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Article History:  Abstract. Mass appraisal plays a pivotal role in real estate management, facilitating property tax assessments, 
mortgage evaluations, and urban planning across large geographical areas. In regions like Korea, where real 
estate markets are rapidly evolving, valuation models based on multiple linear regression are valued for their 
simplicity and interpretability but often fall short in capturing complex market dynamics. In contrast, machine 
learning (ML) models, while addressing non-linear relationships between property characteristics and market 
values and offering superior predictive performance, are often criticized for their “black-box” nature, which 
raises concerns over interpretability in transparency-critical domains like property tax assessments and policy 
planning. To address these concerns, this study investigates the application of Explainable AI (XAI) techniques 
in the mass appraisal of residential properties in Korea, integrating XAI methods with both multiple linear 
regression and random forest models. Using SHAP (SHapley Additive exPlanations) and PFI (Permutation Fea-
ture Importance) values, the study analyzes feature importance and predictive contributions, offering insights 
into the factors driving property valuations. Additionally, a temporal analysis was conducted by segmenting 
the data into time intervals to examine how feature importance and predictive contributions evolve over time. 
By combining high predictive performance with transparent and interpretable insights, the findings dem-
onstrate that XAI can enhance the usability of both traditional and advanced automated valuation models 
(AVMs) for real-world decision-making in the Korean real estate sector.
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1.	Introduction 

Mass appraisal, as defined by the International Associa-
tion of Assessing Officers (IAAO), refers to “the process 
of valuing a group of properties as of a given date us-
ing common data, standardized methods, and statistical 
testing”. This method is extensively employed by local 
governments for property taxation, as it allows for the 
efficient and timely valuation of a large number of prop-
erties (IAAO, 2017). Given that property tax assessments 
must be conducted regularly—particularly in markets 
with rapid changes in economic conditions—mass ap-
praisal provides a pragmatic solution for achieving both 
cost-effectiveness and timeliness in valuation processes. 
International regulatory frameworks, such as the Basel 
II Accord established by the Basel Committee on Bank-
ing Supervision (BCBS) in 2008, further underscore the 
importance of regular property valuation. These regula-
tions require financial institutions to monitor the value 
of collateral frequently, mandating at least one valuation 
annually, with more frequent assessments recommended 

in highly volatile markets (Hong et al., 2020). The grow-
ing emphasis on accurate and timely property valuations 
reflects their critical role in maintaining financial stability. 
As a result, the demand for robust and scalable mass ap-
praisal models has significantly increased. 

Nevertheless, valuing real estate presents distinctive 
challenges due to the heterogeneous nature of properties. 
Unlike homogeneous commodities, residential properties 
are characterized by immobility, durability, and variability 
in both physical features and market conditions (McClus-
key et al., 2000). Furthermore, a multitude of factors—in-
cluding market segmentation and government interven-
tion—can influence property prices, adding complexity to 
the valuation process. The fundamental objective of valu-
ation models is to produce a reliable, credible, and cost-
effective estimate of a property’s market value at a given 
point in time. Achieving this goal is essential not only for 
property tax assessments but also for broader applications 
such as portfolio risk management, insurance valuations, 
and urban planning (Glumac & Des Rosiers, 2021).
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To address the challenges inherent in valuing heteroge-
neous real estate properties, traditional valuation methods 
often fall short, necessitating the use of more advanced 
approaches such as automated valuation models (AVMs). 
AVMs leverage advanced statistical techniques and ma-
chine learning algorithms to analyze large datasets, of-
fering enhanced accuracy and consistency over traditional 
methods (Kok et  al., 2017). Recent research emphasizes 
the growing importance of AVMs in the real estate sector, 
primarily due to their advantages in terms of speed, scal-
ability, and cost-efficiency (Wang & Li, 2019). These mod-
els not only meet increasing regulatory demands for fre-
quent and precise property valuations but also provide a 
robust framework for managing the intricacies of modern 
real estate markets. A survey by the International Associa-
tion of Assessing Officers (IAAO) highlights that AVMs of-
fer notable advantages in property assessment, including 
improved accuracy, consistency, fairness, cost reductions, 
and increased operational efficiency (Bidanset & Rakow, 
2022). Countries such as Australia, Sweden, Northern Ire-
land, New Zealand, Singapore, Malaysia, and the United 
States have successfully adopted computer-assisted mass 
appraisal (CAMA) systems that rely on automated apprais-
al models (Dimopoulos & Moulas, 2016). 

As AVMs continue to advance, machine learning tech-
niques are being increasingly integrated, offering signifi-
cant improvements over traditional models. Some machine 
learning methods are particularly effective at capturing the 
non-linear relationships between property characteristics 
and market values, which extend beyond the linear as-
sumptions of linear regression-based models. According 
to Kok et  al. (2017), machine learning-based automated 
valuation models are being used in cases such as House 
Canary’s automated valuation model and Zillow’s much-
discussed “Zestimate”. While these machine learning mod-
els have demonstrated superior predictive accuracy, they 
also introduce significant challenges in terms of interpret-
ability—an essential factor in fields such as real estate, 
where transparency and accountability are paramount. As 
Wang and Li (2019) note, “because the target of mass ap-
praisal is a large number of properties, and the valuation 
results need to be explained to the public, the basic needs 
are convenient operation and simple understanding”. This 
underscores the critical importance of interpretability in 
mass appraisal, where clear explanations of valuation out-
comes are necessary to maintain public trust and ensure 
regulatory compliance. Furthermore, the interpretability of 
real estate price determinants can serve as a key differen-
tiating factor for real estate platform services, such as per-
sonalized property recommendation systems and targeted 
advertising strategies.

To address these concerns, the development of Ex-
plainable AI (XAI) techniques has emerged as a promising 
solution. XAI seeks to bridge the gap between the high 
predictive power of machine learning models and the 
need for transparency by clarifying how these models gen-
erate their predictions. In real estate, where valuation deci-
sions directly affect stakeholders such as property owners, 

financial institutions, and regulatory bodies, the ability 
to provide understandable and accessible justifications 
for property values is crucial. Several studies have begun 
utilizing XAI techniques to analyze the non-linear effects 
of real estate characteristics and economic variables on 
property prices. These approaches have provided valuable 
insights into how factors such as location, property size, 
and macroeconomic conditions contribute to price fluc-
tuations in ways that traditional models often fail to cap-
ture. However, existing studies often focus on individual 
machine learning models without comparing the explana-
tory capabilities of linear and non-linear models. This is 
a significant limitation because the SHAP and PFI values, 
which represent the importance and contribution of each 
feature, can vary depending on the algorithm used. Lin-
ear models, such as multiple linear regression, assume a 
linear relationship between independent variables and the 
dependent variable, which simplifies the interpretation of 
feature importance. However, random forests, based on 
decision tree algorithms, partition the feature space into 
multiple regions through recursive splitting. This funda-
mental difference in algorithmic principles means that 
even when using the same features, the importance and 
contribution values derived from SHAP or PFI can vary sig-
nificantly between the two models. Comparing these vari-
ations across algorithms is crucial for understanding the 
trade-offs between model interpretability and predictive 
accuracy as well as for providing robust and consistent 
insights into the factors influencing property valuations (cf. 
While traditional linear regression models offer greater in-
terpretability owing to their inherent linear structure, they 
frequently fall short in predictive performance. On the oth-
er hand, Random Forest models tend to outperform to the 
linear regression model in terms of accuracy yet provide 
limited interpretability without the aid of supplementary 
methods). Moreover, existing research seldom incorpo-
rates temporal analyses to evaluate how feature impor-
tance and predictive contributions evolve over time. This 
is particularly important in the context of real estate, where 
property values are influenced by dynamic factors such as 
shifting consumer preferences, economic conditions, and 
urban development trends. For instance, the demand for 
certain property characteristics, such as proximity to public 
transportation or availability of green spaces, may change 
over time due to societal or economic shifts. By analyzing 
these temporal changes, we can better understand how 
the drivers of property valuation adapt to evolving market 
conditions, providing more accurate and context-sensitive 
insights for stakeholders.

In this paper, we evaluate and compare the interpret-
ability and predictive capabilities of linear and non-linear 
models using XAI techniques. For the linear model, we 
employed multiple linear regression (MLR), which as-
sumes a direct and straightforward relationship between 
the independent variables and the target variable. For the 
non-linear model, we utilized random forest (RF), a tree-
based ensemble method known for its ability to capture 
complex interactions among features. These two models 



352 W.-s. Kim et al. Explainable AI-based mass appraisal: Insights from machine learning applications in Korea’s residential property market

were selected as they are widely recognized and common-
ly applied in various mass appraisal systems due to their 
effectiveness and adaptability in property valuation tasks. 
To evaluate the importance and contribution of features 
across these models, we employed SHAP (SHapley Additive 
exPlanations) and PFI (Permutation Feature Importance) 
methods. While previous studies often emphasize the su-
perior predictive performance of some machine learning 
models, such as random forests, in capturing the complex 
and non-linear characteristics of the housing market, this 
study extends the discussion by applying XAI to identify 
the specific features and interactions where these effects 
play a critical role. Through this approach, the research 
provides a deeper understanding of how the models ad-
dress these complexities, which are often challenging to 
uncover using traditional linear methods. Furthermore, this 
study incorporates a temporal analysis by segmenting the 
data into discrete time intervals to investigate the dynamic 
evolution of feature importance over time. Changes in de-
mographic structures and shifts in consumer preferences 
play a critical role in shaping housing selection behaviours, 
and these changes are subsequently reflected in property 
values. By examining these temporal trends, the study pro-
vides useful insights into how societal and economic trans-
formation influence property valuations, highlighting the 
dynamic and adaptive nature of real estate markets. We 
expect that these findings will contribute to a more com-
prehensive understanding of the balance between model 
interpretability and predictive performance, while offering 
enhanced transparency into the complex interactions that 
shape housing values.

The rest of the paper is organized as follows. Sec-
tion 2 provides a review of the relevant literature, focus-
ing on prior research related to mass appraisal models 
and associated methodologies. In Section 3, we outline the 
techniques and data analysis processes employed in this 
study, including an introduction to the individual machine 
learning algorithms utilized as well as the XAI. Section 4 
describes the dataset used in the analysis, along with key 
summary statistics. The results of the analysis are present-
ed in Section 5. Finally, the conclusions and implications of 
the study are discussed in the concluding section.

2.	Literature review

In this section, we present a review of the literature rel-
evant to this study, focusing on hedonic models and ma-
chine learning techniques commonly employed in auto-
mated valuation models (AVMs) for mass appraisal. While 
traditional methods such as the comparable method, 
investment method, profit method, and residual method 
are well-established for real estate market value estima-
tion through extensive research, they present challenges 
for large-scale property assessments due to significant la-
bor demands and methodological limitations (Pagourtzi 
et al., 2003). For a comprehensive review of these valuation 
methods, refer to studies by Pagourtzi et al. (2003), Gabri-
elli and French (2021), and Binoy et al. (2022). 

Over the years, the hedonic pricing model, which is 
primarily based on multiple linear regression, has emerged 
as one of the most widely employed approach for esti-
mating real estate prices in the context of mass appraisal. 
Rooted in Lancaster’s consumer theory (Lancaster, 1966) 
and further developed by Rosen (1974), the hedonic model 
conceptualizes real estate as a heterogeneous good com-
posed of a bundle of features that provide utility to buy-
ers. These features—ranging from structural features, such 
as the number of rooms and square footage, to locational 
features, like proximity to transportation, school, and com-
mercial centers—are key determinants of property values. 
The model assumes that a property’s price can be decom-
posed into the individual contributions of these features, 
which can be estimated as regression coefficients (Rosen, 
1974). This decomposition enables the identification of the 
implicit prices of each feature, offering a granular perspec-
tive on how different property features influence overall 
value. 

A key advantage of the hedonic pricing model, particu-
larly when based on multiple linear regression, is its high 
degree of interpretability (Wang & Li, 2019). The interpret-
ability stems from the model’s ability to assign distinct and 
constant coefficients to each property features, quantify-
ing their individual impact on property value. For instance, 
an increase in square footage or proximity to essential 
services can be directly linked to a proportional change 
in property value, as indicated by their respective coef-
ficients. This transparency is critical in real estate markets, 
where stakeholders—ranging from property owners and 
investors to policymakers and assessors—require clear and 
easily interpretable insights into the drivers of property 
values. The linear structure of the hedonic model allows 
for straightforward hypothesis testing and comparison 
of features, making it a robust tool for explaining market 
trends and informing decision-making processes.

Building upon the theoretical framework of hedonic 
pricing models, these approaches have been widely adopt-
ed in both academic research and practical applications 
to investigate how property values are influenced by their 
underlying features. Studies employing these models have 
analyzed diverse factors, including environmental influenc-
es such as air quality and green space availability, as well 
as socioeconomic elements like neighborhood safety and 
income levels. The most frequently used features in he-
donic pricing models pertain to structural characteristics, 
which are closely associated with the physical and func-
tional features of a property, including property type, age, 
heating systems, number of bedrooms, other rooms, and 
available amenities. Numerous studies have demonstrated 
that factors such as the number of bedrooms (Li & Brown, 
1980; Fletcher et al., 2000), the number of bathrooms (Gar-
rod & Willis, 1992), and the overall floor area are positively 
influence property prices (Rodriguez & Sirmans, 1994; Car-
roll et al., 1996). For example, Garrod and Willis observed 
that having a single garage increases the house price by 
6.9%, while a double garage contributes nearly three times 
that amount. Additionally, the inclusion of central heating 
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instance, Duan et al. (2021) employed a semi-logarithmic 
OLS model and a vector autoregression (VAR) framework 
to examine the dynamic effects of macro-level indicators 
on housing prices in Beijing, using macroeconomic data 
(specifically GDP). Their findings revealed that macroeco-
nomic shocks produce varying impacts on housing prices 
over time, with money supply having a significant long-
term positive effect. Similarly, Sayin et al. (2022) analyzed 
the impact of macroeconomic variables—including the 
dollar exchange rate, consumer price index, industrial pro-
duction index, and housing loan interest rate—on housing 
prices using a linear regression approach, highlighting the 
role of economic conditions in shaping real estate values.

Although the inclusion of macroeconomic variables 
departs from the foundational assumptions of the classi-
cal hedonic framework, such extensions reflect an ongoing 
effort to adapt valuation models to the realities of dynamic 
and interconnected housing markets. These regression-
based models aim to enhance explanatory power by ac-
counting for external influences that, while not intrinsic 
to individual properties, affect price formation at the ag-
gregate level.

While the primary strength of hedonic models lies in 
their simplicity and ease of interpreting regression coef-
ficients, they have been critiqued for the strong assump-
tions they impose, particularly regarding linearity (Chau & 
Chin, 2003; Malpezzi, 2003). The conventional functional 
form of the hedonic pricing model simplifies the complexi-
ties of household preferences and housing markets by as-
suming that the effects of each feature are constant and 
separable. This implies several restrictive conditions, such 
as perfect competition, market equilibrium, and uniform 
preferences across markets. Consequently, the accuracy of 
ordinary least squares (OLS)-based models can be com-
promised, especially when real-world housing markets ex-
hibit complexities or non-linear relationships. For instance, 
in markets segmented by housing size or income groups, 
or when household preferences for certain features are 
non-linear, the model fails to account for these intricacies. 
The rigidity of the traditional hedonic pricing model limits 
its ability to capture such complexities, as it is unable to 
reflect the dynamic and interrelated nature of market char-
acteristics. Zurada et al. (2011) highlight these limitations, 
noting that issues such as functional form misspecification, 
variable interactions, multicollinearity, and non-linearity 
contribute to imprecise or unstable coefficients.

To address these limitations, machine learning-based 
models have been developed as an alternative to tradi-
tional OLS-based hedonic pricing models. These models 
offer greater flexibility by accommodating non-linear re-
lationships and interactions between variables, thereby 
better reflecting the complexities of real-world housing 
markets. Many machine learning techniques can capture 
intricate patterns in data without relying on rigid pre-
specified assumptions about the model’s functional form 
(Antipov & Pokryshevskaya, 2012). Consequently, several 
studies have highlighted the effectiveness of decision 
trees and their ensemble models in property valuation. 

was found to raise the property’s value by approximately 
6.5%. In Forrest et al. (1996), the number of garages and 
the type of heating system were considered as feature 
variables in the analysis. Chau and Chin (2003) applied a 
hedonic model to quantify the influence of structural fea-
tures such as building services (including lifts and air con-
ditioning systems), floor level (in multi-storey buildings), 
available facilities (such as swimming pools, gymnasiums, 
and tennis courts), and the overall structural quality, in-
cluding design, materials, and fixtures, on property prices. 
In addition to structural characteristics, another crucial cat-
egory of variables frequently used in hedonic pricing mod-
els involves locational features. These features capture the 
impact of a property’s location on its value, which is often 
quantified through proximity to amenities, transportation 
networks, and the central business district (McMillan et al., 
1992; Adair et  al., 2000). Several studies emphasize the 
importance of accessibility, showing that properties near 
employment centers, schools, and public transport gen-
erally command higher prices (Follain & Jimenez, 1985). 
Some studies have shown that buyers are willing to pay 
a premium for properties with desirable views, such as 
those overlooking lakes or golf courses (Mok et al., 1995; 
Rodriguez & Sirmans, 1994). For example, properties with 
ocean frontage tend to command significantly higher 
prices compared to those with partial or no views (Benson 
et al., 1998). Additionally, higher floor levels in multi-storey 
buildings, which often provide superior views, are associ-
ated with increased property values. In contrast, Tse and 
Love (2000) found that properties in Hong Kong with a 
cemetery view tend to experience a decline in value as 
such views are often regarded as inauspicious in Chinese 
culture, symbolizing death and associated with negative 
feng shui (geomancy). Neighbourhood features further 
play a significant role in shaping property values. They re-
flect the broader social and environmental characteristics 
surrounding a property. These features encompass socio-
economic variables, such as the income levels and educa-
tional attainment of residents, as well as access to local 
services like schools, hospitals, and public transportation 
(Chau & Chin, 2003). 

While the traditional hedonic pricing model is ground-
ed in the assumption that property values are determined 
by intrinsic, property-specific characteristics, such as struc-
tural attributes, location, and neighborhood amenities, 
some studies have acknowledged that broader economic 
and contextual factors may also influence real estate prices. 
Externalities such as crime rates, pollution levels, and traf-
fic noise often diminish property values, with higher crime 
rates and noise pollution leading to further decreases (Li & 
Brown, 1980; Clark & Herrin, 2000; Espey & Lopez, 2000). 
The neighborhood features, therefore, capture the quality 
of life offered by the surrounding area, making them a key 
consideration in real estate valuation models.

Accordingly, certain research has incorporated mac-
roeconomic indicators or external market variables into 
extended multiple linear regression models to better cap-
ture the multifaceted determinants of housing values. For 
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For example, in Reyes-Bueno et  al. (2018), decision tree 
models were applied to a dataset of land plot transac-
tions in the rural sector of Vilcabamba parish in southern 
Ecuador. Similarly, Fan et al. (2006) employed the decision 
tree method to explore the relationship between housing 
prices and characteristics, identifying key determinants of 
property values in Singapore’s resale public housing mar-
ket. Antipov and Pokryshevskaya (2012) applied the ran-
dom forest algorithm, an ensemble of decision trees, to a 
residential apartment dataset from Saint Petersburg, Rus-
sia, to assess its performance in property valuation. Hong 
et  al. (2020) compared the performance of the random 
forest algorithm and linear regression using apartment 
transaction data from the Gangnam district in Seoul, South 
Korea. In addition to random forest models, boosted tree 
algorithms such as XGBoost, LightGBM, and CatBoost have 
been increasingly applied in property valuation studies due 
to their ability to minimize error and handle complex non-
linear relationships between variables. Boosted trees are 
particularly effective as they iteratively refine predictions 
by addressing the errors of previous iterations, thereby 
enhancing overall predictive accuracy. Examples of studies 
applying boosted tree algorithms to mass appraisal include 
Hong and Kim (2022), Ostrikova and Selyutin (2024), and 
Wang et al. (2020). Various machine learning techniques, 
such as artificial neural networks (ANN) and support vec-
tor machines, have also been applied. The backpropaga-
tion neural network approach was proposed to address 
the mass appraisal of real estate in Weihai city, China, by 
Zheng et al. (2022). McCluskey et al. (2012) examined the 
performance of an ANN compared to various multiple re-
gression techniques, using data from the Lisburn District 
Council area in Northern Ireland. Studies by Pi-ying (2011), 
Yasnitsky et al. (2021), Torres-Pruñonosa et al. (2021), and 
Chen et al. (2024) have also applied artificial neural net-
works to mass appraisal problems. In studies by Kontrimas 
and Verikas (2011), and Bilgilioğlu and Yılmaz (2023), the 
support vector regression method was employed to esti-
mate real estate prices.

Despite the predictive superiority of machine learning 
models, their lack of interpretability poses a significant 
challenge. Often described as “black boxes”, these models 
obscure the mechanisms behind their predictions, mak-
ing validation and transparency difficult. This limitation 
is particularly problematic in real estate valuation, where 
explainability is essential for fostering stakeholder trust 
and ensuring the adoption of predictive models (Worzala 
et al., 1995). Transparent and defensible models are criti-
cal, particularly when valuation outcomes have significant 
financial or regulatory implications. The trade-off between 
predictive accuracy and interpretability remains a funda-
mental barrier to the adoption of machine learning meth-
ods in property valuation. As McCluskey et al. (2012) note, 
“Although multiple regression does have its weaknesses, it 
is an accepted and standard method for predictive mod-
eling. From an industry perspective, having a transparent 
and ultimately defensible model is a prerequisite. The 

black box approach of ANNs is a major impediment to 
undertaking price modeling for mass appraisal”. Without 
interpretability, addressing stakeholder concerns about 
fairness, accountability, and potential biases becomes in-
creasingly challenging.

In recent years, XAI techniques have been developed 
to enhance the interpretability of machine learning mod-
els. These approaches mitigate the limitations of tradi-
tional machine learning approaches, which often function 
as “black boxes”, by providing insights into how models 
generate their predictions (Lundberg et al., 2019; Xu et al., 
2019; Chen et al., 2020; Lenaers et al., 2024; Trindade Ne-
ves et al., 2024; Teoh et al., 2023; Su et al., 2021). Methods 
such as SHAP and LIME (Local Interpretable Model-Ag-
nostic Explanations) increase transparency by identifying 
the contribution of individual features to the final output. 
By applying XAI, researchers and practitioners can partially 
address the interpretability challenges of machine learning 
models, making them more accessible and understandable 
while preserving a degree of their high predictive accuracy. 
Several studies have utilized explainable AI techniques in 
mass appraisal contexts to assess the significance of key 
factors and their respective contributions to price deter-
mination. For example, Iban (2022) and Teoh et al. (2023) 
combined tree-based algorithms with XAI techniques, 
using SHAP to provide local explanations for model pre-
dictions. Similarly, Tchuente (2024) conducted an experi-
ment on the French real estate market, applying machine 
learning models alongside Shapley values to improve the 
interpretability of predictions. Krämer et al. (2023) utilized 
the XGBoost algorithm in conjunction with Accumulated 
Local Effects (ALE) plots to analyze value-determining ef-
fects of structural, locational, and socio-economic features 
using a dataset of 81,166 residential properties from seven 
major German cities. Lenaers et al. (2024) collected data 
on Belgian residential rental properties and developed rent 
prediction models using random forest and XGBoost algo-
rithms, comparing their performance to linear regression; 
SHAP feature importance and summary plots were used 
to interpret key predictors. Chen et al. (2020) investigated 
the effects of urban environmental factors on residential 
housing prices in Shanghai using multisource data and 
employed SHAP to interpret the influence of these fac-
tors. Trindade Neves et al. (2024) demonstrated that inte-
grating proprietary and open data significantly improves 
real estate price prediction using XGBoost in smart cities, 
with SHAP providing transparency into key predictors such 
as property size, location, accessibility to amenities, and 
socio-economic indicators.

Building on previous applications of explainable AI 
(XAI) in real estate analysis, this study evaluates and com-
pares the interpretability and predictive performance of 
linear and nonlinear models using SHAP and Permutation 
Feature Importance (PFI). To identify the key factors influ-
encing housing prices, a balanced feature set encompass-
ing structural, neighborhood, locational, and macroeco-
nomic variables was carefully constructed, representing 
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an advancement over prior studies that often focused on 
a narrower range of predictors. Multiple linear regression 
(MLR) and random forest (RF) were selected as repre-
sentative models commonly employed in mass appraisal 
systems, reflecting their differing capacities to capture 
relationships between variables. Although previous stud-
ies have incorporated XAI techniques in real estate re-
search, few have systematically examined how linear and 
nonlinear models differ in their representation of feature 
importance and the mechanisms underlying their predic-
tions. Moreover, limited attention has been given to un-
derstanding how feature importance evolves over time, 
despite the dynamic nature of housing markets driven by 
demographic changes, infrastructure developments, and 
shifting consumer preferences.

The main contributions of this study are as follows. 
First, a comparative analysis of feature importance val-
ues obtained through PFI and SHAP was conducted for 
both the linear regression and random forest models to 
assess model interpretability. This comparison enables an 
evaluation of the consistency of feature importance across 
models with differing functional assumptions; features ex-
hibiting high importance in both models suggest a stable 
and robust influence on apartment prices, irrespective of 
model form. Discrepancies in feature importance rank-
ings between the models provide insights into potential 
nonlinearities and interaction effects among predictors, 
where features identified as important exclusively in the 
random forest model imply complex or conditional rela-
tionships not captured by linear regression. Furthermore, 
the cross-model comparison facilitates an assessment of 
the explanatory adequacy of XAI techniques. While linear 
regression inherently offers interpretability through model 
coefficients, SHAP and PFI provide a more granular and 
comprehensive understanding of feature contributions, 
particularly under conditions of structural complexity. For 
random forest models, where internal decision structures 
are inherently opaque, the role of XAI methods becomes 
indispensable. Second, temporal analyses of PFI and SHAP 
values were conducted to investigate how the importance 
of key features evolves over time. By tracking changes in 
feature contributions across different periods, this study 
reveals dynamic shifts in market drivers and offers new 
insights into the adaptability and sensitivity of both lin-
ear and nonlinear models to changing real estate envi-
ronments. This longitudinal perspective highlights the 
necessity of incorporating temporal dynamics into mass 
appraisal modeling and demonstrates the added value 
of XAI methods in capturing complex, evolving patterns 
within the housing market.

3.	Methodology 

Our aim is to investigate how different predictive fac-
tors contribute to estimating house prices by integrating 
XAI methodologies, including SHAP and PFI, with stand-
ard machine learning regression models. While advanced 

models with superior performance are available, we focus 
on fundamental machine learning models commonly used 
in practice. For this study, we selected two representative 
predictive models: a linear hedonic model based on mul-
tiple regression analysis and a non-linear random forest 
algorithm. These models were chosen for their widespread 
applicability in house price prediction and their balance 
between predictive performance and interpretability. This 
section provides an overview of the algorithms employed 
in this study and their underlying methodologies. Ad-
ditionally, it focuses on the XAI methodologies utilized, 
specifically SHAP and PFI. These approaches are employed 
to systematically evaluate the contributions of individual 
predictive factors, enhancing the interpretability of the 
models. Detailed explanations of SHAP and PFI are pro-
vided to demonstrate their application in analyzing and 
interpreting the predictive models used in this study. 

All analyses were conducted on a workstation equipped 
with an AMD Ryzen 5 7500F 6-Core Processor (3.70 GHz) 
and 64 GB of RAM, operating on a 64-bit Windows sys-
tem. The computational environment was based on Py-
thon 3.11.9. Random Forest and Multiple Linear Regression 
models were implemented using the scikit-learn library. 
To interpret model outputs, SHapley Additive exPlanations 
(SHAP) were computed using the shap package, and Per-
mutation Feature Importance (PFI) was derived using the 
permutation_importance function from scikit-learn. Data 
transformations were performed using pandas and numpy.

3.1. Predictive models

3.1.1. Multiple linear regression model

The hedonic pricing model, widely used in the valuation of 
real estate and other goods, is theoretically rooted in Lan-
caster’s characteristics demand theory (Lancaster, 1966) 
and Rosen’s extension of this theory (Rosen, 1974). Lancas-
ter posited that consumers derive utility not directly from 
goods themselves but from the composite characteristics 
or features these goods possess. For example, in the con-
text of real estate, consumers value a house based on its 
specific features, such as size, location, proximity to ameni-
ties, and environmental factors, rather than the house as a 
singular entity. Rosen expanded upon Lancaster’s theory 
by proposing the hedonic pricing model, which argues 
that the price of a good is the aggregate value of its fea-
tures. In an equilibrium market, each feature is assumed to 
have a unique implicit price, which collectively determines 
the overall price of the good. This theoretical framework 
implies that the price of a product, such as a house, can 
be modeled as a function of its characteristics, allowing us 
to statistically estimate the contribution of each feature to 
the price through regression analysis.

In this study, we utilize a pricing model based on the 
multiple linear regression method, which assumes a linear 
relationship between the price of a house and its explana-
tory variables. The model can be expressed mathematically 
as follows:
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where: pi represents the natural logarithm of the price 
of the i-th house. Taking the natural logarithm of house 
prices is a standard approach in the linear pricing mod-
els as it helps to address skewness in the distribution of 
housing prices and ensures that the model better satisfies 
the assumptions of linear regression, such as homosce-
dasticity (Hong et al., 2020). Additionally, the logarithmic 
transformation allows for a more interpretable interpreta-
tion of the coefficients, where each coefficient (bj) can be 
understood as the percentage change in price associated 
with a one-unit change in the corresponding explanatory 
variable. The model assumes that the relationship between 
the dependent variable (pi) and the explanatory variables 
(xi, j) is additive and linear. Here, b0 is the intercept term, 
which represents the predicted value of pi when all ex-
planatory variables are zero. bj denotes the regression 
coefficient for the j-th explanatory variable, capturing the 
magnitude and direction of the relationship between xi, j 
and pi. εi represents the error term for the i-th observation, 
accounting for variations in the dependent variable that 
cannot be explained by the explanatory variables. The er-
ror term is assumed to follow a normal distribution with a 
mean of zero and constant variance, satisfying the Gauss-
Markov assumptions required for unbiased and efficient 
estimation.

The regression coefficients in the linear pricing mod-
el are estimated using the Ordinary Least Squares (OLS) 
method, which minimizes the sum of squared residuals 
between the observed and predicted prices. The estimated 
coefficients ( ˆ

jβ ) can be interpreted as the marginal contri-
bution of each feature to the price of a house, assuming 
all other factors remain constant. The fitted model can be 
expressed as:
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While the OLS approach ensures unbiased and ef-
ficient estimates under its assumptions, deviations from 
these assumptions can affect the validity of the results. 
For example, the presence of multicollinearity among ex-
planatory variables can inflate the standard errors of the 
estimated coefficients, reducing their reliability. Similarly, 
omitted variable bias may arise if relevant factors influenc-
ing house prices are not included in the model, potentially 
distorting the results. Therefore, the proper specification of 
the functional form and the careful selection of explana-
tory variables are essential to maintain the robustness of 
the model. By focusing on the linear relationship between 
house prices and their features, the linear pricing model 
decomposes the total price of a property into the values of 
its individual characteristics. This decomposition provides 
actionable insights into the relative importance of different 
factors, such as proximity to public amenities, neighbor-
hood quality, or structural features. Despite its simplicity, 

this framework remains one of the most widely used tools 
in empirical real estate research, offering a balance be-
tween interpretability and analytical rigor.

3.1.2. Random forest model

Another algorithm employed in this study is the Random 
Forest algorithm, which is based on decision tree princi-
ples. This algorithm demonstrated the best performance 
compared to the other machine learning prediction al-
gorithms we evaluated (see Appendix Table A1). Decision 
Trees (DTs) are a foundational decision support tool in ma-
chine learning that utilize a tree-like structure to model 
decision-making processes. Each node in a decision tree 
represents a decision based on a specific feature and its 
corresponding threshold, while the branches signify the 
outcome of the decision. For example, given a node split 
based on feature A with threshold T, a sample with A < T 
will follow the left branch, while a sample with A ≥ T will 
proceed along the right branch. Decision trees are versatile 
and can be applied to both classification and regression 
problems. In classification, each terminal node (leaf) rep-
resents a class, and predictions are made by traversing the 
tree from the root to a leaf node. In regression, the pro-
cess involves predicting continuous values by averaging 
the target variable within each terminal node, which de-
fines a local approximation of the data. The construction of 
a decision tree involves recursively selecting features and 
thresholds to split the data into increasingly homogeneous 
subsets. This process is guided by specific metrics, such as 
reduction in variance (for regression) or Gini impurity and 
information gain (for classification). The algorithm grows 
the tree by iteratively adding nodes, splitting data at each 
step to create subgroups that maximize the chosen split-
ting criterion. While decision trees are highly interpretable 
and straightforward to construct, they are prone to overfit-
ting, especially when grown to full depth without pruning. 
This limitation often results in a model that performs well 
on the training data but poorly generalizes to unseen data. 

Random Forest (RF) addresses the overfitting problem 
inherent in single decision trees by employing an ensem-
ble learning technique. It combines the predictions of mul-
tiple uncorrelated decision trees to produce a robust and 
accurate model. Each tree in a random forest is indepen-
dently trained on a bootstrap sample of the original data-
set, with a random subset of predictors considered at each 
node split. This randomness in both the data and feature 
selection enhances model diversity and reduces the cor-
relation among trees, leading to improved generalization 
performance. The predictions of the random forest model 
are aggregated by averaging the outputs of all trees for 
regression tasks. For example, if a random forest is trained 
on a housing price dataset, each tree independently pre-
dicts a price based on its training subset, and the final 
prediction is obtained by averaging the outputs of all 
trees. This ensemble approach not only reduces variance 
but also mitigates the risk of overfitting, a key advantage 
over individual decision trees. 
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A unique strength of the Random Forest algorithm 
lies in its robustness when dealing with high-dimensional 
datasets and a mixture of variable types. The research used 
one-hot encoding to transform categorical data into bi-
nary indicators which served as input for model training. 
The tree construction process of the algorithm chooses 
random feature subsets for each node split to create di-
verse models which help prevent overfitting. This reduces 
the dimensionality burden and mitigates the risk of over-
fitting, which is often a challenge in traditional regression 
models, such as OLS or neural networks. Furthermore, RF 
is well-suited for capturing nonlinear relationships and in-
teractions among variables, making it particularly advanta-
geous in complex domains like real estate mass appraisal, 
where property features such as location, brand, and heat-
ing system exhibit nonlinear and heterogeneous effects on 
housing prices. 

One of the practical advantages of RF is its relative 
simplicity in training and interpretation. It requires only 
two primary hyperparameters: the number of trees in the 
forest and the maximum depth of each tree. Increasing the 
number of trees generally improves stability and predic-
tive accuracy without a significant computational burden, 
while adjusting tree depth allows the model to balance 
precision and overfitting. We explored the optimal RF pa-
rameters using the grid search method and confirmed that 
the best performance was achieved when the number of 
trees was set to 10 among {5, 10, 15, 20} hyperparameters, 
and the maximum tree depth was set to 5 among {5, 10, 
15, 20} hyperparameters. Additionally, RF retains a degree 
of interpretability by enabling feature importance analysis, 
where the contribution of each variable to the model’s 
predictive performance is quantified. This feature is espe-
cially valuable in understanding the relative importance of 
different housing features, facilitating actionable insights 
for stakeholders in real estate markets. While RF models 
are computationally efficient and exhibit strong predictive 
performance, they can sometimes lack the interpretability 
of simpler models like OLS. However, the incorporation of 
explainable AI techniques, such as SHAP, can bridge this 
gap by providing insights into individual predictions.

3.1.3. Evaluating model performances

To evaluate and compare the predictive performance of 
the multiple linear regression model and the Random For-
est algorithm, we employed four widely used performance 
metrics: the coefficient of determination (R2), Mean Ab-
solute Percentage Error (MAPE), Root Mean Square Error 
(RMSE) and Mean Absolute Error (MAE) (see Appendix Ta-
ble  A1). These metrics provide complementary insights 
into the accuracy and reliability of the models’ predictions. 
The multiple linear regression model was trained using the 
natural logarithm of house prices ( lni ip y= ), which sta-
bilizes variance and addresses skewness in housing price 
distributions, thus improving the model’s adherence to the 
assumptions of linear regression. In contrast, the Random 
Forest model was trained directly on the original price 
values (yi). To ensure consistency in performance evalua-

tion, predictions from the regression model ( ˆip ) were ex-
ponentiated ( ( )x ˆˆ e pi iy p= ( ˆip )) to transform them back to the 
original price scale before calculating the performance 
metrics. Predictions from the Random Forest model ( ˆ iy ) 
were already on the original price scale. The coefficient of 
determination (R2) measures the proportion of variance in 
the actual prices (yi) that is explained by the model. It is 
calculated as:
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where: yi represents the actual price of the i-th house; ˆ iy  
is the predicted price (either directly from the Random 
Forest model or exponentiated from the regression mod-
el’s log-transformed predictions); y  is the mean of the 
actual prices calculated as ( )

1
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number of observations in the dataset. In this formula, the 
numerator ( )2

1
ˆ

n
i ii

y y
=

−∑  represents the residual sum of 

squares (RSS), which captures the variance unexplained by 
the model, while the denominator ( )2
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−∑  repre-

sents the total variance in the actual prices. Higher R2 val-
ues indicate better model performance, with 1 represent-
ing a perfect fit.

The Mean Absolute Percentage Error (MAPE) evalu-
ates the average percentage deviation between actual and 
predicted prices, offering an intuitive, scale-independent 
measure of prediction accuracy. MAPE is defined as:
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Lower MAPE values indicate higher prediction accu-
racy and reflect how closely the predicted prices align with 
the actual prices as a percentage of the actual values. By 
combining R2 and MAPE, the evaluation provides a com-
prehensive view of the models’ predictive capabilities. The 
R2 metric highlights the proportion of variance explained 
by the model, while MAPE captures the relative prediction 
error in practical terms. 

The Root Mean Square Error (RMSE) constitutes a per-
formance metric that calculates the square root of the 
mean squared residuals between predicted values and 
observed outcomes. This evaluation criterion applies dis-
proportionate weighting to substantial errors compared 
to minor deviations, rendering it particularly responsive to 
outlying observations. It is calculated as:

( )2
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ˆ1 n
i ii

RMSE y y
n =

= −∑ .	 (5)

The Mean Absolute Error (MAE) quantifies the arith-
metic mean of the absolute differentials between model 
predictions and empirical observations, irrespective of di-
rectional orientation. In contrast to RMSE, the MAE applies 
uniform weighting across the error distribution, thereby 
providing a more equitable assessment of predictive 
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accuracy in contexts where anomalous observations are 
not of significance. It is defined as:

1
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MAE y y
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3.2. Explainable artificial intelligence (XAI)
As machine learning models become increasingly complex, 
their decision-making processes have often been criticized 
as “black boxes”, making it challenging for practitioners to 
interpret and trust their predictions. While these models, 
such as Random Forests, achieve high predictive accu-
racy, their lack of transparency limits their applicability in 
domains where interpretability is crucial, such as finance, 
healthcare, and real estate. To address this challenge, XAI 
methods have been developed, providing insights into 
how features influence model predictions and enabling 
stakeholders to better understand, validate, and trust the 
outputs of machine learning models.

Among the prominent XAI methods, SHAP has 
emerged as a robust tool for interpreting complex model 
predictions. Introduced by Lundberg and Lee (2017), SHAP 
leverages Shapley values from cooperative game theory 
to quantify the contribution of each feature to an indi-
vidual prediction (Shapley, 1953). This method calculates 
the marginal contribution of a feature by evaluating the 
changes in the model’s prediction when the feature is in-
cluded or excluded from different subsets of input vari-
ables. The Shapley value for a feature i is computed as:
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where: N represents the set of all features; S is a subset 
of N excluding feature i; ( )xf S  is the model’s prediction 
considering only the features in S; { }( )xf S i∪  is the pre-
diction when feature i is added to S. The Shapley value, fi, 
thus quantifies the contribution of feature i by averaging 
its marginal contributions across all possible subsets of 
features. 

SHAP provides a mathematically sound and interpret-
able framework for understanding how features interact to 
produce a specific prediction. Each SHAP value fi captures 
the impact of a feature not in isolation but in the context 
of other features, offering a holistic view of the prediction 
process. For example, in a real estate valuation model, a 
positive SHAP value for “proximity to schools” indicates 
that this feature positively influences the predicted hous-
ing price, while a negative SHAP value for “age of the 
property” suggests a reduction in price. These values are 
particularly useful in applications requiring transparency 
and accountability, as they allow users to trace back the 
prediction to its contributing factors. Furthermore, SHAP 
values satisfy the efficiency property, ensuring that the 
sum of all feature contributions equals the difference be-
tween the model’s prediction and a baseline output, rein-
forcing their interpretability.

To improve computational efficiency for tree-based 
models, Lundberg et  al. (2018) proposed TreeSHAP, a 
specialized algorithm designed to calculate SHAP values 
for decision trees and Random Forests. TreeSHAP main-
tains the theoretical properties of traditional SHAP while 
significantly reducing computational costs. In this study, 
TreeSHAP was employed to compute SHAP values for the 
Random Forest model, with the global importance of each 
feature quantified as the mean absolute value of its SHAP 
values across all instances:
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where: ( )i
jφ  is the SHAP value of feature j for instance i; Ij 

represents the global importance score of feature j. This 
global importance measure aggregates the localized ef-
fects of a feature across the entire dataset, providing in-
sights into its average influence on model predictions.

In contrast to SHAP’s instance-specific explanations, 
Permutation Feature Importance (PFI) focuses on the 
global relevance of features by evaluating their impact 
on model performance. Originally introduced by Breiman 
(2001) as part of the Random Forest algorithm, PFI meas-
ures the change in performance when the values of a spe-
cific feature are randomly shuffled. By disrupting the rela-
tionship between the feature and the target variable, PFI 
quantifies how much the model depends on the feature 
to make accurate predictions. The importance of feature 
j is calculated as:
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where: M is the number of permutations; Metricbaseline is the 
model’s performance on the original dataset; Metricpermuted(j) 
is the performance after permuting the values of feature j. 
In this study, the Mean Absolute Percentage Error (MAPE) 
was used as the performance metric. A significant drop in 
performance after shuffling a feature indicates its critical 
role in predictions, while minimal changes suggest that the 
feature contributes little to the model’s accuracy.

PFI provides a straightforward and intuitive measure of 
feature importance, making it appealing for a wide range 
of machine learning applications. However, PFI assumes 
independence among features, which can lead to biased 
importance estimates in datasets with correlated features. 
For example, in real estate data, highly correlated features 
such as “square footage” and “number of bedrooms” may 
share predictive information. Shuffling one feature could 
inadvertently affect the importance score of the other, 
complicating interpretation. Despite this limitation, PFI re-
mains a valuable tool for understanding the global struc-
ture of a model’s dependencies.

Together, SHAP and PFI offer complementary insights 
into feature importance. SHAP excels in providing granu-
lar, instance-level explanations, enabling users to dissect 
individual predictions into their contributing factors. On 
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the other hand, PFI emphasizes a feature’s overall impact 
on model performance, highlighting its global relevance 
across the dataset. By combining these methods, this 
study achieves a balanced approach to interpretability, 
addressing both local and global perspectives. This dual 
approach ensures that the machine learning models used 
for housing price prediction are not only accurate but also 
transparent, offering actionable insights into the factors 
driving predictions and enhancing trust in the model’s 
outcomes.

4.	Data 

Gangnam District in Seoul, South Korea, was selected as 
the focal area for data collection and analysis in this study. 
Known for its high real estate values and modern urban 
infrastructure, Gangnam provides an ideal context for in-
vestigating the factors that influence property markets in 
a highly competitive and developed urban environment. 
Moreover, its high population density and the large vol-
ume of real estate transactions concentrated within a com-
pact area make it particularly well-suited for applying XAI 
methods. This approach enables a detailed analysis of the 
key determinants of housing prices and their temporal dy-
namics, allowing for a comprehensive exploration of how 
various factors interact and evolve over time.

Situated south of the Han River, Gangnam is one of 
Seoul’s most prominent and affluent areas. Spanning 39.5 
square kilometers with a population exceeding 560,000, it 
ranks as the third-largest administrative district in the city. 
Gangnam is divided into 22 administrative subdivisions, 
or “dongs”, which facilitate efficient governance and com-
munity management. Figure 1 presents two maps: the map 
on the left shows the location of Gangnam District within 
Seoul, and the map on the right illustrates the adminis-
trative subdivisions (“dongs”) of Gangnam District. Often 
regarded as a benchmark for urban development and resi-
dential desirability, the district has become a focal point 
for both domestic and international attention. The real 

estate market in Gangnam is exceptional in South Korea, 
consistently ranking among the most expensive nation-
wide. As of October 2024, the average apartment price in 
Gangnam was approximately 93.95 million KRW per pyeo-
ng (3.3 square meters), equivalent to about 28.47 million 
KRW or approximately $20,300 per square meter, assum-
ing an exchange rate of 1,400 KRW/USD (Maeil Business 
Newpaper, 2024). This premium pricing far exceeds the av-
erage apartment price in Seoul and is significantly higher 
than the national average. The elevated property values 
reflect the district’s combination of desirable features, in-
cluding its exceptional educational resources, advanced 
infrastructure, and high standard of living.

A key factor contributing to the desirability of Gang-
nam District is its well-established educational environ-
ment. The district hosts a concentration of prestigious 
schools and elite private academies, commonly known as 
“hagwons”, which attract families seeking superior edu-
cational opportunities for their children. This strong em-
phasis on education has positioned it as a central driver 
of housing demand, particularly in neighborhoods located 
in close proximity to these institutions. Consequently, this 
demand has significantly influenced the rise in property 
prices within the area.

Moreover, Gangnam’s appeal is further enhanced by its 
extensive and meticulously planned urban infrastructure. 
The district is seamlessly integrated into the broader Seoul 
metropolitan area through a comprehensive network of 
subway lines, major roads, and bus routes, ensuring effi-
cient access to key business hubs, cultural landmarks, and 
recreational facilities. Residential developments in Gang-
nam, including high-rise apartment complexes and mixed-
use buildings, are designed to cater to the needs of afflu-
ent residents, offering premium features such as private 
parking facilities, advanced security systems, and land-
scaped green spaces. In addition to its robust infrastruc-
ture, Gangnam provides an array of high-quality amenities 
that contribute to an elevated standard of living. These 
include world-class medical facilities, upscale shopping 

Figure 1. Location of Gangnam district in Seoul and its administrative division (source: Wikipedia, 2025)
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centers, and diverse recreational spaces, which collectively 
enhance the attractiveness of the district for both domes-
tic and international buyers. As a result, Gangnam has 
firmly established itself as one of the most sought-after 
residential areas in Seoul, with steady transaction activity 
that reflects its continued desirability.

This steady level of transactions provides a valuable 
dataset for analyzing market dynamics using advanced da-
ta-driven models, as demonstrated in prior studies (Hong 
et al., 2020). The availability of such stable data enables 
the identification and examination of temporal variations 
in key determinants of property prices, offering insights 
into the interactions between socioeconomic and infra-
structural factors.

Although the study focuses exclusively on Gangnam 
District and utilizes data from the period 2006–2017, 
this scope was intentionally defined to serve the study’s 
methodological aims. Gangnam has long functioned as a 
price-leading and policy-sensitive submarket within Seoul, 
characterized by consistently high property values, active 
transaction volumes, and strong influence on price trends 
across other regions, especially in response to government 
policy changes (Al-Yahyaee et al., 2021; Bae & Joo, 2020). 
These characteristics make Gangnam a strategic setting 
for developing and validating explainable AI (XAI) models 
aimed at capturing the multifaceted and evolving drivers 
of housing prices. Furthermore, the chosen timeframe en-
compasses a number of significant macroeconomic shifts 
and real estate policy changes. Notably, loan-to-value 
(LTV) and debt-to-income (DTI) regulations were repeat-
edly tightened or relaxed during this period, often in direct 
response to speculative pressures in high-demand areas 
like Gangnam. For example, DTI limits were first introduced 
in Gangnam in 2005 and subsequently adjusted multiple 
times throughout the following decade. The study period 
also includes major policy shifts such as redevelopment 
restrictions and housing supply initiatives, providing a 
diverse and dynamic policy context for evaluating model 
performance.

While the dataset does not reflect the most recent 
market conditions, its extended temporal span enables 
the identification of long-term structural patterns—such as 
evolving preferences for large-scale apartment complexes, 
the influence of building age and redevelopment expecta-
tions, and the increasing premium associated with branded 
housing. These phenomena remain analytically valuable, 
as the core determinants of apartment prices—such as 
structural, locational, and neighborhood attributes—retain 
relevance regardless of market cycle. Although geographi-
cally limited, the analytical framework used in this study is 
generalizable and can be applied to other urban areas with 
comparable data availability. Rather than aiming to pre-
dict contemporary prices, the study’s primary contribution 
lies in improving the interpretability of machine learning-
based mass appraisal models using XAI, while tracing how 
the importance of key features shifts over time under vary-
ing market and policy conditions.

A total of 15,162 apartment transaction records from 
Gangnam District, spanning the period from 2006 to 2017, 
were obtained from the Ministry of Land, Infrastructure, 
and Transport (MOLIT) in South Korea. These records rep-
resent approximately 40% of all apartment transactions 
that occurred in Gangnam during the specified timeframe. 
This proportion reflects the subset of transactions retained 
after data cleaning procedures, during which entries with 
missing or incomplete values in key variables—such as 
geospatial coordinates, building characteristics, or other 
essential property attributes—were excluded to ensure 
data quality and analytical consistency. The variables used 
in the analysis are presented in Table 1. Note that the 
property price is the target variable analyzed in this study.

The structural features represent inherent characteris-
tics of the property. In this study, we include construction 
year, area, and floor level of a property as key structural 
variables. While construction year is often associated with 
the entire apartment complex, it has been included as a 
variable in this study because buildings within the same 
complex may have been constructed at different times, 
leading to variations in property characteristics. Area refers 
to the total floor area of the property, while Floor level 
captures the vertical position of the unit within the build-
ing. These variables are considered essential for under-
standing the structural differences that influence property 
prices. 

Neighborhood features represent the shared charac-
teristics of the apartment complex and its surrounding 
environment. These features include apartment brand, the 
number of available units within the building, the total 
number of buildings in the complex, parking availability, 
heating system, floor area ratio (FAR), building coverage 
ratio (BCR), and the tallest and shortest building heights 
within the apartment complex. The apartment brand vari-
able is calculated using a ranking system based on data 
from the Korea Institute of Corporate Reputation. Brands 
ranked within the top 15 are assigned scores according to 
their rank, with the highest-ranked brand receiving a score 
of 15, the second-ranked brand a score of 14, and so on. 
Brands ranked below 15th are assigned a score of 0. This 
scoring system reflects the reputation and desirability of 
the brand in influencing property prices. The parking avail-
ability variable represents the average number of parking 
spaces per household within the apartment complex. The 
floor area ratio (FAR) is calculated as the ratio of the total 
floor area (gross floor area) to the total land area, while the 
building coverage ratio (BCR) represents the ratio of the 
building’s footprint to the total land area. The inclusion of 
the tallest and shortest building heights as variables cap-
tures the vertical variation in the complex’s design, which 
can influence property values. These neighborhood fea-
tures collectively provide insights into the shared physical 
and environmental factors that impact the value of proper-
ties within an apartment complex. The locational features 
used in this study, which also influence property prices, 
include the dong (administrative division) and accessibility 



International Journal of Strategic Property Management, 2025, 29(5), 350–376 361

to nearby facilities. The facilities considered in the analysis 
are national parks, high schools, redevelopment areas, uni-
versities, general hospitals, museums, and subway stations. 
The information on the administrative division (dong) of 
the property was obtained from the dataset provided by 
the Ministry of Land, Infrastructure, and Transport (MOLIT), 
while the distances to the nearest facilities were calculated 
using data retrieved through the MAP open Application 
Programming Interface (API). To ensure spatial precision, 
all distance-based locational variables were calculated us-
ing the geospatial coordinates (latitude and longitude) 
of each apartment complex as reported in the transac-
tion dataset. Euclidean distances to the nearest facilities 
were computed based on these coordinates, using data 

retrieved via the Naver Map Open API. This approach pro-
vides a high spatial resolution at the apartment-complex 
level, offering greater granularity than methods based on 
aggregated administrative units.

Previous studies have shown that macroeconomic fac-
tors can significantly impact the housing market (Miller 
et  al., 2011). In this study, the relevant macroeconomic 
variables include the transaction period (year and quarter), 
the size of the economy (gross domestic product, GDP), 
economic growth rate (percentage growth in GDP), the 
land price fluctuation rate in Seoul, and the mortgage 
interest rate. These variables are measured annually. De-
scriptive statistics for the numerical variables are provided 
in Table 2.

Table 1. Variables 

Category Variables Unit

Target variable Price Korean won (KRW)

Structural features Construction year
Area
Floor level of a property

Year
m2

Floor level
Neighborhood features Apartment brand

Number of units in the apartment complex
Number of buildings in the apartment complex
Parking lot 
Heating system
Floor area ratio (FAR)
Building coverage ratio (BCR)
The tallest building height
The shortest building height

Ranking of prominent apartment brands (scores 
are assigned based on rankings up to 15th 
place, while a score of 0 is given for brands 
ranked below 15th, otherwise 1)
Number of units
Number of buildings
Number of parking spot/number of units
0 if an apartment has a central heating system 
Otherwise, the value is set to 1
Ratio
Ratio
Floor level
Floor level

Locational features Dong (administrative subdivisions)
Distance to the nearest national park
Distance to the nearest high school
Distance to the nearest redevelopment area
Distance to the nearest university
Distance to the nearest general hospital
Distance to the nearest museum
Distance to the nearest subway station

The name of the “dong” (categorical variable)
Meter
Meter
Meter
Meter
Meter
Meter
Meter

Macro variable Transaction Year and quarter
Gross domestic product (GDP)
Economic growth rate 
Land price fluctuation rate in Seoul
Mortgage loan interest rate

Year and quarter
Billion won
%
%
%

Table 2. Descriptive statistics

Variables Mean Median Standard 
deviation

Min Max

Price (ten-thousands won) 84137.4 77000 0.569857 1000 570000

Construction year 1993.32 1993 0.005186 1978 2014

Area 72.6455 59.98 0.4933 16.78 273.83

Floor level 7.66 6 0.74 –1 45

Apartment brand 1.25234 0 2.70865 0 15
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5.	Results and discussions

This study employed a 5-fold cross-validation approach, 
which divides the dataset into five subsets, using four sub-
sets for training and one for validation in each iteration. 
This ensures a robust evaluation of the model’s predictive 
performance by minimizing the impact of data partitioning 
on the results. Using the approach, for the linear regres-
sion model, the results showed an R2 value of 0.892 and a 
MAPE of 0.12227. In comparison, the random forest model 
achieved an R2 value of 0.970 and a MAPE of 0.05928. 
Numerous studies have highlighted the superior predictive 
performance of random forest models compared to linear 
regression models, making this result somewhat expected 
(Hong et al., 2020). Since multicollinearity caused by corre-
lations among variables can pose a problem in both multi-
ple linear regression models and Permutation Feature Im-
portance (PFI) analysis, we examined the Variance Inflation 
Factor (VIF) scores for all variables. The analysis revealed 
that most VIF values were below 10, suggesting that 
multicollinearity does not significantly impact our results 
(see Appendix Table A2). Also, as mentioned earlier, XAI 
techniques were incorporated to enhance the interpret-
ability of the model. The mean absolute SHAP values and 
Permutation Feature Importance scores (PFI) were applied 
to analyze the importance of features in predicting prop-
erty prices and to provide insights into the relationships 
between features and the target variable. The insights de-
rived from SHAP and PFI analyses were further utilized to 
identify key drivers of property prices, offering actionable 
information to support decision-making in the real estate 

domain. The analysis was conducted using Python and rel-
evant libraries, including SHAP and scikit-learn, ensuring 
the reproducibility and transparency of the results. 

5.1. Comparison of random forest and linear 
regression methods
The Mean Absolute SHAP values and Permutation Feature 
Importance scores were calculated for both a linear regres-
sion model and a random forest model, and the results are 
presented in Tables 3 and 4. It is noteworthy that, in the lin-
ear regression model, the target variable was transformed 
by applying a logarithmic function to apartment prices in 
order to improve predictive performance. This transfor-
mation stabilizes the variance of the target variable and 
enables the model to better capture relationships between 
features and prices. However, as a consequence, the SHAP 
and PFI values derived from the linear regression model 
reflect the importance of features on the logarithmic scale 
rather than the original price scale. Therefore, the numeri-
cal values of SHAP and PFI from the linear regression mod-
el cannot be directly compared to those from the random 
forest model, which evaluates feature importance on the 
original price scale. Nonetheless, within each model, these 
metrics provide valuable insights into the relative impor-
tance of features and their contributions to the target vari-
able. Additionally, by examining the rankings and patterns 
of feature importance across both models, it is possible 
to identify which variables are consistently significant and 
how their influence may differ depending on the modeling 
approach. This analysis enables a nuanced interpretation of 
the factors driving apartment prices.

Variables Mean Median Standard 
deviation

Min Max

Number of units in the complex 1666.96 805 1.09 7 5040

Number of buildings in the complex 28.42 8 1.44 1 124

Parking lot 1.0292 1.00 0.5823 0.27 4.53

Floor area ratio (FAR) 258.52 237 0.81 72 2435

Building coverage ratio (BCR) 24.91 19 0.60 12 204

The tallest building height 14.08 14 0.54 4 46

The shortest building height 11.26 12 0.50 3 26

Distance to national park 1060.18 1053.21 0.377388 86.1079 2142.47

Distance to high school 535.593 522.609 0.443323 31.8829 1531.52

Distance to redevelopment area 639.331 571.583 0.65956 0.00 3758.56

Distance to university 3369.99 3527.72 0.379691 24.5866 7136.5

Distance to general hospital 1037.13 965.389 0.493903 41.6327 3470.83

Distance to museum 986.687 1038.93 0.380867 87.4901 3323.86

Distance to subway station 660.919 557.849 0.581247 47.487 2559.07

GDP (billion won) 349295.82 353743 0.16 240439 446835

Economic growth rate 3.362 3.2 0.529 –1.9 7.4

Land price fluctuation rate 0.00770145 0.0158096 39.504 –2.64275 0.351297

Mortgage interest rate 6.14895 5.90853 0.0972837 5.2633 7.41544

End of Table 2
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Table 3. Explanatory indicators for apartment prices in the linear regression model

Linear regression model

Rank Mean absolute SHAP Permutation feature importance

1 Area 0.2879490 Area 0.0270373 
2 Number of units in the complex 0.1652130 Number of units in the complex 0.0124664 
3 Dong 0.1650627 Dong 0.0106721 
4 Construction year 0.1363777 Construction year 0.0071438 
5 GDP 0.0979463 The tallest building height 0.0053472 
6 The tallest building height 0.0932182 GDP 0.0050100 
7 Transaction year and quarter 0.0804335 Apartment brand 0.0032981 
8 The shortest building height 0.0658740 Transaction year and quarter 0.0030130 
9 Number of buildings 0.0492220 The shortest building height 0.0029705 
10 Apartment brand 0.0454338 Number of buildings 0.0020738 
11 Heating system 0.0446536 Heating system 0.0011156 
12 Mortgage interest rate 0.0354506 Mortgage interest rate 0.0009495 
13 Building coverage ratio (BCR) 0.0213643 Floor area ratio (FAR) 0.0006287 
14 Floor area ratio (FAR) 0.0213598 Building coverage ratio (BCR) 0.0004180 
15 Floor level 0.0109712 Floor level 0.0001145 
16 Economic growth rates 0.0064508 Parking lot 0.0000675 
17 Parking lot 0.0063428 Economic growth rates 0.0000547 
18 Land price fluctuation rate 0.0028206 Land price fluctuation rate 0.0000272 
19 Distance to the nearest national 

park
0.0025191 Distance to the nearest national 

park
0.0000147 

20 Distance to the redevelopment area 0.0019281 Distance to the nearest subway 
station

0.0000056 

21 Distance to the nearest general 
hospital

0.0013635 Distance to the nearest national 
museum

0.0000013 

22 Distance to the nearest subway 
station

0.0011362 Distance to the nearest university 0.0000001 

23 Distance to the nearest national 
museum

0.0009954 Distance to the nearest high school –0.0000006

24 Distance to the nearest high school 0.0005801 Distance to the redevelopment area –0.0000031
25 Distance to the nearest university 0.0001085 Distance to the nearest general 

hospital
(0.0000044)

Table 4. Explanatory indicators for apartment prices in the random forest model

Random forest model

Rank Mean absolute SHAP Permutation feature importance

1 Area 22098.10 Area 0.45935900 
2 Number of buildings 10862.90 Number of buildings 0.25295000 
3 GDP 6397.02 GDP 0.12923800 
4 Dong 3643.78 Dong 0.05789090 
5 The shortest building height 2576.39 Building coverage ratio (BCR) 0.04592850 
6 Number of units in the complex 2439.17 Number of units in the complex 0.03644470 
7 Mortgage interest rate 1378.81 Mortgage interest rate 0.03068410 
8 Floor area ratio (FAR) 1344.20 Floor area ratio (FAR) 0.02470100 
9 The tallest building height 1339.18 The shortest building height 0.02383690 
10 Parking lot 1270.30 Land price fluctuation rate 0.02169290
11 Building coverage ratio (BCR) 1152.89 The tallest building height 0.01770560 
12 Land price fluctuation rate 1011.33 Parking lot 0.01360550 
13 Construction year 944.63 Economic growth rates 0.01288790 



364 W.-s. Kim et al. Explainable AI-based mass appraisal: Insights from machine learning applications in Korea’s residential property market

Random forest model

Rank Mean absolute SHAP Permutation feature importance

14 Apartment brand 833.71 Construction year 0.01247240 
15 Floor level 605.82 Floor level 0.01231590 
16 Transaction year and quarter 586.77 Transaction year and quarter 0.00925989 
17 Economic growth rates 569.85 Apartment brand 0.00768583 
18 Distance to the redevelopment area 261.18 Distance to the nearest national 

park
0.00480895 

19 Distance to the nearest national 
park

205.44 Distance to the redevelopment area 0.00429915 

20 Heating system 180.99 Distance to the nearest university 0.00326974 
21 Distance to the nearest university 113.81 Distance to the nearest high school 0.00306591 
22 Distance to the nearest subway 

station
104.85 Distance to the nearest subway 

station
0.00303488 

23 Distance to the nearest high school 92.14 Distance to the nearest national 
museum

0.00302023 

24 Distance to the nearest national 
museum

87.55 Distance to the nearest general 
hospital

0.00265319 

25 Distance to the nearest general 
hospital

84.96 Heating system 0.00173744 

End of Table 4

The comparison between the linear regression and 
random forest models reveals both similarities and dif-
ferences in evaluating feature importance for predicting 
apartment prices. Both models identified key features, 
such as “Area”, “Number of units in the complex”, “Dong”, 
“GDP”, and “Construction year”, as highly significant, sug-
gesting that these variables have strong intrinsic relation-
ships with apartment prices regardless of the modeling 
approach. However, notable differences were observed 
in the rankings of certain variables, reflecting the distinct 
characteristics of each model.

For example, in the linear regression model, “Number 
of units in the complex” was ranked as a more important 
feature compared to “Number of buildings”. In contrast, 
the random forest model assigned higher importance 
to “Number of buildings” and “Building coverage ratio 
(BCR)”. Both variables represent aspects of the scale of 
an apartment complex, but their differing rankings reflect 
the fundamental characteristics of the two modeling ap-
proaches. “Number of units in the complex” has a more 
linear relationship with apartment prices, which aligns 
with the assumptions of the linear regression model. As 
a result, it is prioritized in the feature ranking within this 
model. On the other hand, “Number of buildings”, while 
less linearly correlated with apartment prices, captures 
more complex interactions and nonlinear relationships 
that the random forest model, based on decision-tree 
algorithms, is well-equipped to detect. Additionally, 
“Building coverage ratio (BCR)” complements “Number 
of buildings” by providing a related but distinct measure 
of the physical scale and layout of apartment complexes, 
further emphasizing the random forest model’s ability 
to account for these features. These differences suggest 
that the random forest model interprets apartment scale 

through a combination of interacting and nonlinear fac-
tors, whereas the linear regression model prioritizes sim-
pler, more direct relationships.

In the linear regression model, “Construction year” 
was ranked higher in importance compared to the ran-
dom forest model. This difference can be attributed to the 
distinct characteristics of the two modeling approaches. 
“Construction year” often has a linear or near-linear re-
lationship with apartment prices, as newer buildings are 
generally associated with higher market values due to 
better infrastructure, design, and amenities. The linear re-
gression model captures this straightforward relationship 
effectively, leading to a higher ranking for this feature. In 
contrast, the random forest model relies on decision-tree-
based partitions to capture nonlinear relationships and 
interactions among features. While “Construction year” 
may still influence apartment prices in this framework, its 
impact might be partially distributed across interactions 
with other variables, such as “Building coverage ratio 
(BCR)”, “Floor area ratio (FAR)” or “Number of units in the 
complex”. As a result, its individual importance is diluted, 
leading to a lower ranking in the random forest model. 
Moreover, the random forest model may prioritize features 
that have clear thresholds or significant nonlinearity, which 
“Construction year” does not exhibit as strongly. 

Interestingly, in the linear regression model, “Tallest 
building height” was ranked higher in importance com-
pared to “Shortest building height”. Conversely, in the ran-
dom forest model, the ranking was reversed, with “Short-
est building height” being more important. The linear 
regression model prioritizes “Tallest building height” due 
to its more direct and linear relationship with apartment 
prices, as taller buildings often signify premium develop-
ments. On the other hand, the random forest model might 
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treat “Shortest building height” as a threshold-based 
feature that helps partition the data into distinct groups 
(e.g., complexes with low-rise vs. high-rise buildings). This 
thresholding capability allows the random forest model to 
assign greater importance to features that aid in making 
splits, even if their direct correlation with the target vari-
able is weaker. Ultimately, this suggests that the distinction 
between high-priced and low-priced apartment complexes 
is more strongly influenced by the floor level of the low-
est-height buildings within a complex, rather than by the 
floor level of the tallest building.

The feature “Heating system” exhibits a notable dif-
ference in importance rankings between the linear re-
gression and random forest models. In the linear regres-
sion model, “Heating system” is ranked 11th, whereas it 
is ranked much lower in the random forest model—20th 
in SHAP and 25th (the lowest rank) in PFI. In the linear 
regression model, “Heating system” is treated as a cat-
egorical variable, represented through dummy variables. 
These dummy variables allow the model to capture dis-
tinct effects associated with each heating type. Since the 
linear regression model explicitly evaluates each feature’s 
contribution independently, “Heating system” retains a 
relatively higher ranking as a direct explanatory vari-
able. In contrast, the random forest model assigns sig-
nificantly lower importance to “Heating system”. This can 
be explained by the model’s ability to capture complex 
interactions and nonlinear relationships among features. 
Several factors contribute to this outcome. First, features 
such as “Number of buildings” or “Number of units in the 
complex” may already encapsulate aspects of the apart-
ment complex’s overall structure, reducing the additional 
explanatory power of “Heating system”. Since the ran-
dom forest model can identify and prioritize features that 
capture broader patterns, it is likely that the influence of 
“Heating system” is effectively absorbed by these more 
comprehensive variables, particularly those representing 
the scale and characteristics of the apartment complex. 
Second, as a categorical variable, “Heating system” might 
contain specific subcategories that are indirectly linked 
to apartment price variations. The random forest model, 
with its decision-tree-based structure, is adept at leverag-
ing detailed interactions between variables and identify-
ing when a feature is redundant or when its effect is suffi-
ciently captured by related features. If certain subcatego-
ries of “Heating system” are associated with characteris-
tics already well-represented by other features, the model 
may assign it a lower importance. Third, “Heating system” 
may influence apartment prices indirectly, through inter-
actions with variables that reflect the broader features of 
the complex or its location. For instance, the presence of 
a particular heating system could be indicative of specific 
construction standards or regional preferences, which are 
captured through more directly relevant features in the 
random forest model. This indirect relationship could 
lead to “Heating system” having a reduced standalone 
impact, as the model relies on other features to repre-

sent its underlying effect on apartment prices. While both 
models identify GDP as a key macroeconomic variable 
reflecting the overall economic conditions at the time 
of the transaction, they diverge in how they prioritize 
other macroeconomic features. In the linear regression 
model, “Transaction year and quarter” ranks higher, likely 
because it directly captures temporal trends, serving as 
a proxy for time-sensitive economic fluctuations. In con-
trast, the random forest model assigns greater impor-
tance to “Mortgage interest rate”, which can significantly 
impact housing affordability and market dynamics. The 
random forest’s ability to capture nonlinear relationships 
and threshold effects likely accounts for this difference, 
as changes in mortgage interest rates interact with other 
variables in ways that influence apartment prices beyond 
what a simple temporal trend can capture.

Variables related to proximity to social infrastructure, 
such as “Distance to the nearest subway station” and “Dis-
tance to the nearest general hospital”, were consistently 
ranked among the least important features in both mod-
els. This suggests that when reflecting the locational char-
acteristics of apartments, both models consider variables 
like “Dong” to be sufficient for capturing the influence of 
location. The relatively low importance of proximity vari-
ables may also be attributed to the fact that areas such 
as Gangnam are generally well-equipped with convenient 
transportation and essential living facilities. As a result, 
direct distance measures fail to provide significant differ-
entiation in value, further diminishing their importance in 
explaining apartment prices.

These findings underscore the fundamental differences 
between the two modeling approaches. Linear regression 
provides a straightforward and interpretable framework, 
well-suited for capturing strong linear correlations but lim-
ited in its ability to model complex, nonlinear interactions. 
In contrast, the random forest model excels at identifying 
nonlinear relationships and interactions, leveraging its de-
cision-tree-based structure to evaluate feature importance 
more comprehensively. This distinction highlights the im-
portance of selecting a modeling approach that aligns with 
the data’s underlying structure and the specific objectives 
of the analysis. In Figure 2, we show the interpretation of 
two test set samples’ predictions: we use the samples with 
the best accuracy for the property price. The red and blue 
arrows illustrate the impact of individual variables on the 
predicted outcome, with red indicating positive contribu-
tions and blue indicating negative contributions. The inter-
section point of these arrows represents the final predicted 
value for a given observation. The y-axis also includes a 
grey marker denoting the overall mean of the dependent 
variable across all observations, which serves as the base-
line prediction. The sequential shifts from this baseline to 
the final predicted value reflect the cumulative effects of 
the individual variables, either increasing or decreasing the 
prediction accordingly. This result indicates that the influ-
ence of each factor on individual apartment prices aligns 
with the theoretical frameworks.
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5.2. Temporal analysis of feature importance
In this section, we analyze the SHAP and PFI values of 
selected features over time to examine their temporal vari-
ations in predicting apartment prices. By applying both 
linear regression and random forest models, we track how 
feature importance evolves over time, allowing us to iden-
tify trends in key determinants of apartment prices. This 
temporal analysis helps uncover whether certain factors 
consistently influence prices or if their impact shifts over 
different periods. Additionally, by comparing SHAP and PFI 
values across time windows, we can assess whether model 
interpretability remains stable or if different features be-
come more dominant in different market conditions. We 
selected variables that exhibited relatively clear trends in 
importance across different time periods, including area, 
number of parking spaces per unit, building age, number 
of housing units, number of buildings, prestigious apart-
ment brand, distance to the nearest general hospital, dis-
tance to the nearest national park, distance to the near-
est university, and distance to the nearest subway station. 
These features were categorized according to the classifi-
cations presented in Table 1.

To account for temporal changes, we applied a rolling 
time window approach, similar to a moving average, where 
feature importance was evaluated using overlapping 
three-year periods. Specifically, we computed SHAP and 
PFI values for 2007–2009, then shifted the window forward 
by one year to compute values for 2008–2010, and so on. 
This method ensures a smoother assessment of temporal 
trends by capturing gradual changes in feature importance 
while maintaining sufficient data for model training and 
evaluation in each period. Since the data was segmented 
into distinct time windows, macroeconomic variables such 
as GDP, mortgage interest rates, and economic growth 

rates lost their relevance as they remained fixed within 
each interval. Consequently, these variables were excluded 
from the model to ensure a more meaningful analysis of 
time-dependent feature importance.

5.2.1. Structural features

Structural characteristics, particularly area and construction 
year, exhibited notable temporal variations in their im-
portance for predicting apartment prices, as indicated by 
SHAP and PFI values from both the linear regression and 
random forest models. These trends provide insights into 
shifting housing preferences and broader demographic 
changes over time.

First, the importance of area in explaining apartment 
prices has shown a gradual decline over time, as indicated 
by both SHAP and PFI values (see Figure 3a). The decreas-
ing PFI values suggest that, over time, variations in area 
have had a diminishing impact on predictive accuracy, 
meaning that other factors have become more influential 
in determining apartment prices. This implies that while 
area was once a dominant factor in price formation, its role 
has weakened as buyers increasingly consider other char-
acteristics such as location, amenities, and neighborhood 
features. Interestingly, the SHAP values exhibit different 
patterns depending on the model. In the linear regression 
model, SHAP values show a steady decline over time, in-
dicating a consistent reduction in the contribution of area 
to price predictions. This suggests that the role of area in 
explaining apartment prices has gradually diminished in a 
linear fashion. In contrast, the random forest model shows 
slight fluctuations in SHAP values, reflecting the model’s 
ability to capture nonlinear interactions between area and 
other features. These fluctuations may be attributed to 
changes in market conditions, shifting buyer preferences, 
or interactions with emerging influential factors in differ-
ent time periods. Several demographic and socioeconomic 
factors may underlie this trend. The ongoing decline in 
birth rates, the aging population, and the transition of the 
baby boomer generation (born approximately between 
1946 and 1964) into retirement have led to a reduction 
in average household size. As family structures evolve, the 
demand for large family-oriented apartments decreases, 
while smaller, more manageable housing units become 
increasingly preferred. Additionally, lifestyle changes, such 
as the rising number of single-person and dual-income 
households, contribute to a preference for compact, ef-
ficient living spaces rather than expansive homes that re-
quire greater maintenance. The decreasing importance of 
area in price determination may reflect a broader redefi-
nition of housing value, where structural size is no longer 
the primary determinant of apartment prices, and other 
factors such as location, accessibility, and housing quality 
take precedence.

Second, while construction year (building age) might 
intuitively suggest a negative impact on apartment prices 
due to physical depreciation, its relationship with price ap-
pears to be more complex, particularly in markets where 

Figure 2. Two predictions interpretations (Left: Linear 
regression, Right: Random forest)
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redevelopment potential plays a role in property valua-
tion. The results indicate that the importance of construc-
tion year has varied over time, potentially reflecting shifts 
in market conditions and redevelopment expectations 
(see Figure 3b left). In the linear regression model, SHAP 
and PFI values exhibit a gradual decline until 2012–2014, 
followed by an increase. This trend may suggest that 
construction year became relatively less influential in 
explaining apartment prices during this period, possibly 
due to weakened redevelopment expectations. Addition-
ally, the declining importance of construction year up to 
2012–2014 could partly reflect the natural depreciation of 
older buildings, as property values tend to decrease over 
time due to physical aging. This suggests that during this 
period, the effect of building age may have been driven 
more by depreciation rather than redevelopment poten-
tial. However, after 2014, SHAP and PFI values began to 
rise again, which could indicate a shift in market condi-
tions where redevelopment expectations became more 
prominent. This pattern implies that while the declining 
importance of construction year in 2012–2014 may have 
been partially influenced by the aging effect, the subse-
quent increase suggests that broader market factors, such 
as renewed investor interest in redevelopment, played a 
key role in shaping property values. In contrast, the ran-
dom forest model exhibits greater fluctuation in SHAP val-
ues over time, suggesting that the influence of construc-
tion year may be more context-dependent and influenced 
by nonlinear interactions with other variables. Unlike the 

smoother trend observed in the linear regression model, 
SHAP and PFI values in the random forest model fluctuate 
over time without a clear long-term trajectory. This vari-
ability may indicate that construction year’s importance is 
affected by interactions with factors such as zoning regu-
lations, land values, and market-driven redevelopment 
incentives, which may change dynamically. Rather than 
reflecting a gradual increase or decrease, the random for-
est model appears to capture short-term variations, where 
construction year becomes particularly relevant in specific 
periods, possibly due to policy adjustments, investment 
patterns, or shifts in redevelopment activity. However, the 
extent to which these fluctuations correspond to external 
economic or policy changes require further investigation.

For instance, during strong housing markets, older 
apartments—especially those approaching eligibility for 
redevelopment—tend to increase in value, as redevelop-
ment opportunities introduce speculative price premiums. 
Conversely, during market downturns, the importance of 
construction year declines, as the probability of redevel-
opment projects decreases. Between 2007 and 2009, the 
importance of construction year in explaining apartment 
prices was relatively high, reflecting strong redevelopment 
expectations. However, following the global financial crisis, 
this importance diminished, corresponding with a period 
of stagnation in the housing market. After 2013, the im-
portance of construction year began to rise again, likely 
due to the market recovery and renewed speculation re-
garding redevelopment potential.

a) Area

b) Construction year

Figure 3. Evolution in structural characteristic indicators over time (Left axis: SHAP, Right axis: PFI)
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This distinction underscores the complementary na-
ture of the two modeling approaches. Linear regression 
provides insight into long-term structural trends, such 
as gradual shifts in redevelopment expectations over ex-
tended market cycles. In contrast, random forest captures 
short-term, localized variations that may reflect the im-
pact of policy changes, investment cycles, and regional 
redevelopment initiatives. While the smoother trend in 
the linear regression model suggests that redevelopment 
expectations may be linked to macroeconomic cycles, the 
fluctuations observed in the random forest model imply 
that construction year’s importance may be more sensi-
tive to market-specific conditions and policy interventions. 
Further research would be needed to more precisely de-
termine the drivers of these variations over time.

5.2.2. Neighbourhood features

Neighbourhood features represent shared characteristics 
of apartment complexes, distinguishing them from struc-
tural features, which describe an individual unit’s inherent 
features. In other words, neighbourhood features include 
factors such as the scale of the apartment complex, shared 
facilities, and overall living environment, all of which influ-
ence apartment prices collectively rather than on a unit-
by-unit basis. The temporal variations in the importance of 
these features provide insights into how housing demand 
has evolved in response to broader urban development 
trends and changes in buyer preferences. 

The importance of parking spaces in explaining apart-
ment prices has exhibited a gradual upward trend over 
time (see Figure 4a). This reflects the growing demand 
for parking availability in residential complexes, a trend 
that aligns with rising vehicle ownership rates. According 
to the Seoul Vehicle Registration Statistics (Seoul Metro-
politan Government, 2025), the vehicle registration rate in 
Gangnam-gu, Seoul, was 42.02% relative to the population 
in 2007, with an average of 0.92 vehicles per household. 
By 2017, the vehicle registration rate had risen to 42.63%, 
with an average of 1.15 vehicles per household. This in-
crease in vehicle ownership suggests a corresponding rise 
in demand for parking infrastructure, making parking avail-
ability an increasingly important determinant of apartment 
prices. Beyond the increase in vehicle ownership, several 
regulatory and market-driven factors may have contrib-
uted to the rising importance of parking spaces. In recent 
years, regulations on parking space allocation in apart-
ment complexes have been strengthened. According to 
the 2012 revision of the “Regulation on Housing Construc-
tion Standards”, the required number of parking spaces 
per household in newly built apartments was increased. 
In metropolitan areas, the minimum parking requirement 
per household was adjusted from approximately 0.7–0.8 
spaces to 1.0–1.5 spaces, ensuring that new apartment 
complexes provide more parking facilities than older ones. 
Furthermore, major construction firms, such as Raemian 
(Samsung C&T) and Xi (GS Construction), have introduced 
larger parking areas and advanced parking facilities in 

Figure 4. To be continued

a) Parking lots

b) Number of units in the complex
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newly developed complexes. These additions reflect grow-
ing consumer demand for better parking infrastructure, 
which is not only influenced by vehicle ownership but also 
by the integration of modern amenities such as electric 
vehicle (EV) charging stations, enhanced security features, 
and smart parking management systems. The increasing 
presence of such features suggests that parking availability 
is evolving beyond a basic necessity to become a premium 
residential feature that contributes to property valuation

The number of units and the number of buildings in 
an apartment complex both represent the overall scale of 
the development. However, their importance in determin-
ing apartment prices has shown contrasting trends over 
time. While the number of housing units has exhibited a 
gradual upward trend in importance (see Figure 4b left), 
the significance of the number of buildings has steadily 
declined (see Figure 4c). This divergence likely reflects the 
increasing prevalence of high-rise apartment complexes 
in urban areas, particularly in Gangnam-gu, Seoul, where 
vertical expansion has become the dominant development 
strategy. Larger apartment complexes tend to command 
higher prices, as they typically offer extensive shared fa-
cilities, well-developed infrastructure, and a more compre-
hensive range of amenities, making them more attractive 
to buyers. Additionally, these large-scale developments 
are often strategically located in prime areas, further re-
inforcing their desirability. The growing importance of the 
number of housing units suggests that buyers are placing 
greater emphasis on the overall residential environment, 

prioritizing large, well-equipped complexes over smaller 
developments. In contrast, the declining significance of the 
number of buildings in explaining apartment prices may 
be attributed to changes in apartment design and con-
struction practices. In recent years, there has been a shift 
toward the development of taller apartment buildings, 
accommodating a larger number of housing units within 
fewer structures. As a result, newer high-rise apartment 
complexes tend to have fewer buildings compared to old-
er, low-rise developments with a similar number of units. 
This shift implies that the traditional role of the number 
of buildings as an indicator of apartment complex size has 
diminished, as the total number of housing units has be-
come a more relevant factor in assessing apartment prices. 
This reflects an evolving preference for efficient land use 
and high-density residential developments in urban areas.

The importance of well-known apartment brands in 
explaining apartment prices has also exhibited an upward 
trend in the linear regression model (see Figure 4d left). 
This can be attributed to the premium pricing associated 
with large-scale, high-rise apartment complexes developed 
by major construction firms. The increasing significance of 
brand reputation suggests that buyers perceive branded 
apartments as higher in quality, reliability, and long-term 
investment value. Furthermore, if the prices of branded 
apartments were similar to those of existing non-branded 
apartments, the brand’s impact on pricing would have 
been negligible. However, the observed upward trend in 
the linear regression model indicates that the premium 

Figure 4. Evolution in neighborhood characteristic indicators over time (Left axis: SHAP, Right axis: PFI)

c) Number of buildings

d) Apartment brand
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associated with branded apartments has steadily increased 
over time, reinforcing the growing role of brand perception 
in price formation. In contrast, the random forest model 
exhibits fluctuations in the importance of brand features 
over time, suggesting that the influence of brand reputa-
tion may be more context-dependent. Unlike the linear 
regression model, which captures long-term trends, the 
random forest model reflects short-term variations, where 
brand importance may fluctuate based on market condi-
tions, supply dynamics, and interactions with other prop-
erty features. Notably, the random forest model shows a 
peak in PFI and SHAP values around 2012–2014, which 
aligns with the period when several large-scale apartment 
complexes developed by major construction firms were 
newly occupied. The increase in brand importance during 
this period suggests that the introduction of high-profile, 
branded apartment complexes had a substantial impact 
on price formation, temporarily amplifying the influence of 
brand reputation. This variability implies that while brand 
reputation remains a key factor in apartment pricing, its 
impact may be amplified in certain market conditions—
such as during periods of high brand-new apartment 
supply or strong market sentiment—while being relatively 
less significant in other periods. The difference in results 
between the two models highlights the need to consider 
both long-term brand value appreciation and short-term 
market-driven fluctuations when analyzing the role of 
branding in apartment price formation.

Also, the evolution of neighbourhood feature im-
portance from 2006 to 2017, as illustrated in Figures 4, 
closely mirrors the dynamic shifts in South Korea’s real es-

tate market during this period. As the market moved from 
heavy regulation in the mid-2000s to aggressive deregula-
tion post-financial crisis, and back to tighter control after 
2017, buyers’ valuation criteria for apartment complexes 
also evolved. Physical characteristics of apartment com-
plexes—such as Parking lots, Number of units in the com-
plex, and Apartment brand—became increasingly influen-
tial, particularly after 2013, reflecting a policy environment 
that favoured large-scale, branded, and redevelopment-
driven housing. These results underscore how policy direc-
tion, urban redevelopment initiatives, and macroeconomic 
conditions (e.g., prolonged low-interest rate situation; low 
interest rates can facilitate the inflow of investment capi-
tal into the apartment market) reshaped the salience of 
neighborhood attributes in apartment price formation.

5.2.3. Locational features

As mentioned in the previous section, features represent-
ing the distance to major facilities generally do not have a 
significant impact on apartment prices. However, for some 
proximity variables, trends in SHAP and PFI values emerge 
over time, indicating that their influence is not entirely 
negligible.

Notably, in almost all explanatory variables except for 
proximity variables, the variables based on linear regres-
sion models exhibited clearer trends compared to those 
based on random forest models. This suggests that most 
housing and neighborhood characteristic variables, ex-
cluding proximity, can explain apartment prices in a linear 
fashion. In other words, since these variables have a linear 

Figure 5. To be continued

a) Distance to the nearest general hospital

b) Distance to the nearest national park
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relationship with apartment prices at different time points, 
using a linear model to calculate the importance of the 
variables results in more distinct patterns. In fact, factors 
such as apartment area, parking spaces per unit, building 
age, and, among neighborhood characteristics, prestigious 
apartment brand and the number of housing units, are 
known to have a linear relationship with apartment prices 
(Moreira de Aguiar et  al., 2014; Wittowsky et  al., 2020; 
Hong et al., 2020; Hong & Kim, 2022).

In contrast, as shown in Figure 5, proximity variables 
did not show a clear trend in the linear regression model-
based explanatory indicators but demonstrated a relatively 
clearer trend in the random forest-based explanatory in-
dicators. This suggests that using a linear model does not 
effectively predict housing prices based on locational fea-
tures. From the perspective of apartment suppliers, there 
is an incentive to set higher prices for properties with bet-
ter access to surrounding social infrastructure. However, 
from the perspective of buyers, the process of increasing 
willingness to pay based on distances is still not well un-
derstood compared to structural and neighborhood char-
acteristics. The fluctuating importance of locational vari-
ables over time suggests that their impact on apartment 
prices may be influenced by external factors such as urban 
development, transportation improvements, and changing 
buyer preferences, which are better captured by non-linear 
models like random forest.

In addition, the declining importance of locational 
proximity factors, such as the distance to the nearest gen-
eral hospital, national park, university, and subway station 
suggests a shift in consumer preference from traditional 
accessibility metrics to internal quality and infrastructure 
within the housing complex. This suggests that shifts in the 
apartment market and buyer preferences have a significant 
impact on apartment prices.

6.	Conclusions 

This study evaluates and compares the interpretability and 
predictive performance of linear and non-linear models 
using XAI techniques in the context of real estate mass 
appraisal. By employing multiple linear regression (MLR) 
and random forest (RF), we systematically analyzed how 
these models represent feature importance and how their 
predictive mechanisms differ. Utilizing SHAP and PFI, we 
identified key features that influence apartment prices and 
examined how the ranking of these features varies de-
pending on the modeling approach.

The comparison between the linear regression and ran-
dom forest models reveals both similarities and differences 
in evaluating feature importance for predicting apartment 
prices. Both models identified key features, such as area, 
number of units in the complex, dong (administrative di-
vision), GDP, and construction year, as highly significant, 

c) Distance to the nearest university

d) Distance to the nearest subway station

Figure 5. Evolution in locational characteristic indicators over time (Left axis: SHAP, Right axis: PFI)
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indicating their strong intrinsic relationships with apart-
ment prices. However, notable differences were observed 
in feature rankings due to the distinct characteristics of 
each model. The linear regression model assigned higher 
importance to the number of units in the complex, while 
the random forest model prioritized number of build-
ings and building coverage ratio (BCR). This suggests that 
the linear model captures straightforward relationships, 
whereas the random forest model accounts for complex 
interactions. Similarly, construction year was ranked high-
er in the linear model, likely due to its direct correlation 
with apartment prices, while its importance was lower in 
the random forest model, where it interacted with other 
variables. Additionally, the two models differed in their 
treatment of tallest and shortest building height, with the 
linear model emphasizing the tallest building height and 
the random forest model assigning greater importance to 
shortest building height, suggesting its role as a thresh-
old-based feature in distinguishing high- and low-priced 
apartment complexes. Lastly, proximity variables, such as 
distances to subway stations or hospitals, ranked among 
the least important features in both models, indicating 
that location-related features were sufficiently captured 
by other variables, such as administrative division (dong).

Beyond the general feature importance rankings, this 
study also incorporated a temporal analysis by segmenting 
the data into discrete time intervals to investigate the dy-
namic evolution of feature importance over time. Among 
structural features, area and construction year exhibited 
notable variations, as indicated by SHAP and PFI values 
in both linear regression and random forest models. The 
declining importance of area suggests a shift in housing 
preferences, where buyers increasingly prioritize factors 
beyond size, such as amenities and location. While the 
linear model showed a steady decline in SHAP values, the 
random forest model captured fluctuations, likely reflect-
ing nonlinear interactions with evolving market conditions. 
Similarly, construction year demonstrated a decline in im-
portance until 2012–2014, possibly due to aging effects 
reducing redevelopment expectations, followed by a re-
surgence as market recovery renewed investor interest in 
redevelopment. The random forest model showed greater 
variability in construction year’s importance, indicating 
that its influence is more sensitive to policy changes, in-
vestment cycles, and localized redevelopment dynamics. 
Neighborhood features, such as the number of housing 
units, gained importance over time, aligning with the in-
creasing preference for large-scale apartment complexes, 
while the significance of the number of buildings declined 
as high-rise developments became more common. Ad-
ditionally, the rising importance of branded apartments 
in the linear model reflects the growing market premium 
associated with well-known developers, while fluctuations 
in the random forest model suggest that branding effects 
are more context-dependent, peaking during periods of 
high-profile apartment completions. These findings high-
light the distinct advantages of linear and nonlinear mod-

els, with the former capturing broad market trends and the 
latter identifying short-term variations shaped by external 
factors.

From a practical standpoint, these findings offer mean-
ingful implications for real estate professionals, policymak-
ers, and urban planners. The integration of XAI techniques 
enhances the transparency of mass appraisal systems, al-
lowing stakeholders to better understand the drivers of 
property valuations. By distinguishing between variables 
that exhibit stable importance and those that fluctuate 
based on market conditions, this study provides valu-
able insights for improving model selection and appraisal 
methodologies. Additionally, the results suggest that while 
linear models offer clearer interpretability, non-linear 
models like random forest can capture hidden interac-
tions and temporal variations that traditional approaches 
may overlook. SHAP values provide individualized, case-
specific explanations for each prediction by quantifying 
the marginal contribution of every feature. In practice, a 
policymaker reviewing property tax assessments can use 
SHAP explanations to trace why two similar units may have 
significantly different valuations—e.g., due to differences 
in brand reputation, building scale, or available parking 
lots—which fosters procedural transparency and supports 
citizen accountability. Furthermore, PFI and SHAP-based 
global feature importance analysis highlights market 
trends that are often invisible in traditional regression 
models. The temporal segmentation in this study revealed 
a consistent increase in the influence of physical complex 
characteristics (e.g., number of units, brand, parking space) 
and a declining influence of proximity-based features (e.g., 
distance to subway or university). This finding has signifi-
cant implications: real estate professionals can leverage 
such patterns to recalibrate investment strategies or de-
velopment priorities based on evolving buyer preferences, 
while urban planners can assess which infrastructural fac-
tors are becoming influential in shaping housing demand. 
Within mortgage evaluations frameworks, Explainable Ar-
tificial Intelligence (XAI) methodologies, particularly SHAP, 
facilitate comprehension of the determinant factors under-
lying property valuation mechanisms that inform loan-to-
value (LTV) ratio calculations. For example, when algorith-
mic models attribute elevated valuations predominantly 
to brand reputation coefficients and parking infrastructure 
availability, lending officers can critically evaluate whether 
such variables constitute reliable indicators of sustained 
collateral stability. Moreover, this interpretability enables 
financial institutions to articulate the rationale supporting 
automated lending determinations to both regulatory au-
thorities and clientele, thereby enhancing confidence and 
regulatory adherence in automated appraisal protocols. In 
taxation, XAI tools help ensure fair and consistent prop-
erty assessments by revealing which factors drive valuation 
differences. SHAP explanations enhance transparency, al-
lowing taxpayers to understand and challenge their as-
sessments, thereby strengthening trust and equity in tax 
systems.
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Despite these contributions, the study has certain limi-
tations. The analysis was conducted within the Korean real 
estate market, and further research is needed to assess the 
generalizability of the findings to other housing markets 
with different structural and economic conditions. Espe-
cially, the study may be subject to potential sampling bias, 
as the data is confined to the Gangnam District, a high-
value urban area. In future research, we aim to enhance the 
generalizability of the study by incorporating data from a 
more diverse range of regions. Also, while SHAP and PFI 
provide valuable insights into feature importance, they do 
not fully capture causal relationships between explanatory 
variables and price changes. Future studies could expand 
on this work by integrating causal inference techniques or 
applying XAI-driven methods to broader datasets, includ-
ing commercial and mixed-use properties. Lastly, the static 
nature of SHAP explanations, which rely on a fixed model 
structure, may limit their effectiveness in capturing tem-
poral dynamics in housing price determinants. Future re-
search could address this limitation by employing dynamic 
modeling approaches (e.g., Recurrent Neural Networks, 
Bayesian Dynamic Models) or time-aware XAI techniques 
to better reflect evolving market conditions.
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APPENDIX

Table A1. Predictive performance comparison of mass appraisal models (Top: 5-fold cross validation, Bottom: 10-fold cross 
validation)

5-fold cross validation RMSE MAE MAPE R2

Multiple linear regression 20852.602 14353.423 0.122 0.892
Decision tree 9560.756 4830.354 0.072 0.958 
Random forest 8114.391 4044.365 0.059 0.970 
XGBoost (eXtreme gradient boosting) 11189.555 7312.372 0.113 0.942 
CatBoost (Categorical boosting) 8489.308 4834.046 0.077 0.967 
kNN 35159.391 20326.893 0.323 0.427 

10-fold cross validation RMSE MAE MAPE R2

Multiple linear regression 20843.526 14346.761 0.233 0.799 
Decision tree 9220.677 4572.057 0.069 0.961 
Random forest 7840.665 3910.092 0.060 0.972 
XGBoost (eXtreme gradient boosting) 11173.802 7300.551 0.112 0.942 
CatBoost (Categorical boosting) 8373.855 4719.512 0.075 0.967 
kNN 34884.449 19991.033 0.316 0.436 
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Table A2. Variance Inflation Factor (VIF) of independent variables

Variance Inflation Factor (VIF)

Construction year 2.301
Area 4.904
Floor level 1.681
GDP 1.362
Economic growth rate 1.227
Land price fluctuation rate 1.310
Mortgage interest rate 1.136
Distance to national park 1.371
Distance to high school 1.241
Distance to redevelopment area 1.384
Distance to university 6.568
Distance to general hospital 2.226
Distance to museum 1.238
Distance to subway station 1.868
Apartment brand 2.371
Number of units in the complex 2.229
Number of buildings in the complex 7.335
Parking lot 2.023
Floor area ratio (FAR) 9.708
Building coverage ratio (BCR) 2.164
The tallest building height 4.612
The shortest building height 2.884


