclical component is
highly curvelinear and transient in time. The findings strongly suggest that the sub-markets
in question are not in a steady state, but are continuously evolving in time. It seems that
much of the temporal variation present in the untransformed series is, in fact, explained
by the quality differences in the attribute variables. The use of quality corrections produced

significant improvements in the internal reliability of results.
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1. INTRODUCTION

Valid and reliable measurement of changes
underlying property prices over time is a highly
important practical and theoretical issue that
has traditionally encountered major obstacles
in the hedonic pricing methodology. One com-
mon solution is to use the time dummy vari-
able technique, or so-called covariance analy-
sis method, in order to provide the necessary
quality-adjustments that stem from temporal
variation. Albeit widely applied, this approach
has a multitude of serious drawbacks. The core
problem of using the indicator variable proce-
dure seems to be its inflexibility as the effect
of time is merely represented by a series of
fixed discrete jumps, which are highly inaccu-
rate in practice. The second problem is the lack
of sufficient degrees of freedom, since estima-

tion involves an extensive set of time-indexed
dummy variables along with other regressors,
at least one for each time period. The third
problem is the necessity to choose the correct
time interval, e.g. a period of one-year, that
somehow reflects a typical decision-making
horizon, although economic agents operate and
actions take place simultaneously at various
different time scales. The final major limita-
tion of dummy variable technique is that the
estimated model structure potentially suffers
from acute multicollineary problem, which dis-
torts the estimated parameters, when used to
represent time evolution of property prices.
There are several other and more sophisti-
cated approaches to account for the effects of
time variability than indicator variables in the
hedonic context. The structural time series ap-
proach is often a viable tool, which can sepa-
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rate long-term price movements (trends and
cycles) from seasonal and irregular price vari-
ability. They are suitable for the analysis of
non-stationary features of price series, in which
time interval need not be equispaced. However,
they seem to posses a serious disadvantage, if
the observable series contain many outlying
or influential orservations as is typical of many
land value studies (see Hannonen, 2005a); the
unobserved component estimates tend to over-
shoot (undershoot) the effect of levels. In those
cases, the estimated trends and cycles can be
non-informative per se, i.e. they fluctuate at
too high or low a level to be meaningful as
such, although they are importart part of the
overall model structure in conjuction with the
estimated hedonic prices. Fourier-based meth-
ods are also one interesting flexible alterna-
tive to standard indicator variable method.
However, they have a hard time in reproduc-
ing non-stationary elements of the price series
that are common in land markets. In essence,
wavelet estimators extend the main ideas of
Fourier analysis to situations, in which differ-
ent forms of non-stationary behavior are ex-
pected.

The application of wavelets has rapidly in-
creased over the last 20 years with over 1000
reviewed papers now appearing each year, and
with the total number of over 16 000 articles
being published to date in diverse fields of
study (Addison, 2004; Crowley, 2005). The theo-
retical underpinnings of wavelets were com-
pleted in the late 1980’s, whereas the 1990’s
witnessed a rapid increase in the number of
different practical applications. These applied
fields include (Graps, 1995), among others, sig-
nal and image processing, data compression,
astronomy, acoustics, fractals, partial differen-
tial equations, medicine, seismology, speech
discrimination, optics and nuclear physics. At
the moment they are at the verge of entering
mainstream econometrics (Schleicher, 2002;
Gencay et al., 2002) with some applications in
different fields of finance and economics
(Ramsey, 2002). In real estate markets wave-
lets represent a totally new perspective of time-

series modeling, whose empirical performance
has not been investigated so far. This paper
tries, in part, to fill that void.

Wavelet-based methods offer a viable alter-
native to the ubiquitous Fourier analysis (e.g.
McMillen & Dombrow, 2001) and the associ-
ated modified transforms, such as the win-
dowed (or short-time) Fourier transform, that
have serious shortcomings in the modeling of
complex, non-stationary phenomena, i.e. when
the data-generating process under consider-
ation is itself transient and evolves in time.
Wavelet transforms are particularly suitable
for analyzing different kinds of economic and
financial data, including real estate, as most
phenomena observed in these markets are
thought to be time-varying and continuously
changing. This (quasi) open system’s nature
with the aperiodic and intermittent temporal
variation is a result of dynamic market condi-
tions, which are driven by, inter alia, changes
in consumers’ preferences, investors’ expecta-
tions and technological advantages.

There are at least four different uses of
wavelet analysis in real estate economics and
finance, which are (Ramsey 2000; Crowley,
2005):

1. Explanatory analysis to gain new in-

sight of the data or phenomenon;

2. Density estimation and regression for
evaluating spatially inhomogeneous
surfaces;

3. Time-scale decomposition of disag-
gregate series;

4. Disaggregate forecasting.

In explanatory analysis the relevant ques-
tion that can be tackled with wavelet estima-
tors is the time scale versus frequency: in real
estate economics and finance an examination
of data to evaluate the presence and ebb and
flow of frequency components is potentially
valuable. In density estimation and regression
wavelet estimators are superior to conventional
kernel estimators, whenever local inhomoge-
neities are present (which are highly typical
in the land market). In time-scale decomposi-
tion the crucial issue is the recognition that
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meaningful relationships between real estate
economic variables can possible be found at the
disaggregate (scale) level rather than an ag-
gregate level. In disaggregate forecasting wave-
let estimators provide a basis for establishing
global versus local aspects of the series, there-
fore addressing the question of whether the
forecasting is really possible. All of these can
potentially lead to different kinds of gains, in-
cluding improvements in the bias-variance
trade-off, new insightful perspectives to the
nature of data-generating process and
enchainment of robustness to modeling errors
(Ramsey, 2002). This paper concentrates on the
first and third areas of uses emphasizing dy-
namic aspects of low-frequency land price for-
mulation processes.

Research Problem and Methodology

Hedonic modelling approaches can be clas-
sified by their flexibility in discovering data
structure to three categories (see, e.g. Pace,
1995):

(1) parametric approaches;

(2) semiparametric approaches;

(3) nonparametric approaches.

Parametric models that represent data
modelling culture (Breiman, 2001) have formed
the conventional dogma of hedonic pricing
methods in real estate studies, where
prespecified global models are estimated by
means of ordinarily least squares or some
modification thereof. Benefits of parametric
approaches undeniably include: simplicity, in-
terpretability, parsimony and comprehensive
statistical theory. The fundamental obstacle,
however, underlying the general use of para-
metric models is their inflexibility, i.e. inabil-
ity to learn genuine structure about relation-
ships between variables from the evidence in
such decision-making settings, where theoreti-
cally unknown nonlinearity or nonstationarity
is expected. This is the typical case when the
effects of variables representing location and
time are considered (McMillen and Thorsnes,
2003). The conventional result is that even the

best parametric model tends to impose restric-
tions that substantially reduce the explanatory
and predictive power of the hedonic equation
(Pace, 1993 & 1995; Anglin and Gencay, 1996;
inter alia). Unless the theory-laden paramet-
ric model coincides with the data-generating
process (this is a strong assumption), profound
misspecification errors may result imposing
serious threats to their empirical validity.
Semiparametric and nonparametric ap-
proaches are representative of algorithmic
modelling culture (Breiman, 2001) that
emphasise aspects of learning the complex
structure from the available facts and adapt-
ability to the features underlying the data.
They are particularly suitable for many he-
donic modelling situations, where incomplete
knowledge prevents the exact a priori specifi-
cation of nonlinear or nonstationary compo-
nents of functional form. Semiparametric esti-
mators are, more precisely, an intermediate
strategy between theory-laden and data-driven
estimators that have restricted learning abil-
ity, i.e. semiparametric estimators can approxi-
mate functions only within some prespecified
classes. Their practical relevance is mainly in
balancing the dual goals of low specification
error and high efficiency (Pace, 1995; Anglin
and Gencay, 1996) and in enchaining the in-
terpretability of results. Nonparametric esti-
mators are by their nature highly flexible and,
thus, capable of approximating very general
classes of functions (e.g. smooth functions,
square integrable functions) that neither re-
quire any restrictive, unwarranted prespe-
cification of the model’s functional form nor any
specific error distribution assumption. This
renders nonparametric estimators to be pow-
erful data-driven tools, albeit highly sensitive
to the problem of undersmoothing or overfit-
ting, if local estimation is implemented unduly.
Wavelet analysis appears best suited to ex-
ploratory analysis of complex, non-stationary
functions (or signals) (Bruce et al., 1996). Sta-
tistically speaking, wavelets can be viewed as
nonparametric orthogonal series estimators
(Fan & Gijbels, 1996, pp. 26-39) that can ef-
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fectively handle the discontinuities caused by
different regime shifts that typically plague the
economic and financial data. The main objec-
tive of this study is to model the time-series
variability of land prices in two single locali-
ties (municipalities of Espoo and Nurmijarvi)
of the Finnish land markets by using sophisti-
cated techniques of wavelet transforms, whose
potential is not realized in current practice.
The focus is on a flexible exploratory analysis
of cyclical patterns and trends of unit land
prices in the given sub-markets, i.e. on study-
ing long-term disequilibrium dynamics in these
markets without restrictive a priori specifica-
tions about the nature of relationships. There-
fore by assuming less, we are hopefully able
to discover more about the genuine temporal
structure of land prices. Wavelets are expected
to give new insights into the nature of cycle
and trend components of observed land price
series as the restrictive assumptions of station-
ary and linearity can be avoided. They are es-
pecially suitable to the comprehensive multi-
resolution analysis of disaggregate series; the
process of data aggregation and the concept of
equispaced series do not play any fundamen-
tal role in the context of wavelet analysis or
synthesis. Both unadjusted or raw price series
and quality-adjusted or transformed price se-
ries are analysed; the necessary quality-adjust-
ments, to achieve better comparability across
the observations in the series, are performed
using local regression tools with adaptive band-
width choice procedurel.

Previous Related Research

Wavelet transforms have not been studied
before in the context of the real estate finance
and economics. However, the work on differ-
ent flexible estimators is immense in the real
estate market literature. In real estate re-

search, local polynomial modeling approaches
have been popular: the Nadaraya-Watson es-
timator (Pace, 1993 & 1995; Anglin and
Gencay, 1996; Gencay and Yang, 1996; inter
alia) and the locally weighted least squares
(Wallace, 1996; McMillen, 1996; Case et al.,
2004; Clapp, 2003 & 2004; inter alia) repre-
sent typical choices that are relatively simple
to use, yet effective in their inferences. To sum-
marize, in most cases the use of local model-
ing tools has yielded to significant improve-
ments in the bias-variance trade-off. These lo-
cal regression methods are, in theory, very
similar to wavelet-based methods in their as-
ymptotic minimax properties so that similar
conclusions ought to be expected. The most
similar, previous research are, however, (i) the
paper of (McMillen & Dombrow, 2001), which
uses Fourier approach to the estimation of
house price changes, and (ii) the paper of
(Wang, 2003) that applies Fourier-based time-
series methods to the determination of com-
mon cycles in property and related markets.
Wavelets analysis, in a way, extends the un-
derlying idea of Fourier analysis into the non-
stationary world, where e.g. trends, abrupt
changes or chirps and volatility clustering of
prices exist.

2. WAVELET TRANSFORMS

Fourier Transform versus Wavelet
Transform

The classical Fourier transform’s utility lies
in its ability to analyse a function in the time
domain for its frequency content (Graps, 1995),
which has been successfully applied in a
healthy amount of different practical applica-
tions and theoretical considerations2. The main
problem of the Fourier approach is, however,
that it gives information only about how much

1 Wavelet and local regression tools have very similar statistical optimality features, both being (nearly) minimax in

asymptotic sense (see Fan and Gijbels, 1996).

2 The origins of Fourier analysis goes as far as the early 19t century, when Joseph Fourier presented that any 2n-periodic
function could usefully be represented as an infinitive sum of sine and cosine functions.
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of each frequency exists in the function, but it
does not tell modeler when in time domain
those frequency components appear; in other
words, it has only frequency resolution and no
time resolution. In practice, the Fourier trans-
form has trouble reproducing transient signals
and functions with abrupt changes, such as
land prices. This means that the Fourier trans-
form is only applicable to the analysis of sta-
tionary processes, whose frequency content
does not change in time. In the case of sta-
tionary series, one does not need to know at
what times frequency components appear,
since all frequency elements exist at all times.
When the time localization of the spectral com-
ponents is desired, a transform giving the si-
multaneous time-frequency representation of
the function is needed (Polikar, 2001).
Wavelet transform, on the other hand, is
capable of providing the time and frequency
information simultaneously; wavelets are lo-
calized both in the time and the frequency do-
main. This enables them to escape
Heisenberg’s cursed, i.e. the physical principle
that tells that one cannot be simultaneously
arbitrarily precise with respect to the exact
frequency and the exact time occurrence of that
frequency of a function (Vidakovic, 1999, p. 35;
Schleicher, 2002). Wavelets are designed to give
good time resolution and poor frequency reso-
lution at high frequencies and good frequency
resolution and poor time resolution at low fre-
quencies (Polikar, 2001). This approach is par-
ticularly useful if the function has high fre-
quency bursts for short durations and low fre-
quency components that last a longer period
of time. Furthermore, wavelets tend to be much
less sensitive to any errors in the data, since
they can effectively separate the long-term
movements from high-frequency details,
whereas in the Fourier transform these errors
- that are common in land price studies - can

transform a smooth function into a jumpy one
and vice versa, which is highly undesirable
(Mackenzie, 2001). In essence, the wavelet
transform is an ideal method for finding out
the information content of signals that non-
periodic, noisy, intermittent and transient
(Addison, 2004), which is highly typical of any
economic time-series data, including the real
estate.

Both transforms have, however, common
similarities as well. Fourier analysis consists
of breaking up a function into sine and cosine
waves of various frequencies. Similarly, wave-
let analysis is the breaking up of a function
into shifted, dilated or compressed versions of
the original wavelet. Fourier and wavelet
transforms decompose a function into a
weighted sum of its various frequency compo-
nents (Boggess & Narcowich, 2001, p. 254).
Fourier and wavelet transforms are both lo-
calized in frequency. The fast Fourier trans-
form and discrete wavelet transform are both
linear operations that generate similar data
structures and both transforms can be viewed
as a rotation in a function space to a different
domain (Graps, 1995).

Mathematical Formulation of Wavelets?
Continuous Wavelet Transform

In general, wavelets are localized waves
that serve as local basis functions in continu-
ous time. The continuous wavelet transform of
a signal f(¢) can be defined as (Kaiser, 1994,
pp. 60-77; Goswami & Chan, 1999, pp. 67-72;
Boggess & Narcowich, 2001, pp. 254-255;
Polikar, 2001; inter alia):

v s, =L f(t)W(t - T]dt- )

LN

3 More precisely, this law is known as Heisenberg Indeterminacy Principle, which says the exact position and the exact

velocity of an object cannot be simultaneously determined.

4 In this section a very short overview about the foundations of mathematical theory of wavelets is presented. For a more
comprehensive accounts, see e.g. (Burrus et al., 1998; Vidakovic, 1999; Percival & Walden, 2000).
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In mathematical terms, the transform rep-
resents a convolution of the wavelet function
with the signal f(#) (Addison, 2004) and, thus,
is a measure of similarity (or correlation) of
the observed signal and the local orthonormal®
basis functions (wavelets). The transformed
signal is a function of scale parameter ( S) that
either dilates or compresses the basis functions
and translation parameter (1) that shifts the
basis functions in time domain.y denotes a
complex conjugation of V¥, the transforming
function, which is called the mother wavelet or
analyzing wavelet. It serves as a prototype for
all other functions applied in the wavelet
analysis. Wavelets are compactly supported, i.e.
they have a finite length, which enables tem-
poral localisation of signals features. They are
usually quite irregular in shape, which makes
them an ideal candidate for modeling differ-
ent regime shifts (discontinuities) typically
encountered with economic data. The degree
of regularity depends on the chosen wavelets
family and the number of vanishing moments
(or approximation order).

The scale parameter is the crucial element
in wavelet analysis, which is similar to scale
used in maps (Polikar, 2001). High scales rep-
resent low-frequency variation, which give glo-
bal information about the function, whereas
low scales correspond to high-frequency com-
ponent of variability, which brings out detailed
micro-information about the signal. This vary-
ing scale enables the researcher, as Graps
(1995) states, to see both the forest and the
trees. Change of the scale from high to low
means, in this context, zooming in and seeing
the trees in the structure.

Each continuous wavelet function is ex-
pressible as (Vidakovic, 1999, p. 44; Ramsey,

2002):
t—1
S ) (2

1
WS,T_\/M

where the term 1 / \/m ensures that the norm

of y, , is equal to one. The function v, is cen-
tered at t with scale s; the energy of function
is concentrated in a neighborhood of T with size
proportional to s (Crowley, 2005). The trans-
form given in (1) is reversible and the original
signal can be reconstructed via wavelet syn-
thesis as (Kaiser, 1994, pp. 60-77; Vidakovic,
1999, p. 45; Boggess & Narcowich, 2001, pp.
254-255; Polikar, 2001; inter alia):

~+oco +oo 1

113

N

f()= }" s, DYy, dtds, (3)

(o)
€M|H

given that the admissibility condition holds
(e.g. Goswami & Chan, 1999, p. 69):

w= | ()
— o [ LTI
' TC_[ |§|

where y'(§) is the Fourier transform of &. This
wavelet synthesis states that the signal f{¢) can
be decomposed as a weighted sum of its spec-
tral components. The admissibility condition,
on the other hand, implies:

[ w(t)dt = y'(0)=0. ()
R

dg< oo (4)

This means that wavelet is a waveform of
effectively limited duration that has an aver-
age value of zero. It is not a restrictive condi-
tion in practice; it merely requires that the
wavelet function is oscillatory (where its’ name
also stems from). In addition, wavelets are con-
structed so that they possess a higher order of
vanishing moments (Goswami & Chan, 1999,
p. 69).

In this study it is assumed that the set of
wavelet functions forms an orthonormal set,
ie.:

JWm () W, (2) dt =5, , (6)
R
where 9 is the Kronecker delta function.

mn
This means that the basis functions are

5 Orthogonality condition is not always fullfilled when using wavelets.
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pairwise orthogonal to each other and they
have a length of 1 (in other words, the infor-
mation content of one wavelet is independent
of the information content of another wavelet,
which makes the calculation of wavelet trans-
form much easier).

Wavelet Series Transform

One of the major problems for many prac-
tical applications underlying the continuous
wavelet transform is the high redundancy of
information. Therefore continuous wavelet
function is usually discretized, which produces:

Vi k(0 =57 T ko). (7)

As orthonormality of wavelets is assumed,
we obtain a wavelet series transform (disc-
retized continuous wavelet estimator) (e.g.
Polikar, 2001):

YEG, k) =] F(O)W) k(t)dt (8)
R
and
f(l)=C\,;Z_% YU ) v k(@) (9)
j

Now the exact definition of unit price of land
parcel in terms of wavelets can be given:

[ f(t)ym(z) dt

_ X
pu(t)_ J~ m(t)dt ’ (10)

R
where m(t) denotes the parcel size of land at
time ¢, which is discretized for computational
purposes. The discretized continuous wavelet
estimator is not really a time-discrete, only the
translation and the scale steps are discrete
(Valens, 1999).

The wavelet function has, in many cases, a
companion with a different gender, the scal-
ing function or father wavelet, which represents
a smooth baseline trend or the coarsest infor-
mation of the function. For many functions,
the low-frequency content is the most impor-
tant part of the signal; in a way it identifies
the function. Father wavelet also forms a set
orthonormal basis as:

0 1 () =s720(s 7t — k) (11)
with:
[ o(tydt=1. (12)

This solves the problem of infinitive num-
ber of wavelets needed in the analysis.

Now an alternative way of expressing wave-
lets is in terms of solutions to sets of equa-
tions defined by low and high pass filters
(Strang & Nguyen, 1997, pp. 22-27; Ramsey,
2002). When using dyadic blocks, we have:

00 =2 S 10021, (13)
w(t) =2 kih(km(zr—k), (14)
=0

where [(k) is a low pass filter and Ah(k) is a
high pass filter. These can be expressed in
terms of father and mother wavelets as
(Ramsey, 2002):

10 =% J o(0yo(2—kyde (15)
(k) = % [ w(ow(@—kyd, (16)
h(k) = (-Dk i(k) - (17)

The low pass filter averages and the high
pass filter differences, i.e. the low pass filter
works as a smoother in manner similar to
moving averages that brings the coarsest in-
formation and high pass filter delivers the de-
tailed information. These two filters are clearly
not independent of each other, but related via
equation (17), and are commonly known as a
pair of quadrature mirror filters in the signal
processing parlance.

Discrete Wavelet Transform

The two-scale relation or multiresolution
formulation associates the scaling function and
the wavelets; in particular, we have (Goswami
& Chan, 1999, p. 96; Valens, 1999):
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02'0= S 1a(0@ k), (9
v@0=Sha®0@ K, a9

and now we can reconstruct the original f()
signal as:

f(= %x (ko2 k) +%v (w2 k) (20)
with
A j_l(k) =Y 1(m—-2k)\A j (m), (21)

Yja(k) = 2 h(m— Zk)Yj (m) (22

This is the essence of the discrete wavelet
transform due to (Mallat, 1989), which has
solved the problem of the non-existence of ana-
Iytical solutions, and has offered a digitally
implementable version of continuous wavelet
transform without specifying any wavelet
(Valens, 1999). The one-dimensional discrete
(inverse) wavelet transform to is then used for
actually computing the cyclical patterns and
trends that are hidden in the original time-
amplitude representation of the unit prices.

3. EMPIRICAL ANALYSIS OF LAND
PRICES

Sample Data

Empirical modeling of land prices is like a
complex crystal with many faces. If held up to

the light a particular pattern of reflected light
can be seen. If the orientation of the crystal is
changed, then a completely different pattern
of reflected light is formed. In land markets,
the sensitivity to changes in data, i.e. differ-
ent submarket, time period or scale and land
use can lead to widely differing results, even
in the context of unified methodology. Major-
ity of that variation is explained by spatio-tem-
poral movements: functional forms and param-
eters tend to vary with location and are not
homogeneous throughout the data set, whereas
temporally changing market conditions cause
data-generating processes to evolve over time.
To reduce the sample dependency, i.e. to im-
prove the invariance of empirical study, the
paper examines two data sets that are located
in different submarkets and associated with
partially non-overlapping time frames. The
land type (land use) is, in contrast, fixed in
order to reduce unnecessary heterogeneity of
land prices. It represents undeveloped land not
yet reached its highest and best use: vacant
sites without a local detailed plan that are re-
served for residential housing purposes.

The first sample data involve observations
on land prices and the associated characteris-
tics in the municipality of Espoo, a highly poly-
centric city, which lies inside the Helsinki met-
ropolitan area with circa 225 000 habitants;
its population is the second largest of the cit-
ies in Finland, which has experienced a rapid
growth in its late history. The study period is

Table 1. Some common sample statistics for the municipality of Espoo

Variable (unit) Arithmetic mean Minimum Maximum Std', .
Deviation

Total price (€) 59126.40 3027.00 756846.00 61976.88

Square price (€/m?) (unit price) 22.99 0.24 127.55 19.09

Parcel size (m?) 4207.49 1000.00 28400.00 4613.75

Distance to CBD of Helsinki, L,-

metric (km) 17.22 7.61 27.29 4.34

Quarterly price index of single-

family houses 154.06 116.80 187.30 22.35

Parcel type (=0 if whole site; 1 ) 0 1 )

otherwise)
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from January, 1990 to December, 2001 with
total number of observations of 400. In terms
of quality, this data set is preferable over the
second sample, i.e. it has been pre-checked for
any errors and analysed before (Hannonen,
2005b). In Table 1 are documented some stan-
dard sample statistics for the study variables
in the case of Espoo.

The second sample contains observations of
land prices and the associated attributes on
793 unbuilt land parcels without a local de-
tailed plan sold in the period spanning from
January, 1985 to March, 2004 in the munici-
pality of Nurmijarvi, which lies just outside
the Helsinki metropolitan area with approxi-
mately 36 000 habitants and three distinctive
population centres (the parish village,
Klaukkala and Rajaméki). Nurmijirvi has re-
cently also witnessed several years of rapid ex-
pansion. In terms of quantity, this data set of-
fers more opportunities to flexible modeling
than the Espoo case, albeit it is more pro-
nounced to any errors (e.g. recording errors),
since it has not been pre-checked for hedonic
modeling purposes. In Table 2 are documented
some standard sample statistics for the study
variables in the Nurmijéarvi case.

Figures 1 and 2 depict the time-amplitude
representations for the disaggregated and
untransformed unit prices of the municipali-

ties of Espoo and Nurmijirvi, respectively.
They clearly show that the determination of
appropriate signal is notoriously difficult vi-
sually, at least for the Espoo case (for the
Nurmijéarvi case there is some structure
discernable in the Figure 2). That is why wave-
let transforms are needed; they give a com-
plete multiresolution representation of the
underlying signal in a more interpretable and
insightful form. In this paper the focus is on
the low-frequency (trends and cycles) charac-
teristics of the temporal variation.

Choice of the Wavelet Basis Functions

There exist several different criteria of how
to choose an appropriate class of wavelet func-
tions to represent data (see e.g. Ramsey, 2002).
Symmetry of the wavelet basis function is use-
ful for describing signals, which exhibit local
symmetries. Orthogonality is highly desirable
property of any transform as it significantly
simplifies calculations associated with the
transform in question. Smoothness of the
wavelet is yet another important characteris-
tic that is measured by the number of continu-
ous derivatives of the basis function. In this
empirical section orthogonal, compactly sup-
ported (with finite energy) and reasonable sym-
metric wavelet basis functions called Symlets

Table 2. Some common sample statistics for the municipality of Nurmijarvi

Variable (unit) Arithmetic mean Minimum Maximum %td'. .
eviation

Total price (€) 22 019.03 673.00 479 336.00 21262.25

. 2

Square price (€/m’) 3.80 034 22.83 3.27

(unit price)

Parcel size (m?) 7387.36 1 000.00 30 000.00 4 651.66

Distance to CBD of Helsinki (km) 33.11 22.28 4491 5.22

Distance to parish village of

Nurmijarvi (km) 8.55 0.32 16.06 3.37

Quarterly price index of single-

family houses 154.30 100.00 226.00 32.00

Parcel type (=0 if whole 0 1

site; 1 otherwise)
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Figure 1. The time-amplitude representation of unit prices (case Espoo)

£ [ Unit Price]

501

0 100 300

400

500 600 700 800

Figure 2. The time-amplitude representation of unit prices (case Nurmijérvi)

are applied that are modifications of the stan-
dard Daubechies family of wavelets. The ap-
proximation order is denoted by the number
of vanishing moments, which is, by some em-
pirical experimentation, chosen to be eight in
the study. In general, increasing the number

of vanishing moments makes wavelets more
symmetric. Figure 3 depicts the chosen father
and mother basis functions.

In the following sections unit prices of land
parcels are empirically analysed with wavelets
transforms under two different scenarios in
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Figure 3. Father and mother wavelets of the study

both the Espoo submarket and Nurmijarvi
submarket. In the first scenario unit prices of
land are investigated by wavelets without any
adjustments made with respect to differences
in the attributes such as location or parcel size,
i.e. unconditional low-frequency variation of
land price series is examined. Under the sec-
ond scheme unit prices are first quality cor-
rected in an adaptive fashion by local hedonic
modeling tools to account for any differences
in the attribute space; after the series are ho-
mogenized they are fed as an input to the
wavelet estimator to account for the unex-
plained low-frequency time variation of land
prices. The low-frequency time variability of
unit land prices is further divided into the cy-
clical variation and into the trend component
by suitable adjusting the scale. The choice of
proper scale involves subjective assessment
and different formulations for the cycle and
trend can be obtained by changing the scale of
the analysis.

Case Espoo

Unadjusted Unit Price Series

Figure 4 represents the estimated price
trend of the one-dimensional inverse discrete
wavelet transform for the raw and the disag-
gregate form of time-series observations (i.e.
no quality adjustments nor price aggregation
are made) on land prices in the municipality

of Espoo during a twelve-year period of 1990-
2001. As can be seen from that figure, the
untransformed series witness clear downward
and upward movements over time, which a
conventional linear time trend cannot properly
reproduce. The unit land price has fallen from
approximately 33 €/m? to circa 16 €/m? in the
period spanning from the 15t of January 1990
to the turn of the years 1995 and 1996. In other
words, the trend of unit prices has decreased
quite steadily and almost linearly by circa 52 %
in the period of six years. The five-year time
period of 1996 to 2001 evidence a steady in-
crease in the low-frequency price level, which
goes from circa 16 €/m? to approximately
26 €/m? with the rise of circa 63%. This sounds
intuitively plausible. The Figure 4 is sugges-
tive that a piecewise linear approximation
might be sufficient for the trend in the uncon-
ditional price series. The average high-scale
level of unit prices of land in the period of 1990-
2001 is approximately 22.5 €/m? (see Table 3),
which parallels surprisingly closely with the
common arithmetic average value (of circa
23 €/m?) in that period (see Table 1). However,
one should be cautious in interpreting aver-
age values, as the low-frequency levels and the
unit prices per se are not normally distributed.
Tables 1 and 3 also reveal that the standard
deviation is almost 4 times higher in the origi-
nal unit price series (Table 1) when compared
to the corresponding variability measure of es-
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timated levels (Table 3) - a significant improve-
ment in the reliability of results.

Figure 5 shows the estimated cyclical varia-
tion of unit land prices in the time period of
1990-2001 for the unadjusted and the disag-
gregate time-series observations. The overall
movements in the price level are naturally
much more volatile; there are several peaks
and valleys present in that figure. The pro-
nounced dip in the series corresponds to the
turn of the years of 1995-1996 as with the pre-
vious figure of the trend of unit prices. The
other smaller troughs relate to the last quar-
ters of 1998 and 2000 and the peaks to the
first quarters of 1998 and 2000 and to the last
quarter of 2001. This locally fluctuating behav-
ior of unit prices might, in part, be a reflection

signal_korjaus_espoo (402 val ) Iy

of the high seasonal variability. There is a clear
boundary problem in the beginning of the price
series, which slightly distorts the interpreta-
tion (the dominant peak in the left cannot be
seen at all). In general, the reconstructed ap-
proximation implies that price movements are
intense over time, i.e. the local slopes (tan-
gents) at any given point in time are high in
absolute value at the given scale.

Quality-Adjusted Unit Price Series

A two-stage procedure is applied here. At
the first phase, the unconditional unit price
series are quality-adjusted using local regres-
sion methodology with adaptive bandwidth
selection rule (see Appendix)®, which is, at the

d at level 7 with sym8. Components: 1 --> 402 ‘

Reconstructed approximation at level 7

- T T T
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Figure 4. Estimated long-term movement of the untransformed unit price series

Table 3. Summary statistics of the estimated trend component

Mean 22.52 Maximum
Median 22.00 Minimum
Mode 16.62 Range

Standard

33.01 Deviation 4.86
Median Abs.

16.34 Deviation 3.57
Mean Abs.

16.67 Deviation 4,01

6 The house price index variable was dropped from the final hedonic model, as it appeared to distort the analysis here. The
explanatory variables used in the hedonic regression to achieve the necessary quality correction are parcel size, parcel

type and distance to the Helsinki CBD.
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signal_korjaus_espoo (402 values) analyzed at level 7 with sym8. Components: 1 --> 402

Reconstructed approximation at level 5
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Figure 5. Estimated cyclical patterns for the raw unit price series

second stage, fed as an input to the wavelet
estimator to account for the low-frequency time
variation of land prices that is left unexplained
at the first stage. Figure 6 depicts the esti-
mated price trend of the one-dimensional in-
verse discrete wavelet transform for the qual-
ity-adjusted and the disaggregate form of time-
series observations - i.e. no price aggregation
is made - on land prices in the municipality of
Espoo during a twelve-year period of 1990-
2001. This figure ought to be contrasted with

the Figure 4; the case of unadjusted, disaggre-
gate time series. The overall shape is remark-
able different implying that quality-adjustment
does matter.

There are one dominant peak and trough
observable in the estimated level component.
This peak, perhaps surprisingly, occurs in the
turn of the years 1992 and 1993, which is three
years after the corresponding peak in the Fi-
gure 4. Also the pronounced drop occurs later;
this time at the first quarter of 1999, lagging

espoo_adj (402 values) analyzed at level 8 with sym8. Components: 1 --> 402 |

Reconstructed approximation at level 7
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Figure 6. Estimated long-term movement of the transformed unit price series
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again three years, as compared to the level in
the Figure 4. The trend of unit prices has de-
creased almost linearly about six years (as in
the Figure 4) from the value of 25 €/m? to 18 €/
m?, i.e. the decrease has been about 28 % in
that time frame, which is, however, 24 % units
smaller decrease than in the case of unadjusted
series. The increases are also lower here; in
the period of 1990-1992 the level has increased
by about 8 % and in period of 1999-2001 by
about 17 %, which both are significantly lower
than in the Figure 4. The mean level value is
circa 22 €/m2, which is very close to the arith-
metic average value of the series (see Table
1). The standard deviation of the estimated
trend component is about (see Table 4) seven
times smaller than in the case of original se-
ries in the Table 1; and almost 1.6 smaller than
in the case of unadjusted levels in the Table 3.
The original observations and level values are

not normally distributed, so one has to be care-
ful in the inferences.

Figure 7 shows the estimated cyclical be-
havior of unit land prices in the time period of
1990-2001 for the quality-adjusted and the dis-
aggregate time-series observations. The over-
all movement in the price level is naturally
much more volatile than in the previous case
of Figure 6; there are several peaks and val-
leys present in the Figure 7. The estimated
pattern of level component is clearly transient
or non-stationary. The major peak occurs, sur-
prisingly, at middle of the year 1994 (the Finn-
ish economy as a whole were in recession), and
the major valley in the last quarter of 1998.
Figures 6 and 7 together indicate quite
strongly, given the boundary problem, that the
low-frequency and quality-adjusted level val-
ues of unit prices seem to lag the untransformed
price values about three years. Table 4 shows

Table 4. Summary statistics of the estimated trend component

Mean 21.94 M aximum 25.36 Standard 2.70
Deviation
Median 2143 Minimum 18.15 Median Abs. 5 g5
Deviation
Mode 25.24 Range 7.21 Mean Abs. 251
Deviation
espoo_adj (402 values) analyzed at level 8 with sym8. Components: 1 --> 402 |
Reconstructed approximation at level 5
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Figure 7. Estimated cyclical patterns for the transformed unit price series
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that deviation-based measures for the esti-
mated levels of trend are reduced significantly,
if quality-adjustments are made, which in-
creases the reliability that we can place on our
inferences (The same applies to estimated cy-
clical movements, which are not tabulated
here).

Case Nurmijarvi

Unadjusted Unit Price Series

Figure 8 represents the estimated price
trend of the one-dimensional inverse discrete
wavelet transform for the raw and disaggre-
gated time-series observations (i.e. no quality
adjustments nor price aggregation are made)
on land prices in the municipality of
Nurmijéarvi during circa a twenty-year period
of the 15 of January 1985 to the early March
of 2004. The reconstructed signal shows a

clearly discernible dominant peak and trough
in the middle of the series. This dominant peak
corresponds quite closely to the turn of the
years 1989 and 1990 after which the level of
unit prices has fallen systematically about
eight years (the time period of 15t of January,
1990 to 318t of December, 1997) from 4.5 €/m?
to almost 2.5 €/m? (i.e. by circa 44 %). The
dominant valley thus occurs in the turn of the
years 1997 and 1998. Since that point, the low-
frequency component of unit price fluctuations
has steadily increased over six years by an im-
pressive 160 %. This should be contrasted with
the five-year period of 1985-1989 in the same
figure, where the increase in the high-scale
level of the series has been about 125 %. The
arithmetic average value of estimated level
component (see Table 5) is identical to the
arithmetic average value of original series (see
Table 2); however, the variability in the esti-
mated levels is almost three times smaller than

signal_2 (794 values) analyzed at level 9 with sym8. Components: 1 -->» 794 |

Reconstructed approximation at level 8
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Figure 8. Estimated long-term movement of the untransformed unit price series

Table 5. Summary statistics of the estimated trend component

M ean 3.80 Maximum
Median 3.69 Minimum
Mode 454 Range

6.63 Standard 111
Deviation

1.99 Median Abs. 0.79
Deviation

464 Mean Abs, 0.90

Deviation
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in the original series of the Table 2. In other
words, the reliability of results improves sig-
nificantly if wavelet estimator is applied.
Figure 9 shows the estimated cyclical varia-
tion of unit land prices in the time period of
1990-2001 for the unadjusted and the disag-
gregate time-series observations. The overall
movement in the price level is significantly
more variable than in the previous graph; sev-
eral peaks and valleys occur that are hidden
in the original data. The pronounced dip cor-
responds to the last quarter of 1996, which dif-
fers somewhat from the previous figure of the
trend of unit prices. The other smaller valleys
correspond to the turn of the years 1988 and
1989 (the first valley is, in fact, so minor that
it is not reported here); to the last quarter of
1998; to the first quarter of 2000 and to the
last quarter of 2002. The dominant peak oc-
curs in the 3™ quarter of 1990, which slightly
differs from the information given by the esti-
mated trend component. Scale seems to mat-
ter. The other peaks occur in the 3" quarter
of 1988; in the first quarter of 1998; in the sec-

ond quarter of 2000 and in the first quarter of
2002. These minor changes can be, partly, an
indication of strong seasonal variability that
is present in the data.

Quality-Adjusted Unit Price Series

Figure 10 depicts the estimated price trend
of the one-dimensional inverse discrete wave-
let transform for the quality-adjusted’ and dis-
aggregated time-series observations on land
prices in the municipality of Nurmijarvi dur-
ing circa a twenty-year period spanning from
the 15t of January 1985 to the early March of
2004. There exist a clearly discernible domi-
nant peak and valley in the figure; the domi-
nant peak relates to the turn of the years 1988
and 1989 after which the quality-adjusted unit
price has fallen steadily over nine years; the
pronounced dip in the this series occurs in the
first half of the year 1998. The unit price level
has decreased steadily from 3.5 €/m?2 to
2.9 €/m? with a relative drop of circa 17 %,
which is surprisingly low, if compared to the

signal_2 (794 values) analyzed at level 6 with sym8. Components: 1--> 794 |
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Figure 9. Estimated cyclical patterns for the untransformed unit price series

7 The house price index variable was dropped from the final hedonic model, as it appeared to distort the analysis. The
explanatory variables used in the hedonic regression to achieve the necessary quality correction are parcel size, parcel
type, distance to the Helsinki CBD and distance to the parish village of Nurmijérvi.
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Figure 10. Estimated long-term movement of the transformed unit price series
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Figure 11. Estimated cyclical patterns for the transformed unit price series

Table 6. Summary statistics of the estimated trend component

M ean 3.25 M aximum 3.49 Standard 0.22
Deviation

M edian 3.32 Minimum 2.89 MedianAbs. 44
Deviation

Mode 348 Range 0.60 Mean Abs. 0.20

Deviation
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unconditional series. Since that point, the qual-
ity-adjusted unit price has increased steadily
and linearly almost six years reaching the high
unit price level of the turn of years 1988 and
1989. The quality-adjusted high-scale mean
level of unit price series is about 3.25 €/m?2,
which is circa 15 % smaller than the arithmetic
average value of the Table 2. This sounds in-
tuitively plausible. It is important to notice that
standard deviation of quality-adjusted level
values of unit price is fifteen times (!) smaller
than the corresponding value of original se-
ries in the Table 2. This implies significant im-
provements in the reliability of results.
Figure 11 represents the estimated cyclical
behavior of unit land prices in the time period
of 15t of January, 1985 to early March of 2004
for the quality-adjusted and the disaggregate
time-series observations. The estimated level
component is naturally more variable now, as
compared to the previous graph, with several
local peaks and valleys. The striking feature
of this fluctuation is that the volatility of the
series is decreased in the period of middle 1996
to early March, 2004. Now the pronounced dip
of the unit price series occurs 1% to 2 years
before (middle of 1996) than in the figure 10.
The dominant peak is, however, the same re-
lating to the turn of years 1988 and 1989.

4. CONCLUSIONS

This paper has analysed the low-frequency
or high-scale temporal variability of unit land
prices in two single localities, the municipali-
ties of Espoo and Nurmijérvi, of the Finnish
real estate markets by the use of relatively new
modeling tools: the wavelet transforms. These
transforms are nonparametric orthogonal se-
ries estimators, which are capable of provid-
ing the necessary time and frequency informa-
tion of land prices simultaneously in a highly
flexible fashion. They are particularly suitable
for the multiresolution analysis of complex,
non-stationary signals that are plagued with
different kinds of regime shifts; a typical case
in the analysis of unit prices of land parcels.

In the empirical section of this paper both
the raw and quality-adjusted unit price series
were modeled using the one-dimensional dis-
crete inverse wavelet transform to account for
cyclical patterns and trends that were hidden
in the original time-amplitude representation
of the unit prices. The Symlets, with eight van-
ishing moments, were chosen by some empiri-
cal experimentation as the proper class of
wavelet basis functions to represent data. It
turned out that wavelet estimators yielded, in
all cases, to meaningful and plausible repre-
sentations for the low-frequency unit price fluc-
tuations. The estimated cycles and trends were
all nonlinear and, in particular, the behavior
of cyclical component was highly curvelinear
and transient in time. These findings strongly
suggest that the sub-markets in question are
not in a steady state, but are continuously
evolving in time.

The modeling of the raw and the quality-
adjusted unit price series resulted to different
kinds of descriptions for the high-scale tempo-
ral variability. It seems that much of the tem-
poral variation present in the untransformed
series is, in fact, explained by the quality dif-
ferences in the attribute variables. As a result
the use of unadjusted price series tended to
exaggerate the salient features of low-fre-
quency fluctuations. The use of quality correc-
tions produced seven to fifteen times smaller
internal variability when compared to the origi-
nal, untransformed series; and also signifi-
cantly reduced internal variability when con-
trasted to the unadjusted wavelet-based series.
Quality-adjustments seem to matter, which
were generated in the study by the local re-
gression tools. An important empirical finding
in the Espoo case was that the low-frequency
and quality-adjusted level values of unit prices
seem to lag the untransformed price values
about three years. The same phenomenon was
not observed in the Nurmijirvi case.

In contrast to conventional methods (e.g.
dummy time variable technique or Fourier
analysis) the wavelets estimators can, in prin-
ciple, handle all sorts of non-stationary price
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behavior in the land market, i.e. it can well
manage complex, non-periodic, noisy, intermit-
tent and transient signals, whose valid mea-
surement would otherwise prove to be highly
difficult. Empirical analysis supported this
claim; wavelet estimators provided insightful
descriptions for the trend and cyclical compo-
nent of the raw and quality-adjusted price se-
ries. The choice of the proper scale was found
be an important modeling issue, where sub-
jective assessment is needed.
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ZEMES SKLYPU KAINU TENDENCIJU IR CIKLU ANALIZE TAIKANT WAVELET TRANSFORMACIJA

Marko HANNONEN

Siame darbe, naudojant Wavelet transformacija, analizuojamas mazo daznio laikinas zemés sklypy kainy svyravimas
dviejose skirtingose Suomijos nekilnojamojo turto rinkos dalyse: Espoo ir Nurmijérvi savivaldybése. Sios transformacijos
yra beparametres staCiakampes seky vertintojos, kurios padeda vienu metu ir labai lanksciai pateikti reikiama
informacija apie laika bei daznuma, kai kalbama apie sklypy kainas. Empirinéje Sio darbo dalyje analizuojamos
tiek neapdorotos, tiek kokybiskai pakoreguotos vieneto kainy sekos. Visi apskaiciuoti ciklai ir tendencijos yra netiesiniai:
labai svyruoja ciklinio komponento elgsenos kreive, o pokyciu daznis labai didelis. ISvadose teigiama, kad aptariamosios
rinkos dalys néra stabilios, o nuolat kinta. Panasu, kad didzioji laikiny variacijy, esanc¢iy netransformuotose sekose,
dalis realiai gali biiti paaiskinta kokybiniais kintamyjy skirtumais. Panaudojus kokybines korekcijas, gerokai iSaugo

vidinis rezultaty patikimumas.
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APPENDIX: A Local regression

The local regression problem can be formalized by using locally weighted least squares (e.g.
Ruppert and Wand, 1994; Loader, 2004):

Minimize iWH (x; = X)(p; = (0, F(x; = X)) )2, (1A)
i=1

where ¢ is the 4 +1 vector of unknown cg}efﬁcients and F(-)is a vector of basis polynomials. WH
is a multivariate weight function and H/2 is a bandwidth matrix. The local least squares esti-
mate of the unknown regression function f(x)is then®:

f o =el(xwx ) xwp. (2A)

For local cubic regression e; is a {1+d +%d(d +1)+%d(d +1)(d +l)}><1 vector having 1 in the
first entry and all other entries 0. For local quadratic and linear model the dimension of €, is,
respectively, {1+d + %d(d +1)jx1 and {1+d }x1. p= [ DPlsoees Pn], is a vector of observed land prices
and the data matrix X for local cubic model is:

1 (xg=x)" vee{(xg = )01 =)} (Xa) ® X1y ®X(1))’ (3A)
X =| : : : : '

L %y = %) vec{(Xy = X)Xy = %)} Xy ® X(m) ® X))

where X(;) =(X; = X) and vec -operator stacks the columns of (x; — X)(X; — X)", each below the
previous, but with entries above main diagonal omitted; ® is the Knonecker (tensor) product.
The local linear and quadratic model uses only the first two and three, respectively, columns of
the data matrix. The weight matrix is W =diag{Wy Xy - X), ... ,Wg(x,, - X) }

= diag{w1(x), ... ,w,(x) }.

8 Assuming, as usual, that X"W X is non-singular.



