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1. Community information

Table S1 shows specific information for all communities 
in San Francisco, with Y representing participation in the 
study and N representing non-participation.

Table S1. Community list

ID Community Participation in 
research or not 
(Y/N)

ID Community Participation in 
research or not 
(Y/N)

1 Seacliff Y 60 Peralta Heights Y
2 Lake Street Y 61 Holly Park Y
3 Presidio National Park N 62 Merced Manor Y
4 Presidio Terrace N 63 Balboa Terrace Y
5 Inner Richmond Y 64 Ingleside Y
6 Sutro Heights Y 65 Merced Heights N
7 Lincoln Park / Ft. Miley N 66 Outer Mission Y
8 Outer Richmond Y 67 Ingleside Terraces Y
9 Golden Gate Park N 68 Mt. Davidson Manor Y
10 Presidio Heights Y 69 Monterey Heights Y
11 Laurel Heights / Jordan Park Y 70 Westwood Highlands Y
12 Lone Mountain Y 71 Westwood Park Y
13 Anza Vista Y 72 Miraloma Park Y
14 Cow Hollow Y 73 McLaren Park N
15 Union Street Y 74 Sunnydale Y
16 Nob Hill Y 75 Visitacion Valley Y
17 Marina Y 76 India Basin N
18 Telegraph Hill Y 77 Northern Waterfront Y
19 Downtown / Union Square Y 78 Hunters Point Y
20 Tenderloin Y 79 Candlestick Point SRA N
21 Civic Center Y 80 Cayuga Y
22 Hayes Valley Y 81 Oceanview Y
23 Alamo Square Y 82 Apparel City N
24 Panhandle Y 83 Bernal Heights Y
25 Haight Ashbury Y 84 Noe Valley Y
26 Lower Haight Y 85 Produce Market N
27 Mint Hill N 86 Bayview Y
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ID Community Participation in 
research or not 
(Y/N)

ID Community Participation in 
research or not 
(Y/N)

28 Duboce Triangle Y 87 Silver Terrace Y
29 Cole Valley Y 88 Bret Harte Y
30 Rincon Hill Y 89 Little Hollywood Y
31 South Beach Y 90 Excelsior Y
32 South of Market Y 91 Portola Y
33 Showplace Square N 92 University Mound Y
34 Mission Bay Y 93 St. Marys Park Y
35 Yerba Buena Island N 94 Mission Terrace Y
36 Treasure Island N 95 Sunnyside Y
37 Mission Dolores Y 96 Glen Park Y
38 Castro Y 97 Western Addition Y
39 Outer Sunset Y 98 Aquatic Park / Ft. Mason Y
40 Parkside Y 99 Fishermans Wharf Y
41 Stonestown Y 100 Cathedral Hill Y
42 Parkmerced N 101 Japantown Y
43 Lakeshore Y 102 Pacific Heights Y
44 Golden Gate Heights Y 103 Lower Pacific Heights Y
45 Forest Hill Y 104 Chinatown Y
46 West Portal Y 105 Polk Gulch Y
47 Clarendon Heights Y 106 North Beach Y
48 Midtown Terrace Y 107 Russian Hill Y
49 Laguna Honda Y 108 Financial District Y
50 Lower Nob Hill Y 109 Inner Sunset Y
51 Upper Market Y 110 Parnassus Heights Y
52 Dolores Heights Y 111 Forest Knolls Y
53 Mission Y 112 Buena Vista Y
54 Potrero Hill Y 113 Corona Heights Y
55 Dogpatch Y 114 Ashbury Heights Y
56 Central Waterfront Y 115 Eureka Valley Y
57 Diamond Heights Y 116 St. Francis Wood Y
58 Crocker Amazon Y 117 Sherwood Forest Y
59 Fairmount N

End of Table S1

2. Description of the comparison model

In our experiments, we use several existing spatiotemporal 
models for house price prediction to demonstrate the va-
lidity of our proposed model. Details of these comparative 
models are given below.

2.1. Single-output LSTM
Long Short-Term Memory (LSTM) is proposed based on 
the original Recurrent Neural Networks (RNN) (Hochre-
iter & Schmidhuber, 1997). It regulates the balance be-
tween memorization and forgetting by adding some 
multi-threshold gates. It can solve the problem of vanish-
ing gradient during optimization in RNN. LSTM has been 
successfully applied to many sequence learning problems 
(Cho et al., 2014). 

Single-output LSTM is used for single-objective, long-
term, time-dependent learning and time series prediction. 
In this paper, the study uses Single-output LSTM for com-
parison modeling when a single point of a time series is 
used as the input set. The experiment is repeated for each 
community’s data.

The following are some examples of using the Single-
output LSTM for forecasting. Shi (2023) selected LSTM 
models for their study and explored and compared the 
suitability of these models using a dataset of second-
hand house prices in Beijing. Usmani and Shamsi (2021) 
used RNN and LSTM Networks to forecast the National 
Stock Exchange and New York Stock Exchange stock mar-
ket. Their study emphasized the adaptability of neural 
networks to various market environments. They obtained 
higher accuracy compared to traditional models.



2.2. Multi-output LSTM
Lee (2022) applied a multi-output LSTM model to predict 
multiple regions’ house prices and transaction volumes. 
Data from a time series of a single point is generally lim-
ited to that location, ignoring some of the surrounding 
information. And multi-output LSTM can predict more ac-
curately by exploiting the correlation of communities. It 
complements the problem that single-point datasets are 
insufficient to learn about relevant patterns.

In this paper, we investigate using multi-output LSTM 
for comparison experiments when time series data of the 
entire community is used as the input set. Sequential in-
put values from each community are fed into an initial 
dense layer, and then LSTM is used as an encoder and 
decoder. LSTM autoencoder will implement feature learn-
ing and decompose auxiliary information such as spa-
tial attributes. The extracted learning features are used 
for temporal modelling. Then, there is a dropout layer, 
which randomly sets previous neurons to zero by a cer-
tain percentage to prevent overprotection. Repeat the 
combination of the LSTM layer and the dropout layer 
twice. Finally, a multi-output dense layer is added to the 
architecture to output the predictions of the entire com-
munity. We train the multi-output LSTM 200 times with 
a batch size of 32.

2.3. CNN-LSTM
Ge (2019) proposed a model that jointly applies CNN and 
LSTM to the spatiotemporal prediction of house prices. It 
predicts the response of target spatial locations by con-
sidering the spatial dependence between communities. Fi-
nally, it is applied to predict community house price data 
in New York City and Beijing.

CNN-LSTM constructs the spatial structure in the fol-
lowing way. The structure is changed into a graph based 
on the community’s spatial coordinates, and a graph con-
volutional neural network is utilized to indicate the spatial 

dependencies. Communities are represented as nodes. 
Distance weights between communities are calculated us-
ing Euclidean distances to connect weights topographi-
cally with weighted neighboring lines. Then, the feature 
vector matrix is fed into the convolutional layer. In the 
convolutional layer, the spatial dimensions are extracted 
using the peripheral nodes in the network. In the pool-
ing layer, the dimensionality of the network will be re-
duced. The input two-dimensional matrix is compressed 
into a one-dimensional vector by convolution and pooling 
process. Finally, spatial correlations in the form of feature 
maps are obtained.

After that, the vectors are fed into the LSTM layer. The 
LSTM layer first selectively forgets factors such as historical 
house price data from different communities. The LSTM 
unit decides to store new information to update the state. 
Finally, LSTM determines the output values and provides 
them to the fully connected layer. The CNN-LSTM output 
is decoded using the fully connected layer to get the final 
prediction.

Before constructing the CNN-LSTM model, several hy-
perparameters need to be preset. These include basic pa-
rameters such as the number of CNN layers, the number 
of LSTM layers, the number of fully connected layers, and 
the number of nodes per layer of the data. The optimal 
hyperparameters are also determined using a randomized 
search method with 5-fold cross-validation. The basic 
structure of the model was finalized. CNN uses a two-layer 
structure. The first layer is a convolutional layer, and the 
second layer is a pooling layer. We use an LSTM layer con-
taining 300 nodes and a fully connected layer containing 
100 nodes. The above structural configuration obtained 
the best prediction performance in this experiment.

3. All community fitting curves

Below are the fitted curves for all 101 communities in San 
Francisco that participated in the study.
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