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ABSTRACT. This study incorporated expert knowledge into the classical quadratic program-
ming approach, i.e., Modern Portfolio Theory (MPT), through fuzzy set theory; in obtaining 
portfolio return optimization involving direct real estate investment. Two fuzzy mathematical 
programming models were uniquely specifi ed and estimated in this study, namely, Zimmer-
mann’s (2001) fuzzy tactical asset allocation (FTAA) fl exible programming model and Ramik 
and Rimanek’s (1985) FTAA robust programming model. These approaches try to overcome the 
drawbacks of traditional asset allocation models by including expert adjustment in the presence 
of imprecise information. The fi ndings suggest that the fuzzy tactical asset allocation (FTAA 
Flexible Model), with the inclusion of expert judgments which contain information usually 
not found in historical data, is able to produce a portfolio just as effi cient as traditional asset 
allocation models while minimizing the potential issues due to imprecision and vagueness of 
information. Meanwhile, the FTAA Robust Model proffers a more evenly-distributed, yet with 
higher risks and lower returns, portfolio. Aside from the lack of emphasis on portfolio risks 
minimization, one reason attributed to such anomaly is the low level of returns of high-risk 
stocks that are not selected by MPT and FTAA Flexible Models. It results in a unique situation 
where portfolio diversifi cation does not necessarily guarantee an effi cient investment decision.

KEYWORDS: Modern portfolio theory; Imprecise information; Fuzzy linear programming; 
Portfolio selection, Decision making

1. INTRODUCTION

In an intricate and dynamic market, de-
cision making is a complex human cognitive 
process with regard to uncertainties such as 
price and interest volatility. Therefore, insti-
tutional investors and practitioners are al-
ways immersed in managing their investment 

portfolios, not only to optimize returns, but 
more importantly to minimize potential risks. 
Risk diversifi cation has been a main theme in 
many previous studies on portfolio manage-
ment, fi rst seen in the mean-variance modern 
portfolio theory (MPT) by Markowitz in 1952. 
However, since the reliability of MPT, as well 
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as other mathematical models in deciding the 
optimal investment allocation for a real estate-
only portfolio (Olaleye, 2008) or a mixed-asset 
portfolio (Falkenbach, 2009), depends mostly 
on availability of relevant market data, some-
times they might not be able to accurately re-
fl ect real world situations. Thus, these market 
data do not represent one’s decision making as 
some information are not quantifi able in na-
ture, i.e. the human cognitive process. Expert 
judgment seems to offer an acceptable alterna-
tive to tackle this problem (Su, 2007). 

By relaxing the crispness and precision for 
rigorous modeling and enabling a robust sum-
mary of expert knowledge, fuzzy logic systems 
can assist decision makers in their portfolio 
selection. The foundation of fuzzy logic for ex-
pressing imprecise, vague and uncertain infor-
mation was fi rst proposed by Zadeh (1964). His 
model/method has since been developed and 
widely used in investment, operating design 
and decision-making, along with information 
technology, artifi cial intelligence, management 
science and urban planning. Ko and Cheng 
(2003) emphasized that fuzzy logic not only 
can provide an approximate but also effective 
descriptions for highly complex, ill-defi ned, or 
diffi cult-to-analyze mathematical systems. The 
fuzzy approach can capture uncertainty in a 
realistic state as well.

Yet, the application of fuzzy set theory in 
real estate investment, especially one’s alloca-
tion of such in investment portfolios, has been 
a relatively unexplored area. How does real es-
tate investment, known for its capabilities of 
hedging against uncertainties such as infl ation, 
infl uence the dynamics of one’s portfolio asset 
allocation? This paper attempts to fi ll this gap 
of knowledge by incorporating fuzzy set theory 
into the classical asset allocation models, i.e. 
MPT. In order to relax the crispness and pre-
cision in portfolio management, two fuzzy tac-
tical asset allocation (FTAA) models, namely 
Zimmermann’s (2001) FTAA fl exible program-
ming model and Ramik and Rimanek’s (1985) 

FTAA robust programming model, are applied 
in this study. These models incorporate fuzzy 
set theory and linear programming into the 
tactical asset allocation process.

Following the introduction, Section 2 re-
views the relevant literature on real estate 
asset allocation. It is followed by a presenta-
tion of the methodology, approach and details 
of the model operation in Section 3. Section 4 
provides details of the data set used for the 
modeling. Then, the results of our models are 
discussed and compared. Lastly, concluding re-
marks are provided. 

2. LITERATURE REVIEW

This section reviews the previous asset al-
location studies and relevant researches. Tra-
ditionally, asset allocation is based on the ex-
pected mean-variance (EMV) analysis. It relies 
on the premise that investors would diversify 
assets so as to optimize expected return while 
minimizing risk (volatility). An investor will 
trade-off between expected or anticipated re-
turn and risk, subject to various constraints 
since market imperfections cannot be ignored 
(Markowitz, 1952). This decision is not merely 
which securities to own, but how to allocate 
investors’ wealth amongst securities. And as-
set allocation is a powerful tool for risk reduc-
tion (Kaplan, 1998). Yet, as the model relies 
greatly upon historical data as inputs to prof-
fer recommendations on asset allocation and 
past performance of elements is an important 
infl uence on the decision (French, 2001), those 
inputs should be adjusted to refl ect the under-
standing of the market (Kaplan, 1998). With-
out such adjustments, the credibility of the 
analytical result is compromised. 

In order to overcome these problems, ex-
pert-knowledge is adopted in modeling. Ex-
pert judgments are pervasive and important 
to analytical systems (Fischhoff, 1989). It 
could be used in adjusting the expected return 
and variance in accordance with various fac-
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tors, which might not be taken into account 
by mathematical computations, for instance, 
the MPT. Keeney and von Winterfeldt (1989) 
noted that human linguistic qualifi cations are 
preferable to numerical expressions of knowl-
edge because it can well express or refl ect ex-
pert’s vagueness. It is therefore necessary to 
integrate such qualifi cation into model calcu-
lations. The use of fuzzy logic in expressing 
imprecise, ambiguous, vague and uncertain 
information into a scientifi c approach was in-
troduced by Zadeh (1964) and later enhanced 
via the introduction of the concept of linguis-
tic (non-numeric) variable in 1970, i.e. “high”, 
“low” (Bellman and Zadeh, 1970). 

The application of fuzzy set theory to deci-
sion-making and evaluation in different real 
estate issues has been well-documented, for 
instance in the geographical information sys-
tem (GIS) for spatial analysis (Sui, 1992; Zeng 
and Zhou, 2001), as well as in housing sales 
performance predictions utilizing a computer-
based decision support tool for investors and 
contractors (Perng et al., 2005). Furthermore, 
it has also been applied to property appraisal 
and the estimation of appropriate market val-
ue (Bagnoli and Smith, 1998; Pagourtzi et al., 
2003). However, little research has been done 
on deploying fuzzy set theory in devising an 
optimum investment strategy, particularly 
when direct real estate investment is being 
considered as well as other fi nancial products 
available on the market. In addition to stocks 
and bonds, real estate is a crucial element in 
an investment portfolio because, while lacking 
liquidity, it processes hedging effect against 
market uncertainties such as infl ation and 
interest volatility, which could change the 
complexion of one’s consideration in the as-
set allocation of investment portfolios. This 
study aims to explore the possibility in in-
corporating expert knowledge through fuzzy 
set theory to optimize investment portfolios 
involving direct real estate investment. Two 
fuzzy mathematical programming, namely 
“Flexible” and “Robust” models, are utilized 

in this study. These models concern the as-
pired level of objective function, the degree of 
constraints, and the vagueness of coeffi cients 
in linear programming. 

3. METHODOLOGY

This study focuses on the portfolio selec-
tion problem and the incorporation of fuzzy set 
theory with expert-knowledge in traditional 
approaches for optimizing the diversifi cation 
benefi t under risk tolerance. In general, most 
investors who are risk-aversers prefer risk to 
be as low as possible in their investment strat-
egy. One of the most appropriate and popular 
approaches, Modern portfolio theory (MPT), 
is utilized to constitute an optimized portfo-
lio using the concept of asset allocation. It can 
fi nd the portfolio which will minimize risk and 
maximize expected return. 

Modern Portfolio Theory (MPT)
A portfolio under MPT can be modeled as 

a quadratic programming function, similar 
to linear programming. Suppose there are n 
assets involved in the asset portfolio, the op-
timization for asset allocation in which the 
portfolio risk is minimized for a given level of 
expected return, can be expressed in an objec-
tive function and a few constraints as follows:

Minimize 
= =

σ = σ∑∑2

1 1

n n

p i j ij
i j

x x  

Subject to 
1

n

p i i
i

x
=

μ = μ∑
μp ≥ μo

1
1

n

i
i

x
=

=∑      
                                          

(1)

0, 1,2, ,ix i n≥ ∀ = …

where: xi is the proportion of portfolio allocated 
to asset i; μp is the expected portfolio return; μi 
is the expected return on asset i; μo is the given 
level of expected return; σij is the covariance 
between asset i returns and asset j returns.
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In Markowitz’s MPT optimization, inves-
tors are predominantly risk-averse and obtain 
an optimized asset portfolio with the highest 
possible return at a given level of risk 2( )pσ  
subject to some constraints. 

Fuzzy Set Theory
The desired level of return for an investor 

sometimes cannot be depicted by a precise nu-
merical value. It is regarded as the linguistic 
vagueness. In order to address it, this study 
incorporates the fuzzy set theory into linear 
programming, usually perceived as a powerful 
tool in decision-making.

Fuzzy set theory can be viewed as the ex-
tension of a crisp set theory, which deals with 
the lexical uncertainty and provide assistance 
in making decisions. It can be expressed as fol-
lows.

1
( , ( ) ) or ( ) /

n

A A i i
i

A x x x U A x x
=

= μ ∈ = μ∑    (2)

where: μA (x) is a membership function (MF) of 
x in set A in the universe of discourse and its 
value maps to the space [0,1], 
μ(x) : X → [0,1].
Note: The symbol ∑ implies union, but not ad-
dition.

The membership function represents the 
degree of belonging for x in set A in the inter-
val [0,1]. The value of zero implies no member-
ship and the value of one implies a complete 
membership. The MF can be formed as trian-
gular, trapezoidal and bell-shape types.

Defi nition of the fuzzy decision
Linear programming in a fuzzy environ-

ment was first formulated by Bellman and 
Zadeh in 1970. The decision can be viewed as 
an intersection of objective functions and con-
stricts, as well as the optimal solution for the 
objective.

Suppose that a fuzzy goal G�  and a fuzzy 
constraint C�  are given in alternative space. A 

fuzzy set decision D�  is formed by the intersec-
tion of G�  and C� , which can be expressed as 
follows:

D G C= ∩� ��

with min{ , }D G Cμ = μ μ� � �           (3)

In general, when goals 1, ..., nG G� �  and m 
constraints 1, ..., mC C� �  are given, the resultant 
decision can be expressed as follows:

1 2 1 2... ...n mD G G G C C C= ∩ ∩ ∩ ∩ ∩ ∩ ∩� � � � � ��

1 2 1 2
min{ , ,..., , , ,..., };

n mD G G G C C Cμ = μ μ μ μ μ μ� � � � � � �

,n m N∈

min{ }iDμ = μ�                                       (4)

The model defi nition is represented in Fig-
ure 1.

However, optimal fuzzy solution is not easy 
to interpret. Because of that, the result has to 
be defuzzifi ed by converting the outcome into 
corresponding non-fuzzy value. It is appropri-
ate to recommend that the crisp Dm is a subset 
of D with the highest degree of membership 
function, as the optimal decision. 

( ) Max ( )Dx Dx xμ = μ �

( ) Max Min { ( )}Dx ix xμ = μ          (5)

Figure 1. Decision-making in fuzzy environment

�( )x

x

Objective function

Constraint function
Optimal solution for decision

1

0
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Zimmermann’s (2001) FTAA fl exible 
programming model 

Before focusing on Zimmermann’s FTAA 
fl exible programming model, classical linear 
programming is introduced. Mathematically 
speaking, it can be stated as:

Max f(x) = cTx
Such that  Ax ≤ b
x ≥ 0
with A ∈ Rm×n, b ∈ Rm, c ∈ Rn        (6)

All coeffi cient of A, b, and c are crisp num-
bers and all constraints must be strictly satis-
fi ed. x* is called a solution of PL problem if 
cx* ≥ cx for all x ∈ X. It is always considered 
a special kind of decision model in which its 
decision spare is satisfi ed all “goals” and “con-
stricts”.

However, as stated before, an investor’s 
desired level of return sometimes cannot be 
represented by a precise numerical value. To 
address this issue, the fuzzy set theory is in-
corporated in a classical linear programming 
structure (6). Assume that an investor can 
establish an aspiration level z, that the objec-
tive function is achieved and each constrict is 
modeled as a fuzzy set. It can be expressed as 
follows:

Find x
Such that cTx >–~ z 
Ax >–~ b
x >–~ 0
A ∈ Rm×n, b ∈ Rm, x ∈ Rn         (7)

where: c objective function; A constraint func-
tion; z aspiration level; m number of con-
straints; n number of goals; Rm×n: m × x real 
matrix.

>–~
 and >–~ denote the fuzzifi ed version of ≤ 

and ≥ and have the linguistic interpretations 
of “essentially smaller than or equal to” and 
“essentially greater than equal to”.

Since the n-vector x is variable symmet-
ric to both the objective and constraint func-
tions, their coeffi cients can be substituted by  

and .C zB d
A b
− −⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

The model (7) becomes:
Find x
Such that Bx >–~

 d
x ≥ 0
B ∈ R(m+1)×n, x ∈ Rn, d ∈ R(m+1)        (8)

μi(x) (MF) for i = 1, …, m + 1 are assumed 
to be linear, increasing monotonically from 0 
to 1 over the tolerance interval [di, di + pi] as:

1
( )( ) 1

0

i i
i

i

Bx dx
p

⎧
⎪

−⎪μ = −⎨
⎪
⎪⎩

                           (9)

if ( )
if ( )
if ( )

i i

i i i i

i i i

Bx d
d Bx d p
Bx d p

≤

≤ ≤ +

≥ +

                  

for i = 1, …, m + 1

pi are constants subjectively chosen to rep-
resent the admissible violation of constraint 
and objective. According to Bellman and Za-
deh (1970):

+

=

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

1

1

( )( ) min 1
m

i i
i i

Bx dD x
p

                 (10)

The crisp optimal solution is defi ned along 
the formulation

+

=≥

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

1
0 10

( )( ) max min 1
m

m i i
ix i

Bx dD x
p

       (11)
  

Introducing a new variable λ in the fuzzy 
set discussion, it can be illustrated simply as 
Figure 2.
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Max λ
Such that λpi + (Bx) i ≤  di + pi, i = 1, …, m + 1

0 ≤ λ ≤ 1
x ≥ 0                                                 (12)

For all feasible solutions, λ* can be inter-
preted as the degree of achievability of optimal 
solution of this fuzzy linear programming.
Ramik and Rimanek’s (1985) FTAA 
robust programming model

However, coeffi cients of functions are some-
times ambiguous in nature. It should be mod-
eled with fuzzy set theory, namely “Robust 
Programming”.

For Ramik and Rimanek’s approach, the 
optimization problem is defi ned as:

Maximizing (minimizing) the real function 
of n real variables,

f(x1, x2, …, xn) 
Subject to

1 1 2 2i i in n ia x a x a x b⊕ ⊕ ⊕ ≤ �� � ��
i = 1, …, m 
xj ≥ 0,  j = 1, …, n                            (13)

where: & ,ij ij Li Ria b M −∈�� L–R fuzzy numbers 
(Trapezoid fuzzy numbers); ⊕ denotes the ex-
tended addition.

For L–R fuzzy numbers,

( , , , ) and ( , , , )ij ij ij ij ij ij ij ij ij ija m n b p q= α β = γ δ��

They assert that a b≤ ��  is valid if,
εL(γ –  α) ≤ p – m
εR(β – δ) ≤ q – n
δL(γ – α) ≤ p – m
δR(β – δ) ≤ q – n                                             (14)

where the above fuzzy numbers are defi ned as:

sup { ; ( ) (0) 1}
inf { : ( ) lim ( )}

R

R s

R R
R R s

→+∞

ε = μ μ = =

δ = μ μ =   
           

(15)

Rewriting the fuzzy linear programming 
(13) with the above inequalities, the extended 
operation of the product of the fuzzy numbers 
and variable x of the constraint function is 
given as:

1 1 2 2i i in na x a x a x⊕ ⊕ ⊕ =� � ��  

1 1 1 1

n n n n

ij j ij j ij j ij j
j j j j

m x n x x x
= = = =

⎛ ⎞
⎜ ⎟• • α • β=
⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ∑

  
(16)

The constraint function (14) can be written 
as follows:

1 1

n n

ij j iLi i ij j
j j

x p m x
= =

⎛ ⎞
⎜ ⎟α − γ−ε ≤ −
⎜ ⎟
⎝ ⎠
∑ ∑

1 1

n n

ij j iLi i ij j
j j

x p m x
= =

⎛ ⎞
⎜ ⎟α − γ−δ ≤ −
⎜ ⎟
⎝ ⎠
∑ ∑

  1 1

n n

ij j iRi i ij j
j j

x q n x
= =

⎛ ⎞
⎜ ⎟β − δε ≤ −
⎜ ⎟
⎝ ⎠
∑ ∑

  1 1

n n

ij j iRi i ij j
j j

x q n x
= =

⎛ ⎞
⎜ ⎟β − δδ ≤ −
⎜ ⎟
⎝ ⎠
∑ ∑            (17)

Before the implementation of these pro-
gramming models, it is important to identify 
the parameters. For Zimmermann’s FTAA 
fl exible programming model, the admissible vi-
olation of portfolio risk, return and proportion 
of assets are hypostatized to be 2%, 0.4% and 
20% respectively. For Ramik and Rimanek’s 
FTAA robust programming model,   and a b��  

Figure 2. The solution λ in fuzzy environment

�( )x

b0 – p0 bi + pibi b0

�Ci( )x �Go( )x

( ) ;Ax c xi
T

�

1

0

E. C. M. Hui et al.196



should be non-negative. In order to simplify 
the computation, α and β are presumed to be 
at 0.2%. γ and δ are presumed to be at 0.3%. 
These fuzzy programming models can be 
solved with solvers in Excel or other optimal 
tools (i.e. MATLAB). In our study, the solver of 
Excel is utilized to optimize the asset portfolio.

4. THE DATA SETS FOR ASSET 
ALLOCATION MODELS

For the localized portfolio in Hong Kong, 
the Hang Seng Composite Industry Index 
(HSCII), HSBC Hong Kong Dollar Bond Index 
and Private Domestic Price Index, from July 
2000 to May 2008, are deployed for our study. 
The corresponding sectors are shown in Tables 
1 and 2.

Table 1. The corresponding sectors of HSCII

Hang Seng Composite Industry Index (HSCII)

Energy Utilities
Material Financials
Industrial goods Properties & 

Construction 
(Prop. & Const.)

Consumer goods Information 
Technology (I.T.)

Services Conglomerates
Telecommunications

Source: Hang Seng Indexes Company Limited

Table 2. The corresponding classes of the Private 
Domestic Price Index

Private Domestic Price Index

Class A – saleable area less than 40 m2

Class B – saleable area of 40 m2 to 69.9 m2

Class C – saleable area of 70 m2 to 99.9 m2

Class D – saleable area of 100 m2 to 159.9 m2

Class E – saleable area of 160 m2 or above

Source: Rating and Valuation Department (RVD); 
HKSAR

The Hang Seng Composite Industry Index 
(HSCII) consists of the top 200 stocks from 11 
industries in terms of average market capi-
talization in the past 12 months, including 38 
properties & construction companies. It serves 
as a good indicator for the performance of vari-
ous sectors of the Hong Kong stock market. In 
this study, the sector of properties & construc-
tion is perceived as indirect property invest-
ments. 

The Private Domestic Price Index is com-
puted by the Rating and Valuation Depart-
ment in measuring the price adjustments of 
private properties with its quality being kept 
constant. In this study, this fi gure is used as 
a proxy for the performance of direct property 
investments.

Moreover, the HSBC Hong Kong Dollar 
Bond Index represents Hong Kong Dollar 
Bonds and measures the performance of Hong 
Kong Dollar denominated fi xed rate debt in-
struments issued by the Hong Kong SAR Gov-
ernment and other non-government entities.

The return of an investment is the aggre-
gate of the dividend yield and the value appre-
ciation in the period of assessment.

1

1

t t
t t

t

I ITR D
I

−

−

−
Δ = +        (18)

where: ΔTRt is the total return of period t; It 
is the index value at the end of period t; It–1 is 
the index value at the end of period t–1; Dt is 
the dividend yield during the period t.

Note: Dividend yield was missing in some ob-
servation periods in some sectors, which was 
assigned the corresponding average of dividend 
yield of remaining periods.
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5. ANALYSIS

The effi cient frontier of portfolio with MPT 
is established. The monthly expected returns 
and standard deviations of individual assets 
involved in portfolio are presented and sum-
marized in Table 3 1.

The resulting Markowitz MPT optimization 
frontier is illustrated in Figure 3. It consists of 
portfolios with the combination of assets that 

maximize the expected portfolio return for a 
given level of risk. Portfolios on the frontier are 
regarded as optimum portfolios. To do this, the 
Hong Kong dollar bonds are considered a risk-
free asset in our study. The selected portfolio 
consists of 19.43% in Energy, 43.98% in Utili-
ties, 13.50% in Class D, 20.13% in Class E, and 
2.97% in Hong Kong dollar bonds. The month-
ly expected return and standard deviation are 
1.6% and 2.89% respectively (Point MP).

_____________
1 For the correlation coeffi cients and covariances, as required in the computations of the programming models, refer 

to Appendices 1 and 2.

Table 3. The monthly expected return and standard deviation of allocated assets

Energy Material Industrial goods Consumer goods Services Telecom

Expected 
return 2.80% 2.89% 0.00% 1.59% 1.22% 0.91%
Std. Dev. 8.45% 11.30% 8.31% 6.80% 6.03% 10.31%

Utilities Financials Prop. & Const. I.T. Conglomerates

Expected 
return 1.49% 1.38% 1.41% 0.55% 0.73%
Std. Dev. 3.34% 5.64% 7.99% 10.01% 6.82%

Class A Class B Class C Class D Class E Bond Index

Expected 
return 0.87% 0.76% 0.95% 1.05% 1.18% 0.68%
Std. Dev. 2.38% 2.43% 2.81% 2.70% 3.50% 1.49%

Sources: Hang Seng Indexes Company Limited; Rating and Valuation Department (RVD), HKSAR; Bloomberg

Figure 3. The effi cient frontier of the Markowitz MPT optimization model

Portfolio Risk and Return
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The expected return and portfolio stand-
ard deviation from MPT are considered the 
same as that in the fuzzy linear programming 
models, which investors wish to achieve. The 
corresponding model estimations of program-
ming are presented in Tables 4 and 5, and the 
resultant asset allocations of the three models 
are illustrated in Table 6. 

Some differences can be observed in the 
allocation of assets under the three program-
ming models (Table 6). On the one hand, the 
asset allocations in the MPT and FTAA fl exi-
ble programming model are similar. They have 
a high allocation of 44% of capital to Utilities 
stocks, about one-third to direct property in-
vestment (Class D and Class E), and close 

Table 4. Zimmermann’s FTAA fl exible programming model coeffi cients

Riskp + λp1 7.0939% E d1 + p1 7.0939% d1 5.0939% p1 2.0000%
Returnp – λp2 1.2000% F d2 – p2 1.2000% d2 1.6000% p2 0.4000%
Whole proportion + λp3 120.0000% E d3 + p3 120.0000% d3 100.00% p3 20.0000%

Table 5. Ramik and Rimanek FTAA robust programming model coeffi cients

m 1.3501% p 1.4500% εL 100.0000% – εL(α – γ) 0.1000% E p – m 0.0999%
n 1.5501% q 1.7500% δL 0.0000% – δL(α – γ) 0.0000% E p – m 0.0999%
α 0.2000% γ 0.3000% εR 100.0000% εR(β – δ) –0.1000% E q – n 0.1999%
β 0.2000% δ 0.3000% δR 0.0000% δR(β – δ) 0.0000% E q – n 0.1999%

Table 6. Comparisons of different asset allocation models

MPT FTAA Flexible 
Programming Model

FTAA Robust 
Programming Model

Energy 19.4251% 19.3890% 18.5593%
Material 0.0000% 0.0000% 6.0215%
Industrial goods 0.0000% 0.0000% 4.5160%
Consumer goods 0.0000% 0.0000% 5.3414%
Services 0.0000% 0.0000% 5.1486%
Telecom. 0.0000% 0.0000% 4.9858%
Utilities 43.9824% 44.1091% 5.2910%
Financials 0.0000% 0.0000% 5.2349%
Prop. & Const. 0.0000% 0.0000% 5.2500%
IT 0.0000% 0.0000% 4.8031%
Conglomerates 0.0000% 0.0000% 4.8956%
Class A 0.0000% 0.0000% 4.9858%
Class B 0.0000% 0.0000% 4.9126%
Class C 0.0000% 0.0000% 5.0112%
Class D 13.4982% 13.1435% 5.0616%
Class E 20.1287% 20.3370% 5.1316%
Bond Index 2.9656% 3.0213% 4.8701%

Total 100% 100% 100%

A Fuzzy Decision-making Approach for Portfolio Management with Direct Real Estate Investment 199



to one-fi fth to Energy stocks. In short, both 
MPT and FTAA Flexible Programming Model 
emphasize on low-risk and low-return invest-
ments. On the other hand, the FTAA robust 
programming model produces a much different 
allocation pattern, as compared to the other 
two. Aside from the allocation of 18.5% of re-
sources to Energy stocks, which is similar to 
that under MPT and FTAA Flexible Program-
ming Model, the remaining capital is very 
evenly distributed to every other stock and 
real estate investment options, ranging from 
4.5%–6%. One reason behind such disparities 
is that the portfolio risk in this model is nec-
essarily not restricted, which allows room for 
relatively riskier investment. Thus, the result-
ant asset allocation differs from that of both 
MPT and FTAA fl exible programming model.

The respective performance indicators of 
portfolios generated by the two fuzzy models 
are presented in Table 7 below.

Table 7. Zimmermann’s FTAA fl exible and Ramik and 
Rimanek FTAA robust programming model results

FTAA Flexible 
Programming 
Model

FTAA Robust 
Programming 
Model

Portfolio 
Risk 0.0835% 0.2063%

Portfolio 
Std. Dev. 2.8894% 4.5423%

Portfolio 
Return 1.6000% 1.4501%

Expected 
Return 1.6000% 1.6000%

As shown in Table 7, both the portfolio 
return and standard deviation of the FTAA 
fl exible programming model are pretty much 
identical as that in the MPT portfolio. Mean-
while, the result obtained from the FTAA ro-
bust programming model suggests a portfolio 
with slightly lower returns and slightly higher 
risks than the other two portfolios. It implies 

that fuzzy programming portfolios, under cer-
tain rules, are able to perform just as well as 
the traditional method in terms of minimiz-
ing risks. However, the portfolio derived from 
Ramik and Rimanek’s FTAA robust program-
ming model presents a unique situation in 
which lower returns are obtained from riskier 
investments. This anomaly can be explained 
by the performance of stock options other than 
the ones chosen by the MPT/FTAA fl exible pro-
gramming model (Table 3). Albeit with higher 
expected monthly returns for some investment 
options over Utilities and Energy stocks, the 
disparities are not enough to compensate the 
risks involved. The risks for some stock op-
tions are considered too high that they are 
even less preferable to direct real estate in-
vestments from the perspective of an average 
risk-averse investor. This leads to a scenario 
in which risky investment does not necessarily 
bring higher rewards and diversifi cation of as-
sets does not necessarily minimize risks.

In the previous analysis, the objective and 
constraints (aspiration level, portfolio risk and 
expected return) are envisaged to be fuzzy in 
programming models. It is observed that fuzzy 
programming models can perform well in min-
imizing portfolio risk given the aspired level 
of return. It can provide an intuitive way to 
capture the ambiguous and vague information 
in an intricate and dynamic market. The effi -
ciency of asset allocation can be improved with 
the inclusion of expert-knowledge. In the real 
world, the expert/investors would prefer a pos-
sible range of information rather than a pre-
cise function value. Compared to MPT, a main 
advantage of the FTAA models is that institu-
tional investors and practitioners can describe 
their aspired level in terms of fuzzy instead of 
a precise formulation and handle tolerance vio-
lation easily while the same expected return 
can be achieved. In a fuzzy environment, these 
models will select a set of feasible alternatives, 
which satisfy the objective(s) and constraints. 
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6. CONCLUDING REMARKS

This paper incorporates the fuzzy concept 
in linear programming to obtain the best pos-
sible outcome in portfolios, when direct real 
estate investment is included. Despite not 
as liquid as other investment options on the 
market, real estate helps hedge uncertainties, 
such as infl ation and interest rate volatilities, 
which change the complexion of one’s invest-
ment behaviour. The fi ndings suggest that the 
fuzzy tactical asset allocation (FTAA fl exible 
programming model), with the inclusion of 
expert judgments which contain information 
usually not found in historical data, is able to 
produce a portfolio just as effi cient as tradi-
tional asset allocation models while minimiz-
ing the possible issues induced by imprecision 
and vagueness of information. Meanwhile, the 
FTAA robust programming model proffers a 
more evenly-distributed portfolio, yet surpris-
ingly with higher risks and lower returns. 
Aside from the lack of emphasis on portfo-
lio risks minimization, one reason attributed 
to such anomaly is the low level of returns 
among high-risk stocks not selected by MPT 
and FTAA fl exible programming models. It 
results in a unique situation where portfolio 
diversifi cation does not necessarily guarantee 
an effi cient investment decision. In addition, 
investors should pay attention to the potential 
drawbacks for implementing FTAA models 
when too many constraints are incorporated. 
It could complicate the optimization process 
and thus renders these models diffi cult to use 
for laymen. Hence, further studies should fo-
cus on the development of the determination 
approach of membership functions.
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SANTRAUKA

SPRENDIMŲ PRIĖMIMO METODAS ESANT NEAPIBRĖŽTUMUI TIESIOGINIŲ 
NEKILNOJAMOJO TURTO INVESTICIJŲ PORTFELIO VALDYMO METU

Eddie Chi Man HUI, Otto Muk Fai LAU, Kak Keung LO

Šis tyrimas įtraukia ekspertines žinias į klasikinę kvadratinio programavimo metodiką, pavyzdžiui, moder-
niąją portfelio valdymo teoriją, per neapibrėžtųjų aibių teoriją, siekiant optimizuoti portfelio grąžą, apimant 
tiesiogines nekilnojamojo turto investicijas. Šiame tyrime išsamiai aprašomi ir įvertinami du neapibrėžtojo 
matematinio programavimo modeliai. Tai Zimmermann (2001) neapibrėžtasis aktyvų paskirstymo lanks-
tusis programavimo modelis ir Ramik bei Rimanek (1985) neapibrėžtasis aktyvų paskirstymo robustinis 
programavimo modelis. Juos taikant bandoma pašalinti tradicinių aktyvų paskirstymo metodų trūkumus 
įtraukiant ekspertų siūlomus pakeitimus nesant tikslios informacijos. Nustatyta, kad neapibrėžtasis aktyvų 
paskirstymas (neapibrėžtasis aktyvų paskirstymo lankstusis programavimo modelis) kartu su ekspertų ver-
tinimais, paprastai apimančiais informaciją, kurios negalima rasti tarp istorinių duomenų, leidžia sudaryti 
tokį patį efektyvų portfelį, kaip ir tradiciniai aktyvų paskirstymo modeliai, tačiau minimizuojant potencialius 
nesutarimus, kurių atsiranda dėl netikslios ir neapibrėžtos informacijos. Neapibrėžtasis aktyvų paskirstymo 
robustinis programavimo modelis siūlo tolygiau paskirstytą, tačiau rizikingesnį ir ne tokį pelningą portfelį. 
Be portfelio rizikos minimizavimo trūkumo, dar viena priežastis, priskiriama prie šios anomalijos, yra maža 
didelės rizikos akcijų grąža, kuri nėra pasirenkama moderniojoje portfelio valdymo teorijoje ir neapibrėžtųjų 
aktyvų paskirstymo lanksčiuosiuose programavimo modeliuose. Kaip rezultatas gaunama unikali situacija, 
kai portfelio diversifi kavimas nebūtinai garantuoja efektyvų investavimo sprendimą.
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