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Abstract. Mass appraisal plays a pivotal role in real estate management, facilitating property tax assessments,
mortgage evaluations, and urban planning across large geographical areas. In regions like Korea, where real
estate markets are rapidly evolving, valuation models based on multiple linear regression are valued for their
simplicity and interpretability but often fall short in capturing complex market dynamics. In contrast, machine
learning (ML) models, while addressing non-linear relationships between property characteristics and market
values and offering superior predictive performance, are often criticized for their "black-box" nature, which
raises concerns over interpretability in transparency-critical domains like property tax assessments and policy
planning. To address these concerns, this study investigates the application of Explainable Al (XAl) techniques
in the mass appraisal of residential properties in Korea, integrating XAl methods with both multiple linear
regression and random forest models. Using SHAP (SHapley Additive exPlanations) and PFI (Permutation Fea-
ture Importance) values, the study analyzes feature importance and predictive contributions, offering insights
into the factors driving property valuations. Additionally, a temporal analysis was conducted by segmenting
the data into time intervals to examine how feature importance and predictive contributions evolve over time.
By combining high predictive performance with transparent and interpretable insights, the findings dem-
onstrate that XAl can enhance the usability of both traditional and advanced automated valuation models
(AVMs) for real-world decision-making in the Korean real estate sector.

Keywords: automatic valuation model, mass appraisal, explainable Al (XAl), SHAP (SHapley Additive exPlanations), Permutation Feature Importance (PFI),

temporal analysis.
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1. Introduction

Mass appraisal, as defined by the International Associa-
tion of Assessing Officers (IAAO), refers to “the process
of valuing a group of properties as of a given date us-
ing common data, standardized methods, and statistical
testing”. This method is extensively employed by local
governments for property taxation, as it allows for the
efficient and timely valuation of a large number of prop-
erties (IAAO, 2017). Given that property tax assessments
must be conducted regularly—particularly in markets
with rapid changes in economic conditions—mass ap-
praisal provides a pragmatic solution for achieving both
cost-effectiveness and timeliness in valuation processes.
International regulatory frameworks, such as the Basel
[l Accord established by the Basel Committee on Bank-
ing Supervision (BCBS) in 2008, further underscore the
importance of regular property valuation. These regula-
tions require financial institutions to monitor the value
of collateral frequently, mandating at least one valuation
annually, with more frequent assessments recommended

in highly volatile markets (Hong et al., 2020). The grow-
ing emphasis on accurate and timely property valuations
reflects their critical role in maintaining financial stability.
As a result, the demand for robust and scalable mass ap-
praisal models has significantly increased.

Nevertheless, valuing real estate presents distinctive
challenges due to the heterogeneous nature of properties.
Unlike homogeneous commodities, residential properties
are characterized by immobility, durability, and variability
in both physical features and market conditions (McClus-
key et al., 2000). Furthermore, a multitude of factors—in-
cluding market segmentation and government interven-
tion—can influence property prices, adding complexity to
the valuation process. The fundamental objective of valu-
ation models is to produce a reliable, credible, and cost-
effective estimate of a property’s market value at a given
point in time. Achieving this goal is essential not only for
property tax assessments but also for broader applications
such as portfolio risk management, insurance valuations,
and urban planning (Glumac & Des Rosiers, 2021).
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To address the challenges inherent in valuing heteroge-
neous real estate properties, traditional valuation methods
often fall short, necessitating the use of more advanced
approaches such as automated valuation models (AVMs).
AVMs leverage advanced statistical techniques and ma-
chine learning algorithms to analyze large datasets, of-
fering enhanced accuracy and consistency over traditional
methods (Kok et al., 2017). Recent research emphasizes
the growing importance of AVMs in the real estate sector,
primarily due to their advantages in terms of speed, scal-
ability, and cost-efficiency (Wang & Li, 2019). These mod-
els not only meet increasing regulatory demands for fre-
quent and precise property valuations but also provide a
robust framework for managing the intricacies of modern
real estate markets. A survey by the International Associa-
tion of Assessing Officers (IAAO) highlights that AVMs of-
fer notable advantages in property assessment, including
improved accuracy, consistency, fairness, cost reductions,
and increased operational efficiency (Bidanset & Rakow,
2022). Countries such as Australia, Sweden, Northern Ire-
land, New Zealand, Singapore, Malaysia, and the United
States have successfully adopted computer-assisted mass
appraisal (CAMA) systems that rely on automated apprais-
al models (Dimopoulos & Moulas, 2016).

As AVMs continue to advance, machine learning tech-
niques are being increasingly integrated, offering signifi-
cant improvements over traditional models. Some machine
learning methods are particularly effective at capturing the
non-linear relationships between property characteristics
and market values, which extend beyond the linear as-
sumptions of linear regression-based models. According
to Kok et al. (2017), machine learning-based automated
valuation models are being used in cases such as House
Canary’'s automated valuation model and Zillow's much-
discussed “Zestimate”. While these machine learning mod-
els have demonstrated superior predictive accuracy, they
also introduce significant challenges in terms of interpret-
ability—an essential factor in fields such as real estate,
where transparency and accountability are paramount. As
Wang and Li (2019) note, "because the target of mass ap-
praisal is a large number of properties, and the valuation
results need to be explained to the public, the basic needs
are convenient operation and simple understanding”. This
underscores the critical importance of interpretability in
mass appraisal, where clear explanations of valuation out-
comes are necessary to maintain public trust and ensure
regulatory compliance. Furthermore, the interpretability of
real estate price determinants can serve as a key differen-
tiating factor for real estate platform services, such as per-
sonalized property recommendation systems and targeted
advertising strategies.

To address these concerns, the development of Ex-
plainable Al (XAl) techniques has emerged as a promising
solution. XAl seeks to bridge the gap between the high
predictive power of machine learning models and the
need for transparency by clarifying how these models gen-
erate their predictions. In real estate, where valuation deci-
sions directly affect stakeholders such as property owners,

financial institutions, and regulatory bodies, the ability
to provide understandable and accessible justifications
for property values is crucial. Several studies have begun
utilizing XAl techniques to analyze the non-linear effects
of real estate characteristics and economic variables on
property prices. These approaches have provided valuable
insights into how factors such as location, property size,
and macroeconomic conditions contribute to price fluc-
tuations in ways that traditional models often fail to cap-
ture. However, existing studies often focus on individual
machine learning models without comparing the explana-
tory capabilities of linear and non-linear models. This is
a significant limitation because the SHAP and PFI values,
which represent the importance and contribution of each
feature, can vary depending on the algorithm used. Lin-
ear models, such as multiple linear regression, assume a
linear relationship between independent variables and the
dependent variable, which simplifies the interpretation of
feature importance. However, random forests, based on
decision tree algorithms, partition the feature space into
multiple regions through recursive splitting. This funda-
mental difference in algorithmic principles means that
even when using the same features, the importance and
contribution values derived from SHAP or PFI can vary sig-
nificantly between the two models. Comparing these vari-
ations across algorithms is crucial for understanding the
trade-offs between model interpretability and predictive
accuracy as well as for providing robust and consistent
insights into the factors influencing property valuations (cf.
While traditional linear regression models offer greater in-
terpretability owing to their inherent linear structure, they
frequently fall short in predictive performance. On the oth-
er hand, Random Forest models tend to outperform to the
linear regression model in terms of accuracy yet provide
limited interpretability without the aid of supplementary
methods). Moreover, existing research seldom incorpo-
rates temporal analyses to evaluate how feature impor-
tance and predictive contributions evolve over time. This
is particularly important in the context of real estate, where
property values are influenced by dynamic factors such as
shifting consumer preferences, economic conditions, and
urban development trends. For instance, the demand for
certain property characteristics, such as proximity to public
transportation or availability of green spaces, may change
over time due to societal or economic shifts. By analyzing
these temporal changes, we can better understand how
the drivers of property valuation adapt to evolving market
conditions, providing more accurate and context-sensitive
insights for stakeholders.

In this paper, we evaluate and compare the interpret-
ability and predictive capabilities of linear and non-linear
models using XAl techniques. For the linear model, we
employed multiple linear regression (MLR), which as-
sumes a direct and straightforward relationship between
the independent variables and the target variable. For the
non-linear model, we utilized random forest (RF), a tree-
based ensemble method known for its ability to capture
complex interactions among features. These two models



were selected as they are widely recognized and common-
ly applied in various mass appraisal systems due to their
effectiveness and adaptability in property valuation tasks.
To evaluate the importance and contribution of features
across these models, we employed SHAP (SHapley Additive
exPlanations) and PFl (Permutation Feature Importance)
methods. While previous studies often emphasize the su-
perior predictive performance of some machine learning
models, such as random forests, in capturing the complex
and non-linear characteristics of the housing market, this
study extends the discussion by applying XAl to identify
the specific features and interactions where these effects
play a critical role. Through this approach, the research
provides a deeper understanding of how the models ad-
dress these complexities, which are often challenging to
uncover using traditional linear methods. Furthermore, this
study incorporates a temporal analysis by segmenting the
data into discrete time intervals to investigate the dynamic
evolution of feature importance over time. Changes in de-
mographic structures and shifts in consumer preferences
play a critical role in shaping housing selection behaviours,
and these changes are subsequently reflected in property
values. By examining these temporal trends, the study pro-
vides useful insights into how societal and economic trans-
formation influence property valuations, highlighting the
dynamic and adaptive nature of real estate markets. We
expect that these findings will contribute to a more com-
prehensive understanding of the balance between model
interpretability and predictive performance, while offering
enhanced transparency into the complex interactions that
shape housing values.

The rest of the paper is organized as follows. Sec-
tion 2 provides a review of the relevant literature, focus-
ing on prior research related to mass appraisal models
and associated methodologies. In Section 3, we outline the
techniques and data analysis processes employed in this
study, including an introduction to the individual machine
learning algorithms utilized as well as the XAl. Section 4
describes the dataset used in the analysis, along with key
summary statistics. The results of the analysis are present-
ed in Section 5. Finally, the conclusions and implications of
the study are discussed in the concluding section.

2. Literature review

In this section, we present a review of the literature rel-
evant to this study, focusing on hedonic models and ma-
chine learning techniques commonly employed in auto-
mated valuation models (AVMs) for mass appraisal. While
traditional methods such as the comparable method,
investment method, profit method, and residual method
are well-established for real estate market value estima-
tion through extensive research, they present challenges
for large-scale property assessments due to significant la-
bor demands and methodological limitations (Pagourtzi
et al., 2003). For a comprehensive review of these valuation
methods, refer to studies by Pagourtzi et al. (2003), Gabri-
elli and French (2021), and Binoy et al. (2022).
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Over the years, the hedonic pricing model, which is
primarily based on multiple linear regression, has emerged
as one of the most widely employed approach for esti-
mating real estate prices in the context of mass appraisal.
Rooted in Lancaster's consumer theory (Lancaster, 1966)
and further developed by Rosen (1974), the hedonic model
conceptualizes real estate as a heterogeneous good com-
posed of a bundle of features that provide utility to buy-
ers. These features—ranging from structural features, such
as the number of rooms and square footage, to locational
features, like proximity to transportation, school, and com-
mercial centers—are key determinants of property values.
The model assumes that a property’s price can be decom-
posed into the individual contributions of these features,
which can be estimated as regression coefficients (Rosen,
1974). This decomposition enables the identification of the
implicit prices of each feature, offering a granular perspec-
tive on how different property features influence overall
value.

A key advantage of the hedonic pricing model, particu-
larly when based on multiple linear regression, is its high
degree of interpretability (Wang & Li, 2019). The interpret-
ability stems from the model’s ability to assign distinct and
constant coefficients to each property features, quantify-
ing their individual impact on property value. For instance,
an increase in square footage or proximity to essential
services can be directly linked to a proportional change
in property value, as indicated by their respective coef-
ficients. This transparency is critical in real estate markets,
where stakeholders—ranging from property owners and
investors to policymakers and assessors—require clear and
easily interpretable insights into the drivers of property
values. The linear structure of the hedonic model allows
for straightforward hypothesis testing and comparison
of features, making it a robust tool for explaining market
trends and informing decision-making processes.

Building upon the theoretical framework of hedonic
pricing models, these approaches have been widely adopt-
ed in both academic research and practical applications
to investigate how property values are influenced by their
underlying features. Studies employing these models have
analyzed diverse factors, including environmental influenc-
es such as air quality and green space availability, as well
as socioeconomic elements like neighborhood safety and
income levels. The most frequently used features in he-
donic pricing models pertain to structural characteristics,
which are closely associated with the physical and func-
tional features of a property, including property type, age,
heating systems, number of bedrooms, other rooms, and
available amenities. Numerous studies have demonstrated
that factors such as the number of bedrooms (Li & Brown,
1980; Fletcher et al.,, 2000), the number of bathrooms (Gar-
rod & Willis, 1992), and the overall floor area are positively
influence property prices (Rodriguez & Sirmans, 1994; Car-
roll et al., 1996). For example, Garrod and Willis observed
that having a single garage increases the house price by
6.9%, while a double garage contributes nearly three times
that amount. Additionally, the inclusion of central heating
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was found to raise the property’s value by approximately
6.5%. In Forrest et al. (1996), the number of garages and
the type of heating system were considered as feature
variables in the analysis. Chau and Chin (2003) applied a
hedonic model to quantify the influence of structural fea-
tures such as building services (including lifts and air con-
ditioning systems), floor level (in multi-storey buildings),
available facilities (such as swimming pools, gymnasiums,
and tennis courts), and the overall structural quality, in-
cluding design, materials, and fixtures, on property prices.
In addition to structural characteristics, another crucial cat-
egory of variables frequently used in hedonic pricing mod-
els involves locational features. These features capture the
impact of a property’s location on its value, which is often
quantified through proximity to amenities, transportation
networks, and the central business district (McMillan et al.,
1992; Adair et al.,, 2000). Several studies emphasize the
importance of accessibility, showing that properties near
employment centers, schools, and public transport gen-
erally command higher prices (Follain & Jimenez, 1985).
Some studies have shown that buyers are willing to pay
a premium for properties with desirable views, such as
those overlooking lakes or golf courses (Mok et al., 1995;
Rodriguez & Sirmans, 1994). For example, properties with
ocean frontage tend to command significantly higher
prices compared to those with partial or no views (Benson
et al., 1998). Additionally, higher floor levels in multi-storey
buildings, which often provide superior views, are associ-
ated with increased property values. In contrast, Tse and
Love (2000) found that properties in Hong Kong with a
cemetery view tend to experience a decline in value as
such views are often regarded as inauspicious in Chinese
culture, symbolizing death and associated with negative
feng shui (geomancy). Neighbourhood features further
play a significant role in shaping property values. They re-
flect the broader social and environmental characteristics
surrounding a property. These features encompass socio-
economic variables, such as the income levels and educa-
tional attainment of residents, as well as access to local
services like schools, hospitals, and public transportation
(Chau & Chin, 2003).

While the traditional hedonic pricing model is ground-
ed in the assumption that property values are determined
by intrinsic, property-specific characteristics, such as struc-
tural attributes, location, and neighborhood amenities,
some studies have acknowledged that broader economic
and contextual factors may also influence real estate prices.
Externalities such as crime rates, pollution levels, and traf-
fic noise often diminish property values, with higher crime
rates and noise pollution leading to further decreases (Li &
Brown, 1980; Clark & Herrin, 2000; Espey & Lopez, 2000).
The neighborhood features, therefore, capture the quality
of life offered by the surrounding area, making them a key
consideration in real estate valuation models.

Accordingly, certain research has incorporated mac-
roeconomic indicators or external market variables into
extended multiple linear regression models to better cap-
ture the multifaceted determinants of housing values. For

instance, Duan et al. (2021) employed a semi-logarithmic
OLS model and a vector autoregression (VAR) framework
to examine the dynamic effects of macro-level indicators
on housing prices in Beijing, using macroeconomic data
(specifically GDP). Their findings revealed that macroeco-
nomic shocks produce varying impacts on housing prices
over time, with money supply having a significant long-
term positive effect. Similarly, Sayin et al. (2022) analyzed
the impact of macroeconomic variables—including the
dollar exchange rate, consumer price index, industrial pro-
duction index, and housing loan interest rate—on housing
prices using a linear regression approach, highlighting the
role of economic conditions in shaping real estate values.

Although the inclusion of macroeconomic variables
departs from the foundational assumptions of the classi-
cal hedonic framework, such extensions reflect an ongoing
effort to adapt valuation models to the realities of dynamic
and interconnected housing markets. These regression-
based models aim to enhance explanatory power by ac-
counting for external influences that, while not intrinsic
to individual properties, affect price formation at the ag-
gregate level.

While the primary strength of hedonic models lies in
their simplicity and ease of interpreting regression coef-
ficients, they have been critiqued for the strong assump-
tions they impose, particularly regarding linearity (Chau &
Chin, 2003; Malpezzi, 2003). The conventional functional
form of the hedonic pricing model simplifies the complexi-
ties of household preferences and housing markets by as-
suming that the effects of each feature are constant and
separable. This implies several restrictive conditions, such
as perfect competition, market equilibrium, and uniform
preferences across markets. Consequently, the accuracy of
ordinary least squares (OLS)-based models can be com-
promised, especially when real-world housing markets ex-
hibit complexities or non-linear relationships. For instance,
in markets segmented by housing size or income groups,
or when household preferences for certain features are
non-linear, the model fails to account for these intricacies.
The rigidity of the traditional hedonic pricing model limits
its ability to capture such complexities, as it is unable to
reflect the dynamic and interrelated nature of market char-
acteristics. Zurada et al. (2011) highlight these limitations,
noting that issues such as functional form misspecification,
variable interactions, multicollinearity, and non-linearity
contribute to imprecise or unstable coefficients.

To address these limitations, machine learning-based
models have been developed as an alternative to tradi-
tional OLS-based hedonic pricing models. These models
offer greater flexibility by accommodating non-linear re-
lationships and interactions between variables, thereby
better reflecting the complexities of real-world housing
markets. Many machine learning techniques can capture
intricate patterns in data without relying on rigid pre-
specified assumptions about the model's functional form
(Antipov & Pokryshevskaya, 2012). Consequently, several
studies have highlighted the effectiveness of decision
trees and their ensemble models in property valuation.



For example, in Reyes-Bueno et al. (2018), decision tree
models were applied to a dataset of land plot transac-
tions in the rural sector of Vilcabamba parish in southern
Ecuador. Similarly, Fan et al. (2006) employed the decision
tree method to explore the relationship between housing
prices and characteristics, identifying key determinants of
property values in Singapore's resale public housing mar-
ket. Antipov and Pokryshevskaya (2012) applied the ran-
dom forest algorithm, an ensemble of decision trees, to a
residential apartment dataset from Saint Petersburg, Rus-
sia, to assess its performance in property valuation. Hong
et al. (2020) compared the performance of the random
forest algorithm and linear regression using apartment
transaction data from the Gangnam district in Seoul, South
Korea. In addition to random forest models, boosted tree
algorithms such as XGBoost, LightGBM, and CatBoost have
been increasingly applied in property valuation studies due
to their ability to minimize error and handle complex non-
linear relationships between variables. Boosted trees are
particularly effective as they iteratively refine predictions
by addressing the errors of previous iterations, thereby
enhancing overall predictive accuracy. Examples of studies
applying boosted tree algorithms to mass appraisal include
Hong and Kim (2022), Ostrikova and Selyutin (2024), and
Wang et al. (2020). Various machine learning techniques,
such as artificial neural networks (ANN) and support vec-
tor machines, have also been applied. The backpropaga-
tion neural network approach was proposed to address
the mass appraisal of real estate in Weihai city, China, by
Zheng et al. (2022). McCluskey et al. (2012) examined the
performance of an ANN compared to various multiple re-
gression techniques, using data from the Lisburn District
Council area in Northern Ireland. Studies by Pi-ying (2011),
Yasnitsky et al. (2021), Torres-Prufionosa et al. (2021), and
Chen et al. (2024) have also applied artificial neural net-
works to mass appraisal problems. In studies by Kontrimas
and Verikas (2011), and Bilgilioglu and Yilmaz (2023), the
support vector regression method was employed to esti-
mate real estate prices.

Despite the predictive superiority of machine learning
models, their lack of interpretability poses a significant
challenge. Often described as “black boxes”, these models
obscure the mechanisms behind their predictions, mak-
ing validation and transparency difficult. This limitation
is particularly problematic in real estate valuation, where
explainability is essential for fostering stakeholder trust
and ensuring the adoption of predictive models (Worzala
et al,, 1995). Transparent and defensible models are criti-
cal, particularly when valuation outcomes have significant
financial or regulatory implications. The trade-off between
predictive accuracy and interpretability remains a funda-
mental barrier to the adoption of machine learning meth-
ods in property valuation. As McCluskey et al. (2012) note,
“Although multiple regression does have its weaknesses, it
is an accepted and standard method for predictive mod-
eling. From an industry perspective, having a transparent
and ultimately defensible model is a prerequisite. The
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black box approach of ANNs is a major impediment to
undertaking price modeling for mass appraisal”. Without
interpretability, addressing stakeholder concerns about
fairness, accountability, and potential biases becomes in-
creasingly challenging.

In recent years, XAl techniques have been developed
to enhance the interpretability of machine learning mod-
els. These approaches mitigate the limitations of tradi-
tional machine learning approaches, which often function
as "black boxes”, by providing insights into how models
generate their predictions (Lundberg et al., 2019; Xu et al.,
2019; Chen et al., 2020; Lenaers et al., 2024; Trindade Ne-
ves et al., 2024; Teoh et al., 2023; Su et al., 2021). Methods
such as SHAP and LIME (Local Interpretable Model-Ag-
nostic Explanations) increase transparency by identifying
the contribution of individual features to the final output.
By applying XAl, researchers and practitioners can partially
address the interpretability challenges of machine learning
models, making them more accessible and understandable
while preserving a degree of their high predictive accuracy.
Several studies have utilized explainable Al techniques in
mass appraisal contexts to assess the significance of key
factors and their respective contributions to price deter-
mination. For example, Iban (2022) and Teoh et al. (2023)
combined tree-based algorithms with XAl techniques,
using SHAP to provide local explanations for model pre-
dictions. Similarly, Tchuente (2024) conducted an experi-
ment on the French real estate market, applying machine
learning models alongside Shapley values to improve the
interpretability of predictions. Kramer et al. (2023) utilized
the XGBoost algorithm in conjunction with Accumulated
Local Effects (ALE) plots to analyze value-determining ef-
fects of structural, locational, and socio-economic features
using a dataset of 81,166 residential properties from seven
major German cities. Lenaers et al. (2024) collected data
on Belgian residential rental properties and developed rent
prediction models using random forest and XGBoost algo-
rithms, comparing their performance to linear regression;
SHAP feature importance and summary plots were used
to interpret key predictors. Chen et al. (2020) investigated
the effects of urban environmental factors on residential
housing prices in Shanghai using multisource data and
employed SHAP to interpret the influence of these fac-
tors. Trindade Neves et al. (2024) demonstrated that inte-
grating proprietary and open data significantly improves
real estate price prediction using XGBoost in smart cities,
with SHAP providing transparency into key predictors such
as property size, location, accessibility to amenities, and
socio-economic indicators.

Building on previous applications of explainable Al
(XAl) in real estate analysis, this study evaluates and com-
pares the interpretability and predictive performance of
linear and nonlinear models using SHAP and Permutation
Feature Importance (PFI). To identify the key factors influ-
encing housing prices, a balanced feature set encompass-
ing structural, neighborhood, locational, and macroeco-
nomic variables was carefully constructed, representing
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an advancement over prior studies that often focused on
a narrower range of predictors. Multiple linear regression
(MLR) and random forest (RF) were selected as repre-
sentative models commonly employed in mass appraisal
systems, reflecting their differing capacities to capture
relationships between variables. Although previous stud-
ies have incorporated XAl techniques in real estate re-
search, few have systematically examined how linear and
nonlinear models differ in their representation of feature
importance and the mechanisms underlying their predic-
tions. Moreover, limited attention has been given to un-
derstanding how feature importance evolves over time,
despite the dynamic nature of housing markets driven by
demographic changes, infrastructure developments, and
shifting consumer preferences.

The main contributions of this study are as follows.
First, a comparative analysis of feature importance val-
ues obtained through PFl and SHAP was conducted for
both the linear regression and random forest models to
assess model interpretability. This comparison enables an
evaluation of the consistency of feature importance across
models with differing functional assumptions; features ex-
hibiting high importance in both models suggest a stable
and robust influence on apartment prices, irrespective of
model form. Discrepancies in feature importance rank-
ings between the models provide insights into potential
nonlinearities and interaction effects among predictors,
where features identified as important exclusively in the
random forest model imply complex or conditional rela-
tionships not captured by linear regression. Furthermore,
the cross-model comparison facilitates an assessment of
the explanatory adequacy of XAl techniques. While linear
regression inherently offers interpretability through model
coefficients, SHAP and PFI provide a more granular and
comprehensive understanding of feature contributions,
particularly under conditions of structural complexity. For
random forest models, where internal decision structures
are inherently opaque, the role of XAl methods becomes
indispensable. Second, temporal analyses of PFl and SHAP
values were conducted to investigate how the importance
of key features evolves over time. By tracking changes in
feature contributions across different periods, this study
reveals dynamic shifts in market drivers and offers new
insights into the adaptability and sensitivity of both lin-
ear and nonlinear models to changing real estate envi-
ronments. This longitudinal perspective highlights the
necessity of incorporating temporal dynamics into mass
appraisal modeling and demonstrates the added value
of XAl methods in capturing complex, evolving patterns
within the housing market.

3. Methodology

Our aim is to investigate how different predictive fac-
tors contribute to estimating house prices by integrating
XAl methodologies, including SHAP and PFI, with stand-
ard machine learning regression models. While advanced

models with superior performance are available, we focus
on fundamental machine learning models commonly used
in practice. For this study, we selected two representative
predictive models: a linear hedonic model based on mul-
tiple regression analysis and a non-linear random forest
algorithm. These models were chosen for their widespread
applicability in house price prediction and their balance
between predictive performance and interpretability. This
section provides an overview of the algorithms employed
in this study and their underlying methodologies. Ad-
ditionally, it focuses on the XAl methodologies utilized,
specifically SHAP and PFI. These approaches are employed
to systematically evaluate the contributions of individual
predictive factors, enhancing the interpretability of the
models. Detailed explanations of SHAP and PFI are pro-
vided to demonstrate their application in analyzing and
interpreting the predictive models used in this study.

All analyses were conducted on a workstation equipped
with an AMD Ryzen 5 7500F 6-Core Processor (3.70 GHz)
and 64 GB of RAM, operating on a 64-bit Windows sys-
tem. The computational environment was based on Py-
thon 3.11.9. Random Forest and Multiple Linear Regression
models were implemented using the scikit-learn library.
To interpret model outputs, SHapley Additive exPlanations
(SHAP) were computed using the shap package, and Per-
mutation Feature Importance (PFl) was derived using the
permutation_importance function from scikit-learn. Data
transformations were performed using pandas and numpy.

3.1. Predictive models

3.1.1. Multiple linear regression model

The hedonic pricing model, widely used in the valuation of
real estate and other goods, is theoretically rooted in Lan-
caster’s characteristics demand theory (Lancaster, 1966)
and Rosen’s extension of this theory (Rosen, 1974). Lancas-
ter posited that consumers derive utility not directly from
goods themselves but from the composite characteristics
or features these goods possess. For example, in the con-
text of real estate, consumers value a house based on its
specific features, such as size, location, proximity to ameni-
ties, and environmental factors, rather than the house as a
singular entity. Rosen expanded upon Lancaster's theory
by proposing the hedonic pricing model, which argues
that the price of a good is the aggregate value of its fea-
tures. In an equilibrium market, each feature is assumed to
have a unique implicit price, which collectively determines
the overall price of the good. This theoretical framework
implies that the price of a product, such as a house, can
be modeled as a function of its characteristics, allowing us
to statistically estimate the contribution of each feature to
the price through regression analysis.

In this study, we utilize a pricing model based on the
multiple linear regression method, which assumes a linear
relationship between the price of a house and its explana-
tory variables. The model can be expressed mathematically
as follows:
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where: p; represents the natural logarithm of the price
of the i-th house. Taking the natural logarithm of house
prices is a standard approach in the linear pricing mod-
els as it helps to address skewness in the distribution of
housing prices and ensures that the model better satisfies
the assumptions of linear regression, such as homosce-
dasticity (Hong et al., 2020). Additionally, the logarithmic
transformation allows for a more interpretable interpreta-
tion of the coefficients, where each coefficient (8)) can be
understood as the percentage change in price associated
with a one-unit change in the corresponding explanatory
variable. The model assumes that the relationship between
the dependent variable (p;) and the explanatory variables
(x; ;) is additive and linear. Here, B, is the intercept term,
which represents the predicted value of p; when all ex-
planatory variables are zero. B; denotes the regression
coefficient for the j-th explanatory variable, capturing the
magnitude and direction of the relationship between x; ;
and p;. g; represents the error term for the i-th observation,
accounting for variations in the dependent variable that
cannot be explained by the explanatory variables. The er-
ror term is assumed to follow a normal distribution with a
mean of zero and constant variance, satisfying the Gauss-
Markov assumptions required for unbiased and efficient
estimation.

The regression coefficients in the linear pricing mod-
el are estimated using the Ordinary Least Squares (OLS)
method, which minimizes the sum of squared residuals
between the observed and predicted prices. The estimated
coefficients (f%j) can be interpreted as the marginal contri-
bution of each feature to the price of a house, assuming
all other factors remain constant. The fitted model can be
expressed as:

k
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While the OLS approach ensures unbiased and ef-
ficient estimates under its assumptions, deviations from
these assumptions can affect the validity of the results.
For example, the presence of multicollinearity among ex-
planatory variables can inflate the standard errors of the
estimated coefficients, reducing their reliability. Similarly,
omitted variable bias may arise if relevant factors influenc-
ing house prices are not included in the model, potentially
distorting the results. Therefore, the proper specification of
the functional form and the careful selection of explana-
tory variables are essential to maintain the robustness of
the model. By focusing on the linear relationship between
house prices and their features, the linear pricing model
decomposes the total price of a property into the values of
its individual characteristics. This decomposition provides
actionable insights into the relative importance of different
factors, such as proximity to public amenities, neighbor-
hood quality, or structural features. Despite its simplicity,
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this framework remains one of the most widely used tools
in empirical real estate research, offering a balance be-
tween interpretability and analytical rigor.

3.1.2. Random forest model

Another algorithm employed in this study is the Random
Forest algorithm, which is based on decision tree princi-
ples. This algorithm demonstrated the best performance
compared to the other machine learning prediction al-
gorithms we evaluated (see Appendix Table A1). Decision
Trees (DTs) are a foundational decision support tool in ma-
chine learning that utilize a tree-like structure to model
decision-making processes. Each node in a decision tree
represents a decision based on a specific feature and its
corresponding threshold, while the branches signify the
outcome of the decision. For example, given a node split
based on feature A with threshold T, a sample with A < T
will follow the left branch, while a sample with A > T will
proceed along the right branch. Decision trees are versatile
and can be applied to both classification and regression
problems. In classification, each terminal node (leaf) rep-
resents a class, and predictions are made by traversing the
tree from the root to a leaf node. In regression, the pro-
cess involves predicting continuous values by averaging
the target variable within each terminal node, which de-
fines a local approximation of the data. The construction of
a decision tree involves recursively selecting features and
thresholds to split the data into increasingly homogeneous
subsets. This process is guided by specific metrics, such as
reduction in variance (for regression) or Gini impurity and
information gain (for classification). The algorithm grows
the tree by iteratively adding nodes, splitting data at each
step to create subgroups that maximize the chosen split-
ting criterion. While decision trees are highly interpretable
and straightforward to construct, they are prone to overfit-
ting, especially when grown to full depth without pruning.
This limitation often results in a model that performs well
on the training data but poorly generalizes to unseen data.

Random Forest (RF) addresses the overfitting problem
inherent in single decision trees by employing an ensem-
ble learning technique. It combines the predictions of mul-
tiple uncorrelated decision trees to produce a robust and
accurate model. Each tree in a random forest is indepen-
dently trained on a bootstrap sample of the original data-
set, with a random subset of predictors considered at each
node split. This randomness in both the data and feature
selection enhances model diversity and reduces the cor-
relation among trees, leading to improved generalization
performance. The predictions of the random forest model
are aggregated by averaging the outputs of all trees for
regression tasks. For example, if a random forest is trained
on a housing price dataset, each tree independently pre-
dicts a price based on its training subset, and the final
prediction is obtained by averaging the outputs of all
trees. This ensemble approach not only reduces variance
but also mitigates the risk of overfitting, a key advantage
over individual decision trees.
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A unique strength of the Random Forest algorithm
lies in its robustness when dealing with high-dimensional
datasets and a mixture of variable types. The research used
one-hot encoding to transform categorical data into bi-
nary indicators which served as input for model training.
The tree construction process of the algorithm chooses
random feature subsets for each node split to create di-
verse models which help prevent overfitting. This reduces
the dimensionality burden and mitigates the risk of over-
fitting, which is often a challenge in traditional regression
models, such as OLS or neural networks. Furthermore, RF
is well-suited for capturing nonlinear relationships and in-
teractions among variables, making it particularly advanta-
geous in complex domains like real estate mass appraisal,
where property features such as location, brand, and heat-
ing system exhibit nonlinear and heterogeneous effects on
housing prices.

One of the practical advantages of RF is its relative
simplicity in training and interpretation. It requires only
two primary hyperparameters: the number of trees in the
forest and the maximum depth of each tree. Increasing the
number of trees generally improves stability and predic-
tive accuracy without a significant computational burden,
while adjusting tree depth allows the model to balance
precision and overfitting. We explored the optimal RF pa-
rameters using the grid search method and confirmed that
the best performance was achieved when the number of
trees was set to 10 among {5, 10, 15, 20} hyperparameters,
and the maximum tree depth was set to 5 among {5, 10,
15, 20} hyperparameters. Additionally, RF retains a degree
of interpretability by enabling feature importance analysis,
where the contribution of each variable to the model’s
predictive performance is quantified. This feature is espe-
cially valuable in understanding the relative importance of
different housing features, facilitating actionable insights
for stakeholders in real estate markets. While RF models
are computationally efficient and exhibit strong predictive
performance, they can sometimes lack the interpretability
of simpler models like OLS. However, the incorporation of
explainable Al techniques, such as SHAP, can bridge this
gap by providing insights into individual predictions.

3.1.3. Evaluating model performances

To evaluate and compare the predictive performance of
the multiple linear regression model and the Random For-
est algorithm, we employed four widely used performance
metrics: the coefficient of determination (R2), Mean Ab-
solute Percentage Error (MAPE), Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) (see Appendix Ta-
ble A1). These metrics provide complementary insights
into the accuracy and reliability of the models’ predictions.
The multiple linear regression model was trained using the
natural logarithm of house prices (p; =Iny;), which sta-
bilizes variance and addresses skewness in housing price
distributions, thus improving the model’'s adherence to the
assumptions of linear regression. In contrast, the Random
Forest model was trained directly on the original price
values (y;). To ensure consistency in performance evalua-
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tion, predictions from the regression model (p,) were ex-
ponentiated (y; = exp(p,)) to transform them back to the
original price scale before calculating the performance
metrics. Predictions from the Random Forest model ()71)
were already on the original price scale. The coefficient of
determination (R?) measures the proportion of variance in
the actual prices (y;) that is explained by the model. It is

calculated as:
n
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where: y; represents the actual price of the i-th house; y,
is the predicted price (either directly from the Random
Forest model or exponentiated from the regression mod-
el's log-transformed predictions); y is the mean of the
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actual prices calculated as y = (1 / n)z y;: nis the total
i=T
number of observations in the dataset. In this formula, the
n ~\2 .
numerator z (y[ —yi) represents the residual sum of
i=1

squares (RSS), which captures the variance unexplained by
the model, while the denominator Z‘n 1()’[ _}7)2 repre-
sents the total variance in the actual prices. Higher R? val-
ues indicate better model performance, with 1 represent-
ing a perfect fit.

The Mean Absolute Percentage Error (MAPE) evalu-
ates the average percentage deviation between actual and
predicted prices, offering an intuitive, scale-independent
measure of prediction accuracy. MAPE is defined as:

1 n

MAPE = ZZ
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Lower MAPE values indicate higher prediction accu-
racy and reflect how closely the predicted prices align with
the actual prices as a percentage of the actual values. By
combining R% and MAPE, the evaluation provides a com-
prehensive view of the models’ predictive capabilities. The
R? metric highlights the proportion of variance explained
by the model, while MAPE captures the relative prediction
error in practical terms.

The Root Mean Square Error (RMSE) constitutes a per-
formance metric that calculates the square root of the
mean squared residuals between predicted values and
observed outcomes. This evaluation criterion applies dis-
proportionate weighting to substantial errors compared
to minor deviations, rendering it particularly responsive to
outlying observations. It is calculated as:

1 n " \2
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The Mean Absolute Error (MAE) quantifies the arith-
metic mean of the absolute differentials between model
predictions and empirical observations, irrespective of di-
rectional orientation. In contrast to RMSE, the MAE applies
uniform weighting across the error distribution, thereby
providing a more equitable assessment of predictive
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accuracy in contexts where anomalous observations are
not of significance. It is defined as:

1 .
15 s

: (6)

3.2. Explainable artificial intelligence (XAl)

As machine learning models become increasingly complex,
their decision-making processes have often been criticized
as "black boxes”, making it challenging for practitioners to
interpret and trust their predictions. While these models,
such as Random Forests, achieve high predictive accu-
racy, their lack of transparency limits their applicability in
domains where interpretability is crucial, such as finance,
healthcare, and real estate. To address this challenge, XAl
methods have been developed, providing insights into
how features influence model predictions and enabling
stakeholders to better understand, validate, and trust the
outputs of machine learning models.

Among the prominent XAl methods, SHAP has
emerged as a robust tool for interpreting complex model
predictions. Introduced by Lundberg and Lee (2017), SHAP
leverages Shapley values from cooperative game theory
to quantify the contribution of each feature to an indi-
vidual prediction (Shapley, 1953). This method calculates
the marginal contribution of a feature by evaluating the
changes in the model’s prediction when the feature is in-
cluded or excluded from different subsets of input vari-
ables. The Shapley value for a feature i is computed as:

[t =[S -1

N [fx (Su{i})‘fx(S)} )

where: N represents the set of all features; S is a subset
of N excluding feature i; f,(S) is the model’s prediction
considering only the features in S; f, Su{i} is the pre-
diction when feature { is added to S. The Shapley value, ¢,
thus quantifies the contribution of feature i by averaging
its marginal contributions across all possible subsets of
features.

SHAP provides a mathematically sound and interpret-
able framework for understanding how features interact to
produce a specific prediction. Each SHAP value ¢; captures
the impact of a feature not in isolation but in the context
of other features, offering a holistic view of the prediction
process. For example, in a real estate valuation model, a
positive SHAP value for “proximity to schools” indicates
that this feature positively influences the predicted hous-
ing price, while a negative SHAP value for "age of the
property” suggests a reduction in price. These values are
particularly useful in applications requiring transparency
and accountability, as they allow users to trace back the
prediction to its contributing factors. Furthermore, SHAP
values satisfy the efficiency property, ensuring that the
sum of all feature contributions equals the difference be-
tween the model’s prediction and a baseline output, rein-
forcing their interpretability.

¢i:

Sc\{i}
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To improve computational efficiency for tree-based
models, Lundberg et al. (2018) proposed TreeSHAP, a
specialized algorithm designed to calculate SHAP values
for decision trees and Random Forests. TreeSHAP main-
tains the theoretical properties of traditional SHAP while
significantly reducing computational costs. In this study,
TreeSHAP was employed to compute SHAP values for the
Random Forest model, with the global importance of each
feature quantified as the mean absolute value of its SHAP
values across all instances:

)

i=1

o, (®)

where: ¢(jl) is the SHAP value of feature j for instance i /;
represents the global importance score of feature j. This
global importance measure aggregates the localized ef-
fects of a feature across the entire dataset, providing in-
sights into its average influence on model predictions.

In contrast to SHAP's instance-specific explanations,
Permutation Feature Importance (PFl) focuses on the
global relevance of features by evaluating their impact
on model performance. Originally introduced by Breiman
(2001) as part of the Random Forest algorithm, PFI meas-
ures the change in performance when the values of a spe-
cific feature are randomly shuffled. By disrupting the rela-
tionship between the feature and the target variable, PFI
quantifies how much the model depends on the feature
to make accurate predictions. The importance of feature
J is calculated as:

[PFI ZLZM Metric, .. —Metric 9)
j M i baseline permuted(j) J'

where: M is the number of permutations; Metric,sejine i the
model’'s performance on the original dataset; Metric e muted)
is the performance after permuting the values of feature j.
In this study, the Mean Absolute Percentage Error (MAPE)
was used as the performance metric. A significant drop in
performance after shuffling a feature indicates its critical
role in predictions, while minimal changes suggest that the
feature contributes little to the model's accuracy.

PFI provides a straightforward and intuitive measure of
feature importance, making it appealing for a wide range
of machine learning applications. However, PFl assumes
independence among features, which can lead to biased
importance estimates in datasets with correlated features.
For example, in real estate data, highly correlated features
such as “square footage” and “number of bedrooms” may
share predictive information. Shuffling one feature could
inadvertently affect the importance score of the other,
complicating interpretation. Despite this limitation, PFI re-
mains a valuable tool for understanding the global struc-
ture of a model’'s dependencies.

Together, SHAP and PFI offer complementary insights
into feature importance. SHAP excels in providing granu-
lar, instance-level explanations, enabling users to dissect
individual predictions into their contributing factors. On
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the other hand, PFI emphasizes a feature's overall impact
on model performance, highlighting its global relevance
across the dataset. By combining these methods, this
study achieves a balanced approach to interpretability,
addressing both local and global perspectives. This dual
approach ensures that the machine learning models used
for housing price prediction are not only accurate but also
transparent, offering actionable insights into the factors
driving predictions and enhancing trust in the model's
outcomes.

4. Data

Gangnam District in Seoul, South Korea, was selected as
the focal area for data collection and analysis in this study.
Known for its high real estate values and modern urban
infrastructure, Gangnam provides an ideal context for in-
vestigating the factors that influence property markets in
a highly competitive and developed urban environment.
Moreover, its high population density and the large vol-
ume of real estate transactions concentrated within a com-
pact area make it particularly well-suited for applying XAl
methods. This approach enables a detailed analysis of the
key determinants of housing prices and their temporal dy-
namics, allowing for a comprehensive exploration of how
various factors interact and evolve over time.

Situated south of the Han River, Gangnam is one of
Seoul’'s most prominent and affluent areas. Spanning 39.5
square kilometers with a population exceeding 560,000, it
ranks as the third-largest administrative district in the city.
Gangnam is divided into 22 administrative subdivisions,
or "dongs”, which facilitate efficient governance and com-
munity management. Figure 1 presents two maps: the map
on the left shows the location of Gangnam District within
Seoul, and the map on the right illustrates the adminis-
trative subdivisions (“dongs”) of Gangnam District. Often
regarded as a benchmark for urban development and resi-
dential desirability, the district has become a focal point
for both domestic and international attention. The real

estate market in Gangnam is exceptional in South Korea,
consistently ranking among the most expensive nation-
wide. As of October 2024, the average apartment price in
Gangnam was approximately 93.95 million KRW per pyeo-
ng (3.3 square meters), equivalent to about 28.47 million
KRW or approximately $20,300 per square meter, assum-
ing an exchange rate of 1,400 KRW/USD (Maeil Business
Newpaper, 2024). This premium pricing far exceeds the av-
erage apartment price in Seoul and is significantly higher
than the national average. The elevated property values
reflect the district's combination of desirable features, in-
cluding its exceptional educational resources, advanced
infrastructure, and high standard of living.

A key factor contributing to the desirability of Gang-
nam District is its well-established educational environ-
ment. The district hosts a concentration of prestigious
schools and elite private academies, commonly known as
"hagwons”, which attract families seeking superior edu-
cational opportunities for their children. This strong em-
phasis on education has positioned it as a central driver
of housing demand, particularly in neighborhoods located
in close proximity to these institutions. Consequently, this
demand has significantly influenced the rise in property
prices within the area.

Moreover, Gangnam'’s appeal is further enhanced by its
extensive and meticulously planned urban infrastructure.
The district is seamlessly integrated into the broader Seoul
metropolitan area through a comprehensive network of
subway lines, major roads, and bus routes, ensuring effi-
cient access to key business hubs, cultural landmarks, and
recreational facilities. Residential developments in Gang-
nam, including high-rise apartment complexes and mixed-
use buildings, are designed to cater to the needs of afflu-
ent residents, offering premium features such as private
parking facilities, advanced security systems, and land-
scaped green spaces. In addition to its robust infrastruc-
ture, Gangnam provides an array of high-quality amenities
that contribute to an elevated standard of living. These
include world-class medical facilities, upscale shopping

Figure 1. Location of Gangnam district in Seoul and its administrative division (source: Wikipedia, 2025)



centers, and diverse recreational spaces, which collectively
enhance the attractiveness of the district for both domes-
tic and international buyers. As a result, Gangnam has
firmly established itself as one of the most sought-after
residential areas in Seoul, with steady transaction activity
that reflects its continued desirability.

This steady level of transactions provides a valuable
dataset for analyzing market dynamics using advanced da-
ta-driven models, as demonstrated in prior studies (Hong
et al,, 2020). The availability of such stable data enables
the identification and examination of temporal variations
in key determinants of property prices, offering insights
into the interactions between socioeconomic and infra-
structural factors.

Although the study focuses exclusively on Gangnam
District and utilizes data from the period 2006-2017,
this scope was intentionally defined to serve the study’s
methodological aims. Gangnam has long functioned as a
price-leading and policy-sensitive submarket within Seoul,
characterized by consistently high property values, active
transaction volumes, and strong influence on price trends
across other regions, especially in response to government
policy changes (Al-Yahyaee et al,, 2021; Bae & Joo, 2020).
These characteristics make Gangnam a strategic setting
for developing and validating explainable Al (XAl) models
aimed at capturing the multifaceted and evolving drivers
of housing prices. Furthermore, the chosen timeframe en-
compasses a number of significant macroeconomic shifts
and real estate policy changes. Notably, loan-to-value
(LTV) and debt-to-income (DTI) regulations were repeat-
edly tightened or relaxed during this period, often in direct
response to speculative pressures in high-demand areas
like Gangnam. For example, DTI limits were first introduced
in Gangnam in 2005 and subsequently adjusted multiple
times throughout the following decade. The study period
also includes major policy shifts such as redevelopment
restrictions and housing supply initiatives, providing a
diverse and dynamic policy context for evaluating model
performance.

While the dataset does not reflect the most recent
market conditions, its extended temporal span enables
the identification of long-term structural patterns—such as
evolving preferences for large-scale apartment complexes,
the influence of building age and redevelopment expecta-
tions, and the increasing premium associated with branded
housing. These phenomena remain analytically valuable,
as the core determinants of apartment prices—such as
structural, locational, and neighborhood attributes—retain
relevance regardless of market cycle. Although geographi-
cally limited, the analytical framework used in this study is
generalizable and can be applied to other urban areas with
comparable data availability. Rather than aiming to pre-
dict contemporary prices, the study's primary contribution
lies in improving the interpretability of machine learning-
based mass appraisal models using XAl, while tracing how
the importance of key features shifts over time under vary-
ing market and policy conditions.
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A total of 15,162 apartment transaction records from
Gangnam District, spanning the period from 2006 to 2017,
were obtained from the Ministry of Land, Infrastructure,
and Transport (MOLIT) in South Korea. These records rep-
resent approximately 40% of all apartment transactions
that occurred in Gangnam during the specified timeframe.
This proportion reflects the subset of transactions retained
after data cleaning procedures, during which entries with
missing or incomplete values in key variables—such as
geospatial coordinates, building characteristics, or other
essential property attributes—were excluded to ensure
data quality and analytical consistency. The variables used
in the analysis are presented in Table 1. Note that the
property price is the target variable analyzed in this study.

The structural features represent inherent characteris-
tics of the property. In this study, we include construction
year, area, and floor level of a property as key structural
variables. While construction year is often associated with
the entire apartment compley, it has been included as a
variable in this study because buildings within the same
complex may have been constructed at different times,
leading to variations in property characteristics. Area refers
to the total floor area of the property, while Floor level
captures the vertical position of the unit within the build-
ing. These variables are considered essential for under-
standing the structural differences that influence property
prices.

Neighborhood features represent the shared charac-
teristics of the apartment complex and its surrounding
environment. These features include apartment brand, the
number of available units within the building, the total
number of buildings in the complex, parking availability,
heating system, floor area ratio (FAR), building coverage
ratio (BCR), and the tallest and shortest building heights
within the apartment complex. The apartment brand vari-
able is calculated using a ranking system based on data
from the Korea Institute of Corporate Reputation. Brands
ranked within the top 15 are assigned scores according to
their rank, with the highest-ranked brand receiving a score
of 15, the second-ranked brand a score of 14, and so on.
Brands ranked below 15th are assigned a score of 0. This
scoring system reflects the reputation and desirability of
the brand in influencing property prices. The parking avail-
ability variable represents the average number of parking
spaces per household within the apartment complex. The
floor area ratio (FAR) is calculated as the ratio of the total
floor area (gross floor area) to the total land area, while the
building coverage ratio (BCR) represents the ratio of the
building's footprint to the total land area. The inclusion of
the tallest and shortest building heights as variables cap-
tures the vertical variation in the complex's design, which
can influence property values. These neighborhood fea-
tures collectively provide insights into the shared physical
and environmental factors that impact the value of proper-
ties within an apartment complex. The locational features
used in this study, which also influence property prices,
include the dong (administrative division) and accessibility



International Journal of Strategic Property Management, 2025, 29(5), 350-376

to nearby facilities. The facilities considered in the analysis
are national parks, high schools, redevelopment areas, uni-
versities, general hospitals, museums, and subway stations.
The information on the administrative division (dong) of
the property was obtained from the dataset provided by
the Ministry of Land, Infrastructure, and Transport (MOLIT),
while the distances to the nearest facilities were calculated
using data retrieved through the MAP open Application
Programming Interface (API). To ensure spatial precision,
all distance-based locational variables were calculated us-
ing the geospatial coordinates (latitude and longitude)
of each apartment complex as reported in the transac-
tion dataset. Euclidean distances to the nearest facilities
were computed based on these coordinates, using data

Table 1. Variables

retrieved via the Naver Map Open API. This approach pro-
vides a high spatial resolution at the apartment-complex
level, offering greater granularity than methods based on
aggregated administrative units.

Previous studies have shown that macroeconomic fac-
tors can significantly impact the housing market (Miller
et al,, 2011). In this study, the relevant macroeconomic
variables include the transaction period (year and quarter),
the size of the economy (gross domestic product, GDP),
economic growth rate (percentage growth in GDP), the
land price fluctuation rate in Seoul, and the mortgage
interest rate. These variables are measured annually. De-
scriptive statistics for the numerical variables are provided
in Table 2.

Category Variables

Unit

Target variable Price

Korean won (KRW)

Structural features Construction year
Area

Floor level of a property

Neighborhood features Apartment brand

Number of units in the apartment complex
Number of buildings in the apartment complex

Parking lot

Heating system

Floor area ratio (FAR)
Building coverage ratio (BCR)
The tallest building height
The shortest building height

Year

m2

Floor level

Ranking of prominent apartment brands (scores
are assigned based on rankings up to 15th
place, while a score of 0 is given for brands
ranked below 15th, otherwise 1)

Number of units

Number of buildings

Number of parking spot/number of units

0 if an apartment has a central heating system
Otherwise, the value is set to 1

Ratio
Ratio
Floor level
Floor level
Locational features Dong (administrative subdivisions) The name of the "dong” (categorical variable)
Distance to the nearest national park Meter
Distance to the nearest high school Meter
Distance to the nearest redevelopment area Meter
Distance to the nearest university Meter
Distance to the nearest general hospital Meter
Distance to the nearest museum Meter
Distance to the nearest subway station Meter
Macro variable Transaction Year and quarter Year and quarter
Gross domestic product (GDP) Billion won
Economic growth rate %
Land price fluctuation rate in Seoul %
Mortgage loan interest rate %
Table 2. Descriptive statistics
Variables Mean Median Standard Min Max
deviation
Price (ten-thousands won) 841374 77000 0.569857 1000 570000
Construction year 1993.32 1993 0.005186 1978 2014
Area 72.6455 59.98 0.4933 16.78 273.83
Floor level 7.66 6 0.74 -1 45
Apartment brand 1.25234 0 2.70865 0 15
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End of Table 2

Variables Mean Median Standard Min Max
deviation
Number of units in the complex 1666.96 805 1.09 7 5040
Number of buildings in the complex 28.42 8 1.44 1 124
Parking lot 1.0292 1.00 0.5823 0.27 453
Floor area ratio (FAR) 258.52 237 0.81 72 2435
Building coverage ratio (BCR) 2491 19 0.60 12 204
The tallest building height 14.08 14 0.54 4 46
The shortest building height 11.26 12 0.50 3 26
Distance to national park 1060.18 1053.21 0.377388 86.1079 2142.47
Distance to high school 535.593 522.609 0.443323 31.8829 1531.52
Distance to redevelopment area 639.331 571.583 0.65956 0.00 3758.56
Distance to university 3369.99 3527.72 0.379691 24.5866 7136.5
Distance to general hospital 1037.13 965.389 0.493903 41.6327 3470.83
Distance to museum 986.687 1038.93 0.380867 87.4901 3323.86
Distance to subway station 660.919 557.849 0.581247 47.487 2559.07
GDP (billion won) 349295.82 353743 0.16 240439 446835
Economic growth rate 3.362 3.2 0.529 -19 74
Land price fluctuation rate 0.00770145 0.0158096 39.504 -2.64275 0.351297
Mortgage interest rate 6.14895 5.90853 0.0972837 5.2633 7.41544

5. Results and discussions

This study employed a 5-fold cross-validation approach,
which divides the dataset into five subsets, using four sub-
sets for training and one for validation in each iteration.
This ensures a robust evaluation of the model’s predictive
performance by minimizing the impact of data partitioning
on the results. Using the approach, for the linear regres-
sion model, the results showed an R? value of 0.892 and a
MAPE of 0.12227. In comparison, the random forest model
achieved an R? value of 0.970 and a MAPE of 0.05928.
Numerous studies have highlighted the superior predictive
performance of random forest models compared to linear
regression models, making this result somewhat expected
(Hong et al., 2020). Since multicollinearity caused by corre-
lations among variables can pose a problem in both multi-
ple linear regression models and Permutation Feature Im-
portance (PFl) analysis, we examined the Variance Inflation
Factor (VIF) scores for all variables. The analysis revealed
that most VIF values were below 10, suggesting that
multicollinearity does not significantly impact our results
(see Appendix Table A2). Also, as mentioned earlier, XAl
techniques were incorporated to enhance the interpret-
ability of the model. The mean absolute SHAP values and
Permutation Feature Importance scores (PFl) were applied
to analyze the importance of features in predicting prop-
erty prices and to provide insights into the relationships
between features and the target variable. The insights de-
rived from SHAP and PFI analyses were further utilized to
identify key drivers of property prices, offering actionable
information to support decision-making in the real estate

domain. The analysis was conducted using Python and rel-
evant libraries, including SHAP and scikit-learn, ensuring
the reproducibility and transparency of the results.

5.1. Comparison of random forest and linear
regression methods

The Mean Absolute SHAP values and Permutation Feature
Importance scores were calculated for both a linear regres-
sion model and a random forest model, and the results are
presented in Tables 3 and 4. It is noteworthy that, in the lin-
ear regression model, the target variable was transformed
by applying a logarithmic function to apartment prices in
order to improve predictive performance. This transfor-
mation stabilizes the variance of the target variable and
enables the model to better capture relationships between
features and prices. However, as a consequence, the SHAP
and PFI values derived from the linear regression model
reflect the importance of features on the logarithmic scale
rather than the original price scale. Therefore, the numeri-
cal values of SHAP and PFI from the linear regression mod-
el cannot be directly compared to those from the random
forest model, which evaluates feature importance on the
original price scale. Nonetheless, within each model, these
metrics provide valuable insights into the relative impor-
tance of features and their contributions to the target vari-
able. Additionally, by examining the rankings and patterns
of feature importance across both models, it is possible
to identify which variables are consistently significant and
how their influence may differ depending on the modeling
approach. This analysis enables a nuanced interpretation of
the factors driving apartment prices.
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Table 3. Explanatory indicators for apartment prices in the linear regression model

Linear regression model

Rank Mean absolute SHAP Permutation feature importance
1 Area 0.2879490 Area 0.0270373
2 Number of units in the complex 0.1652130 Number of units in the complex 0.0124664
3 Dong 0.1650627 Dong 0.0106721
4 Construction year 0.1363777 Construction year 0.0071438
5 GDP 0.0979463 The tallest building height 0.0053472
6 The tallest building height 0.0932182 GDP 0.0050100
7 Transaction year and quarter 0.0804335 Apartment brand 0.0032981
8 The shortest building height 0.0658740 Transaction year and quarter 0.0030130
9 Number of buildings 0.0492220 The shortest building height 0.0029705
10 Apartment brand 0.0454338 Number of buildings 0.0020738
11 Heating system 0.0446536 Heating system 0.0011156
12 Mortgage interest rate 0.0354506 Mortgage interest rate 0.0009495
13 Building coverage ratio (BCR) 0.0213643 Floor area ratio (FAR) 0.0006287
14 Floor area ratio (FAR) 0.0213598 Building coverage ratio (BCR) 0.0004180
15 Floor level 0.0109712 Floor level 0.0001145
16 Economic growth rates 0.0064508 Parking lot 0.0000675
17 Parking lot 0.0063428 Economic growth rates 0.0000547
18 Land price fluctuation rate 0.0028206 Land price fluctuation rate 0.0000272
19 Distance to the nearest national 0.0025191 Distance to the nearest national 0.0000147
park park
20 Distance to the redevelopment area 0.0019281 Distance to the nearest subway 0.0000056
station
21 Distance to the nearest general 0.0013635 Distance to the nearest national 0.0000013
hospital museum
22 Distance to the nearest subway 0.0011362 Distance to the nearest university ~ 0.0000001
station
23 Distance to the nearest national 0.0009954 Distance to the nearest high school —0.0000006
museum
24 Distance to the nearest high school 0.0005801 Distance to the redevelopment area —0.0000031
25 Distance to the nearest university ~ 0.0001085 Distance to the nearest general (0.0000044)
hospital
Table 4. Explanatory indicators for apartment prices in the random forest model
Random forest model
Rank Mean absolute SHAP Permutation feature importance
1 Area 22098.10 Area 0.45935900
2 Number of buildings 10862.90 Number of buildings 0.25295000
3 GDP 6397.02 GDP 0.12923800
4 Dong 3643.78 Dong 0.05789090
5 The shortest building height 2576.39 Building coverage ratio (BCR) 0.04592850
6 Number of units in the complex 2439.17 Number of units in the complex 0.03644470
7 Mortgage interest rate 1378.81 Mortgage interest rate 0.03068410
8 Floor area ratio (FAR) 1344.20 Floor area ratio (FAR) 0.02470100
9 The tallest building height 1339.18 The shortest building height 0.02383690
10 Parking lot 1270.30 Land price fluctuation rate 0.02169290
11 Building coverage ratio (BCR) 1152.89 The tallest building height 0.01770560
12 Land price fluctuation rate 1011.33 Parking lot 0.01360550
13 Construction year 944.63 Economic growth rates 0.01288790
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End of Table 4

Random forest model

Rank Mean absolute SHAP Permutation feature importance
14 Apartment brand 833.71 Construction year 0.01247240
15 Floor level 605.82 Floor level 0.01231590
16 Transaction year and quarter 586.77 Transaction year and quarter 0.00925989
17 Economic growth rates 569.85 Apartment brand 0.00768583
18 Distance to the redevelopment area 261.18 Distance to the nearest national 0.00480895
park
19 Distance to the nearest national 205.44 Distance to the redevelopment area 0.00429915
park
20 Heating system 180.99 Distance to the nearest university ~ 0.00326974
21 Distance to the nearest university 113.81 Distance to the nearest high school 0.00306591
22 Distance to the nearest subway 104.85 Distance to the nearest subway 0.00303488
station station
23 Distance to the nearest high school 92.14 Distance to the nearest national 0.00302023
museum
24 Distance to the nearest national 87.55 Distance to the nearest general 0.00265319
museum hospital
25 Distance to the nearest general 84.96 Heating system 0.00173744
hospital

The comparison between the linear regression and
random forest models reveals both similarities and dif-
ferences in evaluating feature importance for predicting
apartment prices. Both models identified key features,
such as "Area”, "Number of units in the complex”, “Dong”,
“"GDP”, and “Construction year”, as highly significant, sug-
gesting that these variables have strong intrinsic relation-
ships with apartment prices regardless of the modeling
approach. However, notable differences were observed
in the rankings of certain variables, reflecting the distinct
characteristics of each model.

For example, in the linear regression model, “Number
of units in the complex” was ranked as a more important
feature compared to “Number of buildings”. In contrast,
the random forest model assigned higher importance
to "Number of buildings” and "Building coverage ratio
(BCR)". Both variables represent aspects of the scale of
an apartment complex, but their differing rankings reflect
the fundamental characteristics of the two modeling ap-
proaches. “"Number of units in the complex” has a more
linear relationship with apartment prices, which aligns
with the assumptions of the linear regression model. As
a result, it is prioritized in the feature ranking within this
model. On the other hand, "Number of buildings”, while
less linearly correlated with apartment prices, captures
more complex interactions and nonlinear relationships
that the random forest model, based on decision-tree
algorithms, is well-equipped to detect. Additionally,
“Building coverage ratio (BCR)" complements “Number
of buildings” by providing a related but distinct measure
of the physical scale and layout of apartment complexes,
further emphasizing the random forest model’s ability
to account for these features. These differences suggest
that the random forest model interprets apartment scale

through a combination of interacting and nonlinear fac-
tors, whereas the linear regression model prioritizes sim-
pler, more direct relationships.

In the linear regression model, "Construction year”
was ranked higher in importance compared to the ran-
dom forest model. This difference can be attributed to the
distinct characteristics of the two modeling approaches.
“Construction year” often has a linear or near-linear re-
lationship with apartment prices, as newer buildings are
generally associated with higher market values due to
better infrastructure, design, and amenities. The linear re-
gression model captures this straightforward relationship
effectively, leading to a higher ranking for this feature. In
contrast, the random forest model relies on decision-tree-
based partitions to capture nonlinear relationships and
interactions among features. While “Construction year”
may still influence apartment prices in this framework, its
impact might be partially distributed across interactions
with other variables, such as “Building coverage ratio
(BCR)", “Floor area ratio (FAR)" or “Number of units in the
complex”. As a result, its individual importance is diluted,
leading to a lower ranking in the random forest model.
Moreover, the random forest model may prioritize features
that have clear thresholds or significant nonlinearity, which
“Construction year” does not exhibit as strongly.

Interestingly, in the linear regression model, "Tallest
building height” was ranked higher in importance com-
pared to “Shortest building height”. Conversely, in the ran-
dom forest model, the ranking was reversed, with “Short-
est building height” being more important. The linear
regression model prioritizes “Tallest building height” due
to its more direct and linear relationship with apartment
prices, as taller buildings often signify premium develop-
ments. On the other hand, the random forest model might
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treat “Shortest building height” as a threshold-based
feature that helps partition the data into distinct groups
(e.g., complexes with low-rise vs. high-rise buildings). This
thresholding capability allows the random forest model to
assign greater importance to features that aid in making
splits, even if their direct correlation with the target vari-
able is weaker. Ultimately, this suggests that the distinction
between high-priced and low-priced apartment complexes
is more strongly influenced by the floor level of the low-
est-height buildings within a complex, rather than by the
floor level of the tallest building.

The feature "Heating system” exhibits a notable dif-
ference in importance rankings between the linear re-
gression and random forest models. In the linear regres-
sion model, “"Heating system” is ranked 11th, whereas it
is ranked much lower in the random forest model—20th
in SHAP and 25th (the lowest rank) in PFl. In the linear
regression model, “Heating system” is treated as a cat-
egorical variable, represented through dummy variables.
These dummy variables allow the model to capture dis-
tinct effects associated with each heating type. Since the
linear regression model explicitly evaluates each feature's
contribution independently, "Heating system” retains a
relatively higher ranking as a direct explanatory vari-
able. In contrast, the random forest model assigns sig-
nificantly lower importance to "Heating system”. This can
be explained by the model’s ability to capture complex
interactions and nonlinear relationships among features.
Several factors contribute to this outcome. First, features
such as “Number of buildings” or “Number of units in the
complex” may already encapsulate aspects of the apart-
ment complex's overall structure, reducing the additional
explanatory power of “Heating system”. Since the ran-
dom forest model can identify and prioritize features that
capture broader patterns, it is likely that the influence of
"Heating system” is effectively absorbed by these more
comprehensive variables, particularly those representing
the scale and characteristics of the apartment complex.
Second, as a categorical variable, "Heating system” might
contain specific subcategories that are indirectly linked
to apartment price variations. The random forest model,
with its decision-tree-based structure, is adept at leverag-
ing detailed interactions between variables and identify-
ing when a feature is redundant or when its effect is suffi-
ciently captured by related features. If certain subcatego-
ries of "Heating system” are associated with characteris-
tics already well-represented by other features, the model
may assign it a lower importance. Third, “Heating system”
may influence apartment prices indirectly, through inter-
actions with variables that reflect the broader features of
the complex or its location. For instance, the presence of
a particular heating system could be indicative of specific
construction standards or regional preferences, which are
captured through more directly relevant features in the
random forest model. This indirect relationship could
lead to “Heating system” having a reduced standalone
impact, as the model relies on other features to repre-

sent its underlying effect on apartment prices. While both
models identify GDP as a key macroeconomic variable
reflecting the overall economic conditions at the time
of the transaction, they diverge in how they prioritize
other macroeconomic features. In the linear regression
model, “Transaction year and quarter” ranks higher, likely
because it directly captures temporal trends, serving as
a proxy for time-sensitive economic fluctuations. In con-
trast, the random forest model assigns greater impor-
tance to “Mortgage interest rate”, which can significantly
impact housing affordability and market dynamics. The
random forest's ability to capture nonlinear relationships
and threshold effects likely accounts for this difference,
as changes in mortgage interest rates interact with other
variables in ways that influence apartment prices beyond
what a simple temporal trend can capture.

Variables related to proximity to social infrastructure,
such as "Distance to the nearest subway station” and “Dis-
tance to the nearest general hospital”, were consistently
ranked among the least important features in both mod-
els. This suggests that when reflecting the locational char-
acteristics of apartments, both models consider variables
like “Dong” to be sufficient for capturing the influence of
location. The relatively low importance of proximity vari-
ables may also be attributed to the fact that areas such
as Gangnam are generally well-equipped with convenient
transportation and essential living facilities. As a result,
direct distance measures fail to provide significant differ-
entiation in value, further diminishing their importance in
explaining apartment prices.

These findings underscore the fundamental differences
between the two modeling approaches. Linear regression
provides a straightforward and interpretable framework,
well-suited for capturing strong linear correlations but lim-
ited in its ability to model complex, nonlinear interactions.
In contrast, the random forest model excels at identifying
nonlinear relationships and interactions, leveraging its de-
cision-tree-based structure to evaluate feature importance
more comprehensively. This distinction highlights the im-
portance of selecting a modeling approach that aligns with
the data’s underlying structure and the specific objectives
of the analysis. In Figure 2, we show the interpretation of
two test set samples’ predictions: we use the samples with
the best accuracy for the property price. The red and blue
arrows illustrate the impact of individual variables on the
predicted outcome, with red indicating positive contribu-
tions and blue indicating negative contributions. The inter-
section point of these arrows represents the final predicted
value for a given observation. The y-axis also includes a
grey marker denoting the overall mean of the dependent
variable across all observations, which serves as the base-
line prediction. The sequential shifts from this baseline to
the final predicted value reflect the cumulative effects of
the individual variables, either increasing or decreasing the
prediction accordingly. This result indicates that the influ-
ence of each factor on individual apartment prices aligns
with the theoretical frameworks.



Figure 2. Two predictions interpretations (Left: Linear
regression, Right: Random forest)

5.2. Temporal analysis of feature importance

In this section, we analyze the SHAP and PFI values of
selected features over time to examine their temporal vari-
ations in predicting apartment prices. By applying both
linear regression and random forest models, we track how
feature importance evolves over time, allowing us to iden-
tify trends in key determinants of apartment prices. This
temporal analysis helps uncover whether certain factors
consistently influence prices or if their impact shifts over
different periods. Additionally, by comparing SHAP and PFI
values across time windows, we can assess whether model
interpretability remains stable or if different features be-
come more dominant in different market conditions. We
selected variables that exhibited relatively clear trends in
importance across different time periods, including area,
number of parking spaces per unit, building age, number
of housing units, number of buildings, prestigious apart-
ment brand, distance to the nearest general hospital, dis-
tance to the nearest national park, distance to the near-
est university, and distance to the nearest subway station.
These features were categorized according to the classifi-
cations presented in Table 1.

To account for temporal changes, we applied a rolling
time window approach, similar to a moving average, where
feature importance was evaluated using overlapping
three-year periods. Specifically, we computed SHAP and
PFI values for 2007-2009, then shifted the window forward
by one year to compute values for 2008-2010, and so on.
This method ensures a smoother assessment of temporal
trends by capturing gradual changes in feature importance
while maintaining sufficient data for model training and
evaluation in each period. Since the data was segmented
into distinct time windows, macroeconomic variables such
as GDP, mortgage interest rates, and economic growth
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rates lost their relevance as they remained fixed within
each interval. Consequently, these variables were excluded
from the model to ensure a more meaningful analysis of
time-dependent feature importance.

5.2.1. Structural features

Structural characteristics, particularly area and construction
year, exhibited notable temporal variations in their im-
portance for predicting apartment prices, as indicated by
SHAP and PFI values from both the linear regression and
random forest models. These trends provide insights into
shifting housing preferences and broader demographic
changes over time.

First, the importance of area in explaining apartment
prices has shown a gradual decline over time, as indicated
by both SHAP and PFI values (see Figure 3a). The decreas-
ing PFl values suggest that, over time, variations in area
have had a diminishing impact on predictive accuracy,
meaning that other factors have become more influential
in determining apartment prices. This implies that while
area was once a dominant factor in price formation, its role
has weakened as buyers increasingly consider other char-
acteristics such as location, amenities, and neighborhood
features. Interestingly, the SHAP values exhibit different
patterns depending on the model. In the linear regression
model, SHAP values show a steady decline over time, in-
dicating a consistent reduction in the contribution of area
to price predictions. This suggests that the role of area in
explaining apartment prices has gradually diminished in a
linear fashion. In contrast, the random forest model shows
slight fluctuations in SHAP values, reflecting the model’s
ability to capture nonlinear interactions between area and
other features. These fluctuations may be attributed to
changes in market conditions, shifting buyer preferences,
or interactions with emerging influential factors in differ-
ent time periods. Several demographic and socioeconomic
factors may underlie this trend. The ongoing decline in
birth rates, the aging population, and the transition of the
baby boomer generation (born approximately between
1946 and 1964) into retirement have led to a reduction
in average household size. As family structures evolve, the
demand for large family-oriented apartments decreases,
while smaller, more manageable housing units become
increasingly preferred. Additionally, lifestyle changes, such
as the rising number of single-person and dual-income
households, contribute to a preference for compact, ef-
ficient living spaces rather than expansive homes that re-
quire greater maintenance. The decreasing importance of
area in price determination may reflect a broader redefi-
nition of housing value, where structural size is no longer
the primary determinant of apartment prices, and other
factors such as location, accessibility, and housing quality
take precedence.

Second, while construction year (building age) might
intuitively suggest a negative impact on apartment prices
due to physical depreciation, its relationship with price ap-
pears to be more complex, particularly in markets where
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redevelopment potential plays a role in property valua-
tion. The results indicate that the importance of construc-
tion year has varied over time, potentially reflecting shifts
in market conditions and redevelopment expectations
(see Figure 3b left). In the linear regression model, SHAP
and PFI values exhibit a gradual decline until 2012-2014,
followed by an increase. This trend may suggest that
construction year became relatively less influential in
explaining apartment prices during this period, possibly
due to weakened redevelopment expectations. Addition-
ally, the declining importance of construction year up to
2012-2014 could partly reflect the natural depreciation of
older buildings, as property values tend to decrease over
time due to physical aging. This suggests that during this
period, the effect of building age may have been driven
more by depreciation rather than redevelopment poten-
tial. However, after 2014, SHAP and PFl values began to
rise again, which could indicate a shift in market condi-
tions where redevelopment expectations became more
prominent. This pattern implies that while the declining
importance of construction year in 2012-2014 may have
been partially influenced by the aging effect, the subse-
quent increase suggests that broader market factors, such
as renewed investor interest in redevelopment, played a
key role in shaping property values. In contrast, the ran-
dom forest model exhibits greater fluctuation in SHAP val-
ues over time, suggesting that the influence of construc-
tion year may be more context-dependent and influenced
by nonlinear interactions with other variables. Unlike the
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smoother trend observed in the linear regression model,
SHAP and PFI values in the random forest model fluctuate
over time without a clear long-term trajectory. This vari-
ability may indicate that construction year's importance is
affected by interactions with factors such as zoning regu-
lations, land values, and market-driven redevelopment
incentives, which may change dynamically. Rather than
reflecting a gradual increase or decrease, the random for-
est model appears to capture short-term variations, where
construction year becomes particularly relevant in specific
periods, possibly due to policy adjustments, investment
patterns, or shifts in redevelopment activity. However, the
extent to which these fluctuations correspond to external
economic or policy changes require further investigation.

For instance, during strong housing markets, older
apartments—especially those approaching eligibility for
redevelopment—tend to increase in value, as redevelop-
ment opportunities introduce speculative price premiums.
Conversely, during market downturns, the importance of
construction year declines, as the probability of redevel-
opment projects decreases. Between 2007 and 2009, the
importance of construction year in explaining apartment
prices was relatively high, reflecting strong redevelopment
expectations. However, following the global financial crisis,
this importance diminished, corresponding with a period
of stagnation in the housing market. After 2013, the im-
portance of construction year began to rise again, likely
due to the market recovery and renewed speculation re-
garding redevelopment potential.

a) Area

b) Construction year

Figure 3. Evolution in structural characteristic indicators over time (Left axis: SHAP, Right axis: PFl)



This distinction underscores the complementary na-
ture of the two modeling approaches. Linear regression
provides insight into long-term structural trends, such
as gradual shifts in redevelopment expectations over ex-
tended market cycles. In contrast, random forest captures
short-term, localized variations that may reflect the im-
pact of policy changes, investment cycles, and regional
redevelopment initiatives. While the smoother trend in
the linear regression model suggests that redevelopment
expectations may be linked to macroeconomic cycles, the
fluctuations observed in the random forest model imply
that construction year’s importance may be more sensi-
tive to market-specific conditions and policy interventions.
Further research would be needed to more precisely de-
termine the drivers of these variations over time.

5.2.2. Neighbourhood features

Neighbourhood features represent shared characteristics
of apartment complexes, distinguishing them from struc-
tural features, which describe an individual unit's inherent
features. In other words, neighbourhood features include
factors such as the scale of the apartment complex, shared
facilities, and overall living environment, all of which influ-
ence apartment prices collectively rather than on a unit-
by-unit basis. The temporal variations in the importance of
these features provide insights into how housing demand
has evolved in response to broader urban development
trends and changes in buyer preferences.
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The importance of parking spaces in explaining apart-
ment prices has exhibited a gradual upward trend over
time (see Figure 4a). This reflects the growing demand
for parking availability in residential complexes, a trend
that aligns with rising vehicle ownership rates. According
to the Seoul Vehicle Registration Statistics (Seoul Metro-
politan Government, 2025), the vehicle registration rate in
Gangnam-gu, Seoul, was 42.02% relative to the population
in 2007, with an average of 0.92 vehicles per household.
By 2017, the vehicle registration rate had risen to 42.63%,
with an average of 1.15 vehicles per household. This in-
crease in vehicle ownership suggests a corresponding rise
in demand for parking infrastructure, making parking avail-
ability an increasingly important determinant of apartment
prices. Beyond the increase in vehicle ownership, several
regulatory and market-driven factors may have contrib-
uted to the rising importance of parking spaces. In recent
years, regulations on parking space allocation in apart-
ment complexes have been strengthened. According to
the 2012 revision of the “Regulation on Housing Construc-
tion Standards”, the required number of parking spaces
per household in newly built apartments was increased.
In metropolitan areas, the minimum parking requirement
per household was adjusted from approximately 0.7-0.8
spaces to 1.0-1.5 spaces, ensuring that new apartment
complexes provide more parking facilities than older ones.
Furthermore, major construction firms, such as Raemian
(Samsung C&T) and Xi (GS Construction), have introduced
larger parking areas and advanced parking facilities in

a) Parking lots

b) Number of units in the complex

Figure 4. To be continued



International Journal of Strategic Property Management, 2025, 29(5), 350-376

c) Number of buildings

d) Apartment brand

Figure 4. Evolution in neighborhood characteristic indicators over time (Left axis: SHAP, Right axis: PFI)

newly developed complexes. These additions reflect grow-
ing consumer demand for better parking infrastructure,
which is not only influenced by vehicle ownership but also
by the integration of modern amenities such as electric
vehicle (EV) charging stations, enhanced security features,
and smart parking management systems. The increasing
presence of such features suggests that parking availability
is evolving beyond a basic necessity to become a premium
residential feature that contributes to property valuation
The number of units and the number of buildings in
an apartment complex both represent the overall scale of
the development. However, their importance in determin-
ing apartment prices has shown contrasting trends over
time. While the number of housing units has exhibited a
gradual upward trend in importance (see Figure 4b left),
the significance of the number of buildings has steadily
declined (see Figure 4c). This divergence likely reflects the
increasing prevalence of high-rise apartment complexes
in urban areas, particularly in Gangnam-gu, Seoul, where
vertical expansion has become the dominant development
strategy. Larger apartment complexes tend to command
higher prices, as they typically offer extensive shared fa-
cilities, well-developed infrastructure, and a more compre-
hensive range of amenities, making them more attractive
to buyers. Additionally, these large-scale developments
are often strategically located in prime areas, further re-
inforcing their desirability. The growing importance of the
number of housing units suggests that buyers are placing
greater emphasis on the overall residential environment,

prioritizing large, well-equipped complexes over smaller
developments. In contrast, the declining significance of the
number of buildings in explaining apartment prices may
be attributed to changes in apartment design and con-
struction practices. In recent years, there has been a shift
toward the development of taller apartment buildings,
accommodating a larger number of housing units within
fewer structures. As a result, newer high-rise apartment
complexes tend to have fewer buildings compared to old-
er, low-rise developments with a similar number of units.
This shift implies that the traditional role of the number
of buildings as an indicator of apartment complex size has
diminished, as the total number of housing units has be-
come a more relevant factor in assessing apartment prices.
This reflects an evolving preference for efficient land use
and high-density residential developments in urban areas.

The importance of well-known apartment brands in
explaining apartment prices has also exhibited an upward
trend in the linear regression model (see Figure 4d left).
This can be attributed to the premium pricing associated
with large-scale, high-rise apartment complexes developed
by major construction firms. The increasing significance of
brand reputation suggests that buyers perceive branded
apartments as higher in quality, reliability, and long-term
investment value. Furthermore, if the prices of branded
apartments were similar to those of existing non-branded
apartments, the brand’s impact on pricing would have
been negligible. However, the observed upward trend in
the linear regression model indicates that the premium
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associated with branded apartments has steadily increased
over time, reinforcing the growing role of brand perception
in price formation. In contrast, the random forest model
exhibits fluctuations in the importance of brand features
over time, suggesting that the influence of brand reputa-
tion may be more context-dependent. Unlike the linear
regression model, which captures long-term trends, the
random forest model reflects short-term variations, where
brand importance may fluctuate based on market condi-
tions, supply dynamics, and interactions with other prop-
erty features. Notably, the random forest model shows a
peak in PFl and SHAP values around 2012-2014, which
aligns with the period when several large-scale apartment
complexes developed by major construction firms were
newly occupied. The increase in brand importance during
this period suggests that the introduction of high-profile,
branded apartment complexes had a substantial impact
on price formation, temporarily amplifying the influence of
brand reputation. This variability implies that while brand
reputation remains a key factor in apartment pricing, its
impact may be amplified in certain market conditions—
such as during periods of high brand-new apartment
supply or strong market sentiment—while being relatively
less significant in other periods. The difference in results
between the two models highlights the need to consider
both long-term brand value appreciation and short-term
market-driven fluctuations when analyzing the role of
branding in apartment price formation.

Also, the evolution of neighbourhood feature im-
portance from 2006 to 2017, as illustrated in Figures 4,
closely mirrors the dynamic shifts in South Korea's real es-

tate market during this period. As the market moved from
heavy regulation in the mid-2000s to aggressive deregula-
tion post-financial crisis, and back to tighter control after
2017, buyers’ valuation criteria for apartment complexes
also evolved. Physical characteristics of apartment com-
plexes—such as Parking lots, Number of units in the com-
plex, and Apartment brand—became increasingly influen-
tial, particularly after 2013, reflecting a policy environment
that favoured large-scale, branded, and redevelopment-
driven housing. These results underscore how policy direc-
tion, urban redevelopment initiatives, and macroeconomic
conditions (e.g., prolonged low-interest rate situation; low
interest rates can facilitate the inflow of investment capi-
tal into the apartment market) reshaped the salience of
neighborhood attributes in apartment price formation.

5.2.3. Locational features

As mentioned in the previous section, features represent-
ing the distance to major facilities generally do not have a
significant impact on apartment prices. However, for some
proximity variables, trends in SHAP and PFI values emerge
over time, indicating that their influence is not entirely
negligible.

Notably, in almost all explanatory variables except for
proximity variables, the variables based on linear regres-
sion models exhibited clearer trends compared to those
based on random forest models. This suggests that most
housing and neighborhood characteristic variables, ex-
cluding proximity, can explain apartment prices in a linear
fashion. In other words, since these variables have a linear

a) Distance to the nearest general hospital

b) Distance to the nearest national park

Figure 5. To be continued



International Journal of Strategic Property Management, 2025, 29(5), 350-376

371

c) Distance to the nearest university

d) Distance to the nearest subway station

Figure 5. Evolution in locational characteristic indicators over time (Left axis: SHAP, Right axis: PFl)

relationship with apartment prices at different time points,
using a linear model to calculate the importance of the
variables results in more distinct patterns. In fact, factors
such as apartment area, parking spaces per unit, building
age, and, among neighborhood characteristics, prestigious
apartment brand and the number of housing units, are
known to have a linear relationship with apartment prices
(Moreira de Aguiar et al., 2014; Wittowsky et al., 2020;
Hong et al., 2020; Hong & Kim, 2022).

In contrast, as shown in Figure 5, proximity variables
did not show a clear trend in the linear regression model-
based explanatory indicators but demonstrated a relatively
clearer trend in the random forest-based explanatory in-
dicators. This suggests that using a linear model does not
effectively predict housing prices based on locational fea-
tures. From the perspective of apartment suppliers, there
is an incentive to set higher prices for properties with bet-
ter access to surrounding social infrastructure. However,
from the perspective of buyers, the process of increasing
willingness to pay based on distances is still not well un-
derstood compared to structural and neighborhood char-
acteristics. The fluctuating importance of locational vari-
ables over time suggests that their impact on apartment
prices may be influenced by external factors such as urban
development, transportation improvements, and changing
buyer preferences, which are better captured by non-linear
models like random forest.

In addition, the declining importance of locational
proximity factors, such as the distance to the nearest gen-
eral hospital, national park, university, and subway station
suggests a shift in consumer preference from traditional
accessibility metrics to internal quality and infrastructure
within the housing complex. This suggests that shifts in the
apartment market and buyer preferences have a significant
impact on apartment prices.

6. Conclusions

This study evaluates and compares the interpretability and
predictive performance of linear and non-linear models
using XAl techniques in the context of real estate mass
appraisal. By employing multiple linear regression (MLR)
and random forest (RF), we systematically analyzed how
these models represent feature importance and how their
predictive mechanisms differ. Utilizing SHAP and PFI, we
identified key features that influence apartment prices and
examined how the ranking of these features varies de-
pending on the modeling approach.

The comparison between the linear regression and ran-
dom forest models reveals both similarities and differences
in evaluating feature importance for predicting apartment
prices. Both models identified key features, such as area,
number of units in the complex, dong (administrative di-
vision), GDP, and construction year, as highly significant,
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indicating their strong intrinsic relationships with apart-
ment prices. However, notable differences were observed
in feature rankings due to the distinct characteristics of
each model. The linear regression model assigned higher
importance to the number of units in the complex, while
the random forest model prioritized number of build-
ings and building coverage ratio (BCR). This suggests that
the linear model captures straightforward relationships,
whereas the random forest model accounts for complex
interactions. Similarly, construction year was ranked high-
er in the linear model, likely due to its direct correlation
with apartment prices, while its importance was lower in
the random forest model, where it interacted with other
variables. Additionally, the two models differed in their
treatment of tallest and shortest building height, with the
linear model emphasizing the tallest building height and
the random forest model assigning greater importance to
shortest building height, suggesting its role as a thresh-
old-based feature in distinguishing high- and low-priced
apartment complexes. Lastly, proximity variables, such as
distances to subway stations or hospitals, ranked among
the least important features in both models, indicating
that location-related features were sufficiently captured
by other variables, such as administrative division (dong).

Beyond the general feature importance rankings, this
study also incorporated a temporal analysis by segmenting
the data into discrete time intervals to investigate the dy-
namic evolution of feature importance over time. Among
structural features, area and construction year exhibited
notable variations, as indicated by SHAP and PFI values
in both linear regression and random forest models. The
declining importance of area suggests a shift in housing
preferences, where buyers increasingly prioritize factors
beyond size, such as amenities and location. While the
linear model showed a steady decline in SHAP values, the
random forest model captured fluctuations, likely reflect-
ing nonlinear interactions with evolving market conditions.
Similarly, construction year demonstrated a decline in im-
portance until 2012-2014, possibly due to aging effects
reducing redevelopment expectations, followed by a re-
surgence as market recovery renewed investor interest in
redevelopment. The random forest model showed greater
variability in construction year's importance, indicating
that its influence is more sensitive to policy changes, in-
vestment cycles, and localized redevelopment dynamics.
Neighborhood features, such as the number of housing
units, gained importance over time, aligning with the in-
creasing preference for large-scale apartment complexes,
while the significance of the number of buildings declined
as high-rise developments became more common. Ad-
ditionally, the rising importance of branded apartments
in the linear model reflects the growing market premium
associated with well-known developers, while fluctuations
in the random forest model suggest that branding effects
are more context-dependent, peaking during periods of
high-profile apartment completions. These findings high-
light the distinct advantages of linear and nonlinear mod-

els, with the former capturing broad market trends and the
latter identifying short-term variations shaped by external
factors.

From a practical standpoint, these findings offer mean-
ingful implications for real estate professionals, policymak-
ers, and urban planners. The integration of XAl techniques
enhances the transparency of mass appraisal systems, al-
lowing stakeholders to better understand the drivers of
property valuations. By distinguishing between variables
that exhibit stable importance and those that fluctuate
based on market conditions, this study provides valu-
able insights for improving model selection and appraisal
methodologies. Additionally, the results suggest that while
linear models offer clearer interpretability, non-linear
models like random forest can capture hidden interac-
tions and temporal variations that traditional approaches
may overlook. SHAP values provide individualized, case-
specific explanations for each prediction by quantifying
the marginal contribution of every feature. In practice, a
policymaker reviewing property tax assessments can use
SHAP explanations to trace why two similar units may have
significantly different valuations—e.g., due to differences
in brand reputation, building scale, or available parking
lots—which fosters procedural transparency and supports
citizen accountability. Furthermore, PFl and SHAP-based
global feature importance analysis highlights market
trends that are often invisible in traditional regression
models. The temporal segmentation in this study revealed
a consistent increase in the influence of physical complex
characteristics (e.g., number of units, brand, parking space)
and a declining influence of proximity-based features (e.g.,
distance to subway or university). This finding has signifi-
cant implications: real estate professionals can leverage
such patterns to recalibrate investment strategies or de-
velopment priorities based on evolving buyer preferences,
while urban planners can assess which infrastructural fac-
tors are becoming influential in shaping housing demand.
Within mortgage evaluations frameworks, Explainable Ar-
tificial Intelligence (XAl) methodologies, particularly SHAP,
facilitate comprehension of the determinant factors under-
lying property valuation mechanisms that inform loan-to-
value (LTV) ratio calculations. For example, when algorith-
mic models attribute elevated valuations predominantly
to brand reputation coefficients and parking infrastructure
availability, lending officers can critically evaluate whether
such variables constitute reliable indicators of sustained
collateral stability. Moreover, this interpretability enables
financial institutions to articulate the rationale supporting
automated lending determinations to both regulatory au-
thorities and clientele, thereby enhancing confidence and
regulatory adherence in automated appraisal protocols. In
taxation, XAl tools help ensure fair and consistent prop-
erty assessments by revealing which factors drive valuation
differences. SHAP explanations enhance transparency, al-
lowing taxpayers to understand and challenge their as-
sessments, thereby strengthening trust and equity in tax
systems.
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Despite these contributions, the study has certain limi-
tations. The analysis was conducted within the Korean real
estate market, and further research is needed to assess the
generalizability of the findings to other housing markets
with different structural and economic conditions. Espe-
cially, the study may be subject to potential sampling bias,
as the data is confined to the Gangnam District, a high-
value urban area. In future research, we aim to enhance the
generalizability of the study by incorporating data from a
more diverse range of regions. Also, while SHAP and PFI
provide valuable insights into feature importance, they do
not fully capture causal relationships between explanatory
variables and price changes. Future studies could expand
on this work by integrating causal inference techniques or
applying XAl-driven methods to broader datasets, includ-
ing commercial and mixed-use properties. Lastly, the static
nature of SHAP explanations, which rely on a fixed model
structure, may limit their effectiveness in capturing tem-
poral dynamics in housing price determinants. Future re-
search could address this limitation by employing dynamic
modeling approaches (e.g., Recurrent Neural Networks,
Bayesian Dynamic Models) or time-aware XAl techniques
to better reflect evolving market conditions.
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Table A1. Predictive performance comparison of mass appraisal models (Top: 5-fold cross validation, Bottom: 10-fold cross

validation)

5-fold cross validation RMSE MAE MAPE R?
Multiple linear regression 20852.602 14353.423 0.122 0.892
Decision tree 9560.756 4830.354 0.072 0.958
Random forest 8114.391 4044.365 0.059 0.970
XGBoost (eXtreme gradient boosting) 11189.555 7312.372 0.113 0.942
CatBoost (Categorical boosting) 8489.308 4834.046 0.077 0.967
kNN 35159.391 20326.893 0.323 0.427
10-fold cross validation RMSE MAE MAPE R?
Multiple linear regression 20843.526 14346.761 0.233 0.799
Decision tree 9220.677 4572.057 0.069 0.961
Random forest 7840.665 3910.092 0.060 0.972
XGBoost (eXtreme gradient boosting) 11173.802 7300.551 0.112 0.942
CatBoost (Categorical boosting) 8373.855 4719.512 0.075 0.967
kNN 34884.449 19991.033 0.316 0.436
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Table A2. Variance Inflation Factor (VIF) of independent variables

Variance Inflation Factor (VIF)

Construction year 2.301
Area 4.904
Floor level 1.681
GDP 1.362
Economic growth rate 1.227
Land price fluctuation rate 1310
Mortgage interest rate 1.136
Distance to national park 1.371
Distance to high school 1.241
Distance to redevelopment area 1.384
Distance to university 6.568
Distance to general hospital 2.226
Distance to museum 1.238
Distance to subway station 1.868
Apartment brand 2.371
Number of units in the complex 2.229
Number of buildings in the complex 7335
Parking lot 2.023
Floor area ratio (FAR) 9.708
Building coverage ratio (BCR) 2.164
The tallest building height 4612

The shortest building height 2.884




