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Article History:  Abstract. Effective pricing is important for on-street parking management and proactive parking pricing is an 
innovative strategy to achieve optimal parking utilization. For proactive parking pricing, accurately predicting 
parking occupancy and deriving the price elasticity of parking demand are necessary. In recent years, there 
have been an increasing number of studies applying big data technology for parking-occupancy prediction. 
However, existing research has not incorporated economic knowledge into modeling, thus preventing ap-
plication of the price elasticity of parking demand. In this study, proactive pricing strategies are proposed to 
adjust on-street parking prices which involve a parking-occupancy prediction model and a price-optimization 
method. Physics-informed neural networks are employed to achieve accurate prediction of parking occupancy 
and calculation of parking price elasticity. An elasticity-occupancy parking-management strategy is proposed 
for on-street parking management which leverages parking occupancy and price elasticity to guide pricing in-
terventions. A case study shows that the parking-occupancy prediction model can make accurate predictions 
and derive the price elasticity of parking demand. Proactive parking pricing enables drivers to plan their trips 
in advance, allowing parking occupancy within an optimal range.
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1. Introduction

More and more large cities are facing the problem of in-
sufficient supply of parking spaces (Saharan et al., 2020a). 
Studies have shown that it takes between 3.5 and 14 min-
utes to find a parking space, and that between 8% and 
74% of the traffic is cruising for parking (Shoup, 2006). 
This situation further deteriorates the operation of road 
traffic, causing air pollution and the waste of fuel resourc-
es (Yang et al., 2019). In this context, many parking-related 
smart services have been developed and applied, for ex-
ample, parking-occupancy predictions, parking-recom-
mendation systems, and dynamic parking pricing, which 
are important parts of intelligent transportation systems 
(Saharan et al., 2020b; Yuan et al., 2020). Parking pricing is 
important for effective parking management. Excessively 
high parking prices can lead to low parking demand, re-
sulting in wasted parking resources, or may encourage il-
legal parking if the cost of violating parking rules is lower 
than the parking fees. On the other hand, low prices can 
lead to an insufficient supply of parking spaces, causing 
further issues with illegal parking. Therefore, it is important 
to study parking pricing to implement reasonable park-
ing price, thereby improving the utilization efficiency of 

parking resources. To achieve this goal, some cities have 
made attempts to achieve demand-responsive parking 
pricing. For instance, the San Francisco government has 
launched the SF Park project. In this project, parking prices 
are adjusted every 1–4 months. For on-street parking, the 
hourly price increases by $0.25 when parking occupancy 
is in the range of 80–100%, remains the same at 60–80% 
of parking occupancy, decreases by $0.25 at 30–60% of 
parking occupancy, and decreases by $0.50 when parking 
occupancy is less than 30%. Research indicates that since 
the implementation of the SF Park project, there has been 
an overall reduction in parking demand, a 15% reduction 
in cruising time in urban centers, and a 12% reduction in 
cruising distance (Alemi et al., 2018). 

Previous parking-pricing strategies typically rely on 
reactive approaches, where pricing optimization is based 
on observed parking demand. However, proactive pric-
ing strategies involve adjusting prices by predicting park-
ing occupancy (Hong et al., 2022), which allows drivers 
to plan and manage their parking in advance. It is im-
portant to accurately predict parking occupancy and to 
derive the price elasticity of parking demand in proactive 
parking pricing. For parking-occupancy prediction, the 
primary objective of prediction models is to enhance the 
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accuracy of parking-occupancy prediction. But there are 
very few prediction models that incorporate the parking 
price, a significant factor affecting parking choice. The 
relationship between parking price and parking demand 
constitutes economic knowledge. But existing studies have 
not incorporated this important economic knowledge into 
their modeling. The price elasticity of demand has been 
studied for a long time. Methods for deriving price elas-
ticity include market experiments, historical data analysis, 
and questionnaires. Market experiments and question-
naires have obvious limitations due to the lack of actual 
parking scenes and the high costs of time and money for 
experiments. Historical data analysis mainly focuses on ex-
tracting the average data before and after a price change, 
which may ignore the details and complex relationships 
at the micro level. 

A parking-occupancy prediction model and a price-
optimization method are proposed to solve the above 
problems and improve the effectiveness of proactive park-
ing pricing. Based on physics-informed neural networks 
(PINNs), the model integrates multivariate data and eco-
nomic knowledge into the training process, which not only 
predicts the parking occupancy but also derives the price 
elasticity of parking demand. An elasticity-occupancy park-
ing-management strategy is proposed based on different 
levels of parking occupancy and price elasticity. On this 
basis, proactive parking pricing is carried out. The main 
contributions of this paper are as follows: 1) This paper 
proposes a proactive parking pricing method that predicts 
parking occupancy and incorporates parking price elastic-
ity into pricing decisions. Proactive pricing allows drivers 
to be informed of estimated parking costs in advance, 
enabling them to plan their trips and choose parking op-
tions accordingly. Reasonable pricing can bring parking 
occupancy rates closer to ideal levels, guiding parking be-
havior through price adjustments, thereby improving the 
spatial and temporal distribution of parking demand and 
optimizing the utilization of parking resources. Addition-
ally, the advance estimation of parking prices aligns with 
drivers’ expectations, making dynamic pricing adjustments 
more acceptable. 2) The paper employs a method based 
on PINNs in the parking availability prediction model. This 
method leverages existing data on parking occupancy and 
prices, embedding the economic relationship between 
these two variables into the model training process. This 
approach not only enhances the prediction accuracy of the 
model but also simultaneously calculates the price elastic-
ity of parking demand. The PINNs method can address the 
issue of data scarcity by making full use of limited data 
through the integration of economic knowledge.

The rest of the paper is organized as follows. Section 2 
summarizes the related work. Sections 3 introduce the re-
search method, including the parking-occupancy predic-
tion model and parking management. Section 4 presents 
the results of the parking-occupancy prediction for the 
SF Park dataset and discusses price optimization. Section 5 
presents the conclusion.

2. Literature review

2.1. Parking-occupancy prediction
Early traffic-prediction methods were mainly based on sta-
tistical models that calculated future states based on se-
lected variables and corresponding coefficients, including 
the historical average model (HA) (Kamarianakis & Prasta-
cos, 2003), autoregressive moving average model (ARIMA) 
(Zhang, 2003), and least absolute shrinkage and selection 
operator (Lasso) (Tibshirani, 1997). Some other prediction 
methods employed traditional mathematical models such 
as the Markov M/M/C/C queuing model (Xiao et al., 2018). 
While traditional models offer the benefits of simple calcu-
lation methods and quick solution speeds, they struggle to 
capture complex features, which results in the inability to 
reflect data uncertainty and nonlinearity, leading to poor 
prediction accuracy. Currently, machine learning and neu-
ral network models are increasingly used for prediction, 
including regression tree, support vector regression (SVR) 
(Smola & Schölkopf, 2004), random forest (Jelen et al., 
2021), recurrent neural network (RNN) (Elman, 1990), typi-
cal long short-term memory network (LSTM) (Hochreiter & 
Schmidhuber, 1997) and gated recurrent unit (GRU) mod-
els (Chung et al., 2014). These models can automatically 
learn previous experiences from data samples and approx-
imate the function that best describes the regularity of 
the sample data. Therefore, machine learning and neural 
network models are particularly good at solving complex 
nonlinear problems, allowing them to achieve higher ac-
curacy than previous methods. Some studies have utilized 
feed-forward neural networks, which contain multiple hid-
den layers, for parking-occupancy prediction (Vlahogianni 
et al., 2016; Ismail et al., 2021). This is also known as multi-
layer perception. Apart from these models, there are varia-
tions based on the foundational models mentioned above. 
A novel multistep LSTM RNN model (Fan et al., 2022) is 
proposed to predict parking occupancy. A parking-occu-
pancy prediction model named Du-parking successfully in-
tegrates LSTM and linear layer outputs, and has been suc-
cessfully applied to the Baidu Maps app to provide com-
mercial services for large cities (Rong et al., 2018). While 
these models can effectively capture long- and short-term 
dependencies in time-series data, they ignore spatial cor-
relations. For spatial and temporal parking-occupancy pre-
diction models, convolutional neural networks are applied 
to capture the spatial correlations of nodes. Feng et al. 
(2022) used two parallel convolutional LSTM models to 
capture temporal and spatial dependencies while utilizing 
dense convolutional networks to further improve feature 
propagation and reuse. A spatio-temporal model with a 
convolutional structure, STGCN, achieved good results on 
several tasks (Yu et al., 2018).

The inherent “black box” nature of machine learning 
often makes it challenging to interpret machine-learning 
results within the complex framework of prediction. To ad-
dress this issue, PINNs (Raissi et al., 2019) are proposed, 
which combine deep learning and physics constraints for 
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solving partial differential equations (PDEs) and other 
physics problems. PINNs utilize the capabilities of deep 
neural networks as general function approximators by 
adding the physical equations of the PDEs as constraints 
to the training process of the neural network (Hornik et al., 
1989). This integration allows the model to solve complex 
scientific problems with high accuracy, even when data is 
limited. 

2.2. Parking management
Parking-demand management compensates for the ex-
ternal costs of congestion and can serve the purposes of 
optimizing parking activity and adjusting parking demand. 
The main strategies are strict parking enforcement, park-
ing pricing policies, and changes in parking supply. Parking 
pricing is considered the most economical way to manage 
parking demand and has been widely applied. Parking re-
sources cannot be stored. The incremental cost of selling 
additional parking facilities is close to zero and the benefit 
of adding an additional unit is very large if the capacity 
is fully utilized. Parking price can affect parking choice. 
Research shows that drivers tend to respond to parking 
pricing policies by moving to different parking facilities 
rather than transitioning to alternative transportation 
modes. This tendency is particularly evident in countries 
like the United States, where gas and parking prices are 
relatively low. For certain individuals, driving a private car 
significantly reduces time and is very convenient, making 
it more attractive than taking public transportation (Yan 
et al., 2019). Therefore, reasonable parking pricing is nec-
essary (Friesen & Mingardo, 2020). Parking pricing strate-
gies primarily aim to achieve two objectives: maximizing 
economic benefits and ensuring equitable utilization of 
parking facilities. Maximizing economic benefits involves 
three aspects: drivers, parking facility operators, and so-
ciety. Achieving equilibrium in parking facility utilization 
often involves optimizing parking occupancy, typically tar-
geted within the range of 60% to 80% (Millard-Ball et al., 
2014) or sometimes aiming for an ideal value around 85% 
(Shoup, 2006). Another optimization goal involves ensur-
ing uniform spatial distribution of parking facility utiliza-
tion. The main constraints include the range of parking 
prices and parking facility capacity (Fabusuyi & Hampshire, 
2018), etc. 

Parking price optimization based on parking occu-
pancy is an effective approach to maintaining parking oc-
cupancy within an optimal range (Maternini et al., 2017). 
Parking pricing techniques can be categorized into opti-
mization-based techniques (Qian & Rajagopal, 2013; Kotb 
et al., 2016), queuing theory-based techniques (Larson & 
Sasanuma, 2010), and machine learning-based techniques 
(Saharan et al., 2020a; Hong et al., 2022). Parking pricing 
methods encompass both reactive and proactive strate-
gies. Reactive strategies rely on observed parking demand 
for price optimization, while proactive strategies involve 
the implementation of prediction-based optimization 
models that predict parking occupancy and optimize prices 

based on the prediction results (Hong et al., 2022). Some 
cities have implemented pilot projects for parking price 
adjustments, such as San Francisco and Seattle, which have 
adopted reactive pricing strategies. These projects adjust 
prices by observing the average parking occupancy over 
a certain period of time. Real-time parking pricing studies 
also employ reactive pricing strategies. A study developed 
a dynamic non-cooperative bilevel model, known as the 
Stackelberg leader-follower game, to enable real-time ad-
justment of parking prices (Mackowski et al., 2015). For 
proactive pricing strategies, a study utilized a proactive 
prediction-driven optimization framework to adjust park-
ing prices. The framework employs neural ordinary differ-
ential equations to predict parking occupancy based on 
historical occupancy and price information. A “one-shot” 
pricing-optimization method has also been devised (Hong 
et al., 2022). Additionally, a two-stage panel data regres-
sion and optimization model was proposed to adjust park-
ing prices by calculating the price elasticity of parking de-
mand (Fabusuyi & Hampshire, 2018). 

3. Methodology

In this section, the experimental methods used in this 
study will be introduced. This section consists of two main 
parts: the parking-occupancy prediction and parking man-
agement. The parking-occupancy prediction part includes 
a parking-occupancy prediction model, which not only 
predicts the parking occupancy but also calculates the 
price elasticity of parking demand. Based on the output 
of the parking-occupancy prediction model, the parking 
management part uses a price optimization method to 
adjust parking prices.

3.1. Parking-occupancy prediction
This parking-occupancy prediction model incorporates 
PINNs to enhance prediction accuracy and derive the price 
elasticity of parking demand during the training process. 
The overall structure of the prediction model is shown in 
Figure 1. The model consists of three modules: a data-
enhancement module, a neural network module, and a 
PINNs module. The data-enhancement module performs 
data enhancement by decomposing original parking oc-
cupancy data into trend and cycle features, and combin-
ing this with data on parking prices to improve prediction 
accuracy. The neural network module predicts parking oc-
cupancy by merging three inputs and putting them into 
neural networks for training. The PINNs module computes 
partial derivatives of the model’s predicted outcomes and 
integrates them as components of the loss function.

In Figure 1, T(tr), C(tf), and P(t) represent the three 
inputs of trend feature, cycle feature, and parking price. 
Trend feature and cycle feature are derived through a 
time-series decomposition (TSD) of time-series parking-
occupancy data. The model sets up a residual-like connec-
tion between the first and second layers of the network, 
which refers to splicing the trend feature and the output 
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standard Fourier series (Harvey & Shephard, 1993) is used 
for fitting the periodicity of the parking-occupancy data. 
The Fourier series constitutes a method to represent pe-
riodic functions by utilizing an infinite series of sine and 
cosine functions. The main idea is that any arbitrary pe-
riodic function can be approximated by a composite of 
multiple sine and cosine functions. As the number of terms 
included in the series increases, the accuracy of the ap-
proximation also increases. Assuming that the function f(x) 
with a period T, then its Fourier series can be expressed 
as follows:

0
1

( ) ( cos sin )
2 n nn

a
f x a nx b nx

∞

=
= + +∑ , (3)

where: a0 is a constant coefficient; and an and bn are a 
series of coefficients that can be computed by integration.

Historical data is used (i.e., the training set) for fitting 
the Fourier series during training, ensuring zero informa-
tion leakage. In a specific time context denoted by t̂ , with 
a given number of signals N and a constant T, Equation (3) 
can be reformulated as Equation (4) and the cycle feature 
can be defined by Equation (5):
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( ) ( ), ( 1), ..., ( 1)ft c t c t c t = − λ − λ + − C , (5)

where c represents the values of the cycle feature.
The parking price is an important factor that affects 

parking choice (Shoup, 2018). In order to enhance the 
applicability of our research findings for pricing strategy 
implementation, it is important to take into account the 
influence of price uncertainty on drivers’ behavior. In pro-
active pricing, the parking price is predetermined before 
the driver parks. A specific data-processing method is em-
ployed to achieve this goal (Figure 2). In general, predic-
tion tasks rely on using data from the lookback period. 
However, our method uses data from the expected future 
moment as input. To ensure consistent input data length, 
the future moment parking data at time t is replicated, 

result of the first layer and passing this as input to the 
second layer in the network. In the PINNs module, u is the 
output result of the prediction model and ∂u/∂P means 
the partial derivative of the prediction result and price. The 
L is the loss function during the training process, which 
consists of three parts, Lu, Lf and Llr. Lu represents the dif-
ference between the predicted value and the true value, 
Lf represents economic knowledge, and Llr represents the 
regular term.

3.1.1. Data-enhancement module

Traffic data exhibits periodic characteristics, and recent 
studies have shown that TSD can improve prediction ac-
curacy (Li et al., 2023; Taylor & Letham, 2018). Therefore, 
the parking-occupancy prediction model incorporates a 
data enhancement module that introduces TSD methods. 
The parking-occupancy data is put into a TSD of the trend 
feature, which represents the current impact, and the cycle 
feature, which captures the cyclical changes in traffic data. 
The model takes three features as input: trend feature, 
cycle feature, and parking price:

ˆ( ) ( ) ( ) ( )f
r ft t t y t+ + →T C P , (1)

where: ˆ( )y t is the predicted value at moment t; T(tr) rep-
resents the trend feature measured by the continuous 
change in the lookback period tr; C(tf) is the periodic 
change in predicted period tf ; and P(t) denotes the park-
ing price at time t.

The trend feature represents the short-term impact. 
As the predicted values are highly influenced by recent 
data, the trend feature plays a pivotal role in the predic-
tion. Consequently, the trend feature is represented by the 
parking occupancy within the lookback period:

( ) ( ), ( 1), ..., ( 1)rt y t y t y t = − λ − λ + − T , (2)

where: y represents the actual values of parking occupan-
cy; l is the lookback window size.

The cycle feature captures the cyclic characteristics and 
long-term patterns within the data. In this experiment, the 

Figure 1. Overall structure of parking occupancy prediction model
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extending it to match the length of the lookback period. 
The data is utilized as parking price data P(t), serving as 
one of the inputs to the model:

( ) ( ), ( ), ..., ( )t P t P t P t =  P , (6)

where P(t) represents the parking price data at time t. 

Figure 2. Processing of price data

3.1.2. Neural network module

A fully connected neural network is designed to predict 
parking occupancy in the neural network module. The net-
work consists of five layers. The input layer includes the 
trend feature, cycle feature, and price data. These three 
sets of data are horizontally concatenated. To effectively 
avoid the gradient disappearance problem and to con-
verge quickly, a series of rectified linear unit (ReLU) acti-
vation functions is used from the first to the third layers. 
Subsequently, a hyperbolic tangent (Tanh) activation func-
tion is introduced in the fourth layer. The output layer is 
composed of a fully connected structure responsible for 
outputting the prediction results. To enhance the learning 
process of the network, a residual-like structure is integrat-
ed within the input of the second layer. This architectural 
choice serves to simplify the learning task for the network 
while retaining more information and optimizing gradient 
propagation, which can engender a more efficient transfer 
of information within the network. 

In order to clearly express the composition of the 
neural network, the settings of the network are shown 
in Table 1. Among them, x(1) and x(1)' are the same, but 
they are distinguished as input and output. The same 
applies to x(2) and x(2)', x(3) and x(3)', and x(4) and x(4)'. 
For the first layer, the input includes the trend feature, 
cycle feature, and price data, with 45 dims. After passing 

through a fully connected layer and the ReLU function, 
the output x(1) with 100 dims is obtained. The output 
of the first layer is then horizontally concatenated with 
the trend feature from the input to form the input for 
the second layer. After passing through another fully 
connected layer and ReLU function, the dims count 
increases from 109 to 120. The output of the second 
layer is denoted x(2). The output of the second layer is 
used as the input for the third layer, where, after passing 
through a fully connected layer and ReLU function, the 
dims decrease from 120 to 100. In the fourth layer, the 
output x(3) from the third layer serves as input and, after 
passing through a fully connected layer with Tanh as the 
activation function, the output x(4) is obtained with the 
dims decreasing from 100 to 50. In the fifth layer, the 
input is x(4)' and the output corresponds to the ultimate 
output u of the model. The fifth layer consists of a fully 
connected layer, with the dims transitioning from 50 to 1.

3.1.3. PINNs module

Parking occupancy is predicted and the price elasticity of 
parking demand is calculated through the PINNs mod-
ule. Before defining the loss function, it is necessary to 
introduce the price elasticity of demand and define a func-
tion that incorporates both price and parking occupancy 
as economic knowledge. The price elasticity of demand is 
used to measure the sensitivity of demand for goods or 
services to changes in price. It is typically defined as the 
percentage change in quantity to the percentage change 
in price. The general equation can be expressed as:

q p
p q
∂

ε = ⋅
∂

, (7)

where: e represents the price elasticity of demand; q rep-
resents the demand; and p represents the price.

There usually exists an inverse relationship between 
price and demand, resulting in a negative value for the 
price elasticity of demand. The absolute value is often 
used to indicate the magnitude of price elasticity. The 
value of the price elasticity of demand can be categorized 
into three situations: when the price elasticity of demand 
value is greater than 1, it is referred to as elastic demand; 
when it falls between 0 and 1, it is called inelastic de-
mand; and when it equals 0, it signifies perfectly inelas-
tic demand. The price elasticity of parking demand value 
often falls within the range of 0 to 1, indicating inelastic 
demand. Since the price elasticity of parking demand is 

Table 1. The settings of the neural network

Layer number Input Input dims Activation function Output Output dims

1 input 45 ReLU x(1) 100
2 ||T, x(1) ' || 109 ReLU x(2) 120
3 x(2) ' 120 ReLU x(3) 100
4 x(3) ' 100 Tanh x(4) 50
5 x(4) ' 50 – u 1

Note: || || indicates “horizontally concatenated” operation.
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consistently negative, its absolute value is utilized instead 
in subsequent analyses.

Equation (8) is defined based on Equation (7) and sub-
sequently utilized in the computation of the loss function. 
Equation (8) facilitates the calculation of the parking price 
elasticity, which incorporates the economic knowledge 
into the training of the network:

*( ) u uf t
P P
∂

= − ⋅ ε
∂

, (8)

where: P is the initial parking price; and e* is the price 
elasticity of parking demand, which is set as a trainable 
parameter. 

3.1.4. Loss function module

Three functions are defined representing different mean-
ings. These functions are appropriately weighted and com-
bined, culminating in the computation of model loss:

fu
u f lr

u f u f

LL
L L L L

L L L L
= ⋅ + ⋅ + α

+ +
, (9)

where: L means the loss function; Lu is the real loss value 
and represents the difference between the predicted value 
and the real value; Lf stands for the economic knowledge; 
and Llr is a regular term which stands for the empirical 
value to tell the model a priori knowledge so that the 
model does not deviate too much from a certain value 
when training the parameters; a is the weight of Llr within 
the loss function.

Each loss function mentioned above can be calculated 
by the following equations:
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u t
L y t y t
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= −∑ ; (9a)
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* 2
1
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lr t
L

N =
= ε − λ∑ , (9c)

where: f(t) is calculated by Equation (8); and l denotes an 
empirical value.

The weights between the three functions are impor-
tant. One of our innovations is that we implement a useful 
trick to automatically adjust the weights between Lu and 
Lf. During training, the ratio is set to match the propor-
tion of their values relative to the sum. This means that 
the component with the larger value will have a greater 
training weight, allowing more “effort” to train the larger 
weighted component, so that there is a certain constraint 
on the training speed between Lu and Lf.

The loss function introduces Lf representing economic 
knowledge, ensuring that the model is constrained by the 
price elasticity equation (Equation (8)) during training. This 
modification to the loss function embeds economic knowl-
edge into the model training process, enabling the trained 
model to align as closely as possible with economic prin-
ciples and real-world conditions.

3.2. Parking management
The parking-occupancy prediction model mentioned above 
can predict parking occupancy and derive parking price 
elasticity, but it does not involve price adjustment. In this 
section, the output results of the parking-occupancy pre-
diction model are used to formulate an elasticity-occupan-
cy parking-management strategy and price optimization.

3.2.1. Parking-management strategy

The price elasticity of parking demand is important for 
formulating our parking-management strategy. Parking fa-
cilities can be classified into four types based on the level 
of peak-hour parking occupancy and the magnitude of 
price elasticity: high price elasticity-high occupancy, high 
price elasticity-low occupancy, low price elasticity-high 
occupancy, and low price elasticity-low occupancy. Build-
ing upon this typology, this study formulates four corre-
sponding on-street parking-management strategies, called 
the elasticity-occupancy parking-management strategy 
(Table 2). For parking facilities with high price elasticity, 
employing pricing measures is preferable for parking de-
mand management. When peak-hour parking occupancy 
surpasses the upper limit of the ideal parking occupancy, 
raising parking prices is a viable approach. Conversely, if 
facilities experience overall parking occupancy below the 
lower limit of ideal values, lowering prices may be consid-
ered in order to alleviate parking pressure on surround-
ing facilities. Therefore, adjusting prices for different types 
of parking facilities can alleviate the spatial and tempo-
ral imbalance distribution of parking demand, ultimately 
improving parking facility utilization. However, parking 
facilities with low price elasticity can be managed through 
non-price measures, because the impact of pricing strat-
egies is minimal. For example, in the case of peak-hour 
parking occupancy, implementing restrictions on parking 
duration may be a useful approach. Therefore, the follow-
ing parking price optimization only focuses on parking 
facilities with high price elasticity.

Table 2. The elasticity-occupancy parking management 
strategy

High occupancy Low occupancy

High price elasticity Increase parking 
price

Decrease parking 
price

Low price elasticity Other non-pricing 
measures

–

3.2.2. Price-optimization method

According to the above elasticity-occupancy parking-man-
agement strategy, we focus on parking facilities with high 
price elasticity of parking demand and adjust their prices 
using a price optimization method to control occupancy 
within an ideal range as much as possible. The price-optimi-
zation method consists of an objective function and some 
constraints. The objective function aims to minimize devia-
tions from the established goals. The constraints include 
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price policy constraints, price change constraints, and non-
negativity constraints. The decision variable is the parking 
price, modified to affect parking occupancy. Because differ-
ent parking facilities have different price elasticities of park-
ing demand, price optimization is conducted individually for 
each parking facility, that is, on a facility-by-facility basis. 
Detailed information is provided below.

The objective of this experiment is to achieve parking 
occupancy close to the optimal range by adjusting park-
ing prices. Therefore, in the objective function, the deci-
sion variable is the parking price. By varying the price and 
leveraging the elasticity of parking demand, adjustments 
are made to minimize the deviation between the actual 
parking occupancy rate and the optimal range of parking 
occupancy rates. The objective function for parking price 
optimization is defined as follows. Let yd+  represent the 
upward deviation of the parking occupancy from the upper 
limit of the ideal parking occupancy *y+ , and let yd−  repre-
sent the downward deviation from the lower limit *y− . The 
optimization method minimizes the objective function Z by 
adjusting the parking price: 

*

1
* *

1 1

arg min ( , )

ˆ

ˆ ˆ

y y

*

Z f

y y

y y y y

+ −

+ −

=

= −

= ϕ − + γ −

∑
∑

P
d d

. (10)

The values of ϕ and g can be expressed as follows:
*ˆ1, if

0, else
y y+ >ϕ = 


; (10a)

*ˆ1, if
0, else

y y− <γ = 


, (10b)

where: P* represents the set of all parking facilities prices 
after optimization; y* represents the optimal parking oc-
cupancy; and ( , )y yf + −d d  represents the difference between 
the predicted parking occupancy and the optimal parking 
occupancy.

The relationship between parking price and occupancy 
can be expressed as follows:

*
1 *

*

ŷ y
P P P

å

−
∆ = = − , (11)

where: DP is the price change; P* represents the optimal 
parking price of a parking facility; and all of the optimal 
price P* values constitute P*.

The constraints are as follows. Parking price policies of-
ten come with upper and lower limits on prices. To comply 
with the price policy requirements, parking prices should 
be limited to between pmin and pmax per hour:

min max
*p P p≤ ≤ . (12)

Considering drivers’ feelings, the price changes should 
be integer multiples of g. Let the price change amount be 
c times, where c is a constant. The price change constraint 
is as follows:

*P P cg= + . (13)

At the same time, make sure that the optimized price 
does not deviate significantly from the previous moment. 
d is set to achieve the purpose and can be expressed as 
follows:

*P P− ≤ δ. (14)

Other constraints include the non-negativity constraint 
on the change in parking occupancy and the requirement 
that the change in parking occupancy, either upward or 
downward, should be at least zero for one of them:

0y yd ,d+ − ≥ ; (15)

0y yd d+ −⋅ = . (16)

4. Results and findings

Experiments were conducted on the dataset of the SF Park 
project. This section describes the experiments on park-
ing-occupancy prediction and the experiments on parking 
pricing. The parking-occupancy prediction experiments 
predict parking occupancy and derive the price elasticity 
of parking demand for each parking facility. The parking 
pricing experiments utilize the results from the parking-
occupancy prediction experiments to establish reasonable 
parking prices. 

4.1. Experiments on parking-occupancy 
prediction

4.1.1. Data description

The SF Park project is a parking pricing program in San 
Francisco, initiated and managed by the San Francisco Mu-
nicipal Transportation Agency (SFMTA). The project start-
ed in 2008 and covers on-street and off-street parking in 
several areas of San Francisco, almost covering the entire 
city. The goal is to optimize parking management, increase 
parking utilization, reduce traffic congestion, and improve 
the urban traffic environment through the introduction of 
modern technologies and data analytics. 

This experiment used data collected during the SF Park 
pilot program available on the SFMTA website. The dataset 
contains hourly on-street parking occupancy and meter 
price data for each block (parking facility) in seven parking 
districts from April 2011 to July 2013, involving a total of 
10 price adjustments. This study focuses on the pilot area 
of the SF Park project in San Francisco and the subject 
of the study is on-street parking. We selected data from 
weekdays, spanning 9 AM to 5 PM, over a period from 
August 8, 2011 to December 7, 2012, encompassing a total 
of 70 weeks. The study included 192 parking facilities, with 
each undergoing 8 adjustments within this timeframe. A 
total of 604,800 parking records were used.

4.1.2. Experimental setup

Three standard evaluation metrics were employed to as-
sess the model’s performance: mean absolute error (MAE), 
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root mean square error (RMSE), and coefficient of deter-
mination (R2). By applying these metrics, a comprehensive 
evaluation of the effectiveness of the prediction model 
against the established baselines was obtained:

1
1 ˆMAE ( ) ( )

N

t
y t y t

N =
= −∑ ; (17)

2
1

1 ˆRMSE ( ( ) ( ))
N

t
y t y t

N =
= −∑ ; (18)

2
12

2
1

ˆ( ( ) ( ))
1

( ( ) ( ))

N

t
N

t

y t y t
R

y t y t
=

=

−
= −

−

∑
∑

, (19)

where: ˆ( )y t  and ( )y t  denote the predicted and actual val-
ues at time t; ( )y t  is the mean value of the sample; and N 
is the total number of samples.

Eight models were selected as comparison models: HA 
(Kamarianakis & Prastacos, 2003), ARIMA (Zhang, 2003), 
SVR (Smola & Schölkopf, 2004), Lasso (Tibshirani, 1997), 
fully convolutional neural network (FCNN), LSTM (Hochre-
iter & Schmidhuber, 1997), Du-parking (Rong et al., 2018), 
and GRU (Chung et al., 2014).

The dataset was split into training and testing sets, 
with a ratio of 7:3. All datasets were collected hourly. To 
predict data for one hour, the model utilized data from 
the previous nine continuous hours as input. For train-
ing, the Adam optimizer was used with a learning rate of 
1×10–3 and a weight decay of 1×10–5. The training process 
spanned 3000 epochs. For the prediction model param-
eters, the input for the model’s initial parameters e* was a 
matrix of size 1×1×192 filled with the value of 0.5. Building 
upon previous research findings (Millard-Ball et al., 2013; 
Pierce & Shoup, 2013), l was designated 0.5 in Equa-
tion (9c) and a was set to 0.01 in Equation (9). In the case 
of the RNN-based model, there is an RNN layer and a fully 
connected layer. The hidden layer was set to 192 and the 
num layer was 1.

4.1.3. Comparison experimental results

Comparison experiments were conducted to verify the su-
periority of the proposed model and the results are shown 

in Table 3. The experiments utilized the SF Park dataset. In 
prediction error, the proposed model outperformed the 
baseline models in all three metrics. The mean value of 
RMSE was 0.1131, the mean value of MAE was 0.0813, 
and the mean value of R2 was 51.42%. Compared with HA, 
ARIMA, SVR, Lasso, FCNN, LSTM, GRU, and Du-parking, 
the proposed model increased the prediction accuracy by 
26.54%, 38.79%, 10.91%, 5.07%, 10.91%, 21.39%, 17.06%, 
and 11.03% respectively, highlighting its potential in pre-
diction.

4.1.4. Price elasticity of parking demand

Comparison experiments took the average value of five 
random experiments for comparison. Therefore, after five 
training sessions, five sets of price elasticity values of park-
ing demand were obtained. The resulting price elasticity 
values demonstrated a consistent trend of change, with 
only minor differences between values. To determine the 
final price elasticity values for each parking facility, the 
price elasticity values obtained from the five sessions were 
averaged. And to better show the distribution of parking 
price elasticity values and standard deviation, all the price 
elasticity values were divided into 10 intervals and the 
numbers of each interval counted to create a statistical 

Table 3. Comparison experimental results

Model RMSE (×10–2) MAE (×10–2) R2 (%)

Ours 11.31±0.02 8.13±0.04 51.42%±0.23%
HA 15.23±0.00 11.19±0.00 14.56%±0.00%
ARIMA 17.51±0.00 14.06±0.00 −24.62%±0.00%
SVR 11.46±0.00 8.48±0.00 44.92%±0.00%
Lasso 11.56±0.00 8.83±0.00 43.84%±0.00%
FCNN 12.67±0.00 9.15±0.00 39.13%±0.00%
LSTM 14.16±0.05 10.51±0.07 23.49%±0.92%
GRU 13.43±0.01 9.96±0.04 30.33%±0.50%
Du-parking 12.66±0.03 9.18±0.03 39.15%±0.30%

Note: Table shows the mean and standard deviation of the prediction results.

Figure 3. Distribution of parking price elasticity values and 
standard deviation
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histogram. Based on this, the mean value of the standard 
deviation was calculated for each interval and a line chart 
was constructed (Figure 3).

The horizontal coordinate is the price elasticity value. 
The vertical coordinate on the left is the frequency and 
the vertical coordinate on the right is the value of the 
standard deviation. It can be seen that the price elasticity 
of parking demand is primarily distributed between 0.10 
and 0.30. The highest price elasticity values are distributed 
in the range of 0.20–0.23, with 37 out of the 192 parking 
facilities in this range, followed by the range of 0.14–0.17, 
with 33 parking facilities in this range, and the lowest 
values are distributed in the range of 0.02–0.05, with only 
one parking facility. The value of the standard deviation 
is very small, which indicates that the parameter values 
obtained by the results of five training sessions were 
very similar, i.e., the results of the parameter obtained 
in this way were less affected by stochasticity, enhanc-
ing the credibility of the results. Through calculation, the 
results show that the average price elasticity value for 
the 192 parking facilities is 0.18. Combined with previous 
studies, the derived price elasticity corresponds well with 

research findings regarding the price elasticity of parking 
demand (Table 4).

The derived price elasticity values have been visual-
ized on San Francisco road network maps (Figure 4). To 
facilitate visualization and achieve better results, each seg-
ment of on-street parking facility is represented as a point 
on the map. The 192 parking facilities are divided into 
five levels according to the magnitude of price elasticity. 

Table 4. Studies on the price elasticity of parking demand

Study Price elasticity of parking demand

Vaca and Kuzmyak (2005) Typically between 0.1 and 0.6, 
with a common value of 0.3

Kelly and Clinch (2009) 0.29 for on-street parking in 
Dublin, Ireland

Ostermeijer et al. (2022) A value of 0.19 for parking in 
Amsterdam

Concas and Nayak (2012) An average value of 0.39 in the 
United States, along with 0.86 in 
non-U.S. countries

Figure 4. Price elasticity for 192 parking facilities in SF Park
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The specific range of price elasticity values and the cor-
responding color size can be referred to in Figure 4. 

Figure 4 shows that high price elasticity values are in-
dicated on the right side, moderate values in the middle 
section, and low values in the remaining areas. Certain 
patterns can be observed. Firstly, the clustering effect is 
apparent, where neighboring areas exhibit similar price 
elasticity values. This suggests that parking demand elas-
ticity is influenced by localized factors such as local busi-
ness density and types of land use. This also indicates that 
parking demand elasticity varies across different areas. 
This variation potentially reflects distinct parking behav-
ior patterns in various areas. Understanding these pat-
terns is important for developing pricing strategies. For 
instance, in high elasticity areas, small price adjustments 
could significantly impact parking behavior, thus optimiz-
ing occupancy and potentially reducing congestion. In 
contrast, in low elasticity areas, price changes might be 
less effective in influencing demand, necessitating alter-
native management strategies. The derived elasticity can 
be used to determine optimal parking prices and achieve 
optimal occupancy, which can help us understand how 
on-street parking demand in a specific block responds 
to pricing. Overall, the acquisition of these price elasticity 
values provided strong support to develop smarter and 
more accurate parking pricing strategies in the following 
experiments.

4.2. Experiments on parking management

4.2.1. Experimental setup

Parking pricing experiments are conducted on the re-
sults of the parking-occupancy prediction experiments. 
According to the elasticity-occupancy parking manage-
ment strategy, areas with high price elasticity were se-
lected for the parking pricing experiments. The area is 
demarcated by green line boxes in Figure 4. There are 
59 parking facilities in this area and the price elasticity of 
parking demand ranges from 0.19 to 0.32, with an aver-
age value of 0.25.

The experimental parameters were set as follows. Based 
on existing research (Millard-Ball et al., 2014; Shoup, 2006), 
we set the upper occupancy limit *y+  and the lower limit 

*y−  in Equation (10), (10a), and (10b) to 0.85 and 0.60, re-
spectively. According to the SF Park project, the values for 
the price constraints pmin and pmax in Equation (12) were 
determined as 0.25 and 6, respectively. In Equation (13), 
g was set to 0.25, indicating that price adjustments are 
made in integer multiples of 0.25. This aligns with the pric-
ing adjustment pattern in the SF Park project. The value of 
δ  in Equation (14) was set to 2, which means that, for each 
parking facility, the price expansion in every two adjacent 
hours does not exceed $2. This setting avoids significant 
fluctuations in prices.

4.2.2. Price-optimization results

Based on the experimental results given in Section 4.1, the 
parking price optimization experiment was carried out in 
the selected areas. The experimental results for price opti-
mization are shown in Figure 5. The experiment simulated 
one day’s price adjustment in the study area. The price 
adjustment experiment was carried out every hour and 
adjustments were made facility by facility. The figure illus-
trates the hourly prices and changes in prices from 9:00 to 
17:00. The size of the circles represents the magnitude of 
the prices and different colors indicate whether the prices 
increased or decreased from the original values.

Figure 5 shows variations in price adjustments at dif-
ferent times of a day. There is still room for price improve-
ment in the SF Park project. Some parking facilities need 
to increase their prices, while other parking facilities need 
to lower their prices. Price adjustment strategies should 
vary at different times throughout the day. For instance, 
during the morning peak hours (e.g., 9:00 to 11:00), prices 
at many facilities increase significantly, likely due to the 
higher parking demand from commuters. In the afternoon 
(e.g., 15:00 to 17:00), price adjustments are more dispersed. 
Some facilities experiencing price decreases, possibly due 
to reduced parking demand or lower utilization rates at 
certain facilities. The figure also highlights the price adjust-
ment patterns across different areas. Some parking facilities 
show larger price adjustments, while others have relatively 
smaller changes. This reflects the differences in parking 
demand and supply across regions, as well as the varying 
sensitivity of each area to price changes. The overall pric-
ing levels are consistent across areas. However, there is 
variance in parking prices between different areas, which 
reflects the differences in the attractiveness of surrounding 
facilities in different areas. Moreover, within the same area 
there are still differences in pricing. Thus, the proposed 
parking pricing strategies can make uniform the uneven 
spatial and temporal distribution of parking demand by ad-
justing prices. By comparing the price adjustments across 
different time periods and areas, we can assess the effec-
tiveness of the optimization strategy. Price increases during 
peak hours effectively alleviate excessive parking demand, 
while price decreases during lower demand periods attract 
more drivers, enhancing facility utilization. This dynamic 
adjustment helps achieve round-the-clock optimization of 
parking resources, improving parking efficiency.

During the price optimization based on the derived 
price elasticity, it was shown that for some parking 
facilities, even free parking prices could not achieve the 
expected parking occupancy. This finding suggests that 
while price is important in parking choice, it is not the 
only factor influencing parking demand. In fact, it may not 
even be the primary factor influencing demand. The core 
determinant of parking demand lies in the attractiveness 
of an area and this attractiveness is largely dependent 
on the various activity opportunities offered in that area 
(Ottosson et al., 2013).
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 a)9:00 b)10:00 c)11:00

 d)12:00 e)13:00 f)14:00

 g)15:00 h)16:00 i)17:00

Figure 5. Price-optimization results
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5. Conclusions

The proposed proactive pricing strategies involve price 
adjustments facility by facility. By considering different 
price elasticity and parking occupancy characteristics, an 
elasticity-occupancy parking management strategy is pro-
posed, leading to more efficient parking management. 
Proactive parking pricing provides drivers with advanced 
information on parking prices, enabling them to plan their 
trips rationally. Compared with reactive pricing, proactive 
pricing aligns better with drivers’ psychological expecta-
tions. Moreover, it has the potential to control parking 
occupancy within an ideal range and to make uniform un-
even spatial and temporal distribution of parking demand. 
This will contribute to alleviating congestion, improving air 
quality, and enhancing the economic vitality of an area.

This study has investigated proactive pricing strategies 
for on-street parking by predicting parking occupancy and 
deriving the price elasticity of parking demand. This in-
cluded a parking-occupancy prediction model and a price-
optimization method. The parking-occupancy prediction 
model employed a PINNs approach which incorporated 
economic knowledge of parking prices and occupancy into 
the neural network training process. This approach en-
hanced prediction accuracy and derived the price elasticity 
of parking demand. Based on the derived price elasticity 
values and the differences in parking occupancy character-
istics, parking facilities were divided into four types: high 
price elasticity-high occupancy, high price elasticity-low 
occupancy, low price elasticity-high occupancy, and low 
price elasticity-low occupancy. This constituted a parking 
management strategy known as the elasticity-occupancy 
parking management strategy. In the strategy, since prices 
show significant effects only on high-price-elasticity park-
ing facilities, the price-optimization method focuses exclu-
sively on adjusting prices for high-price-elasticity parking 
areas. For the price-optimization method, the objective 
was set as minimizing the difference between parking oc-
cupancy and ideal occupancy (0.60–0.85). The constraints 
included price policy constraints, price change constraints, 
and other constraints. By adjusting prices, the model at-
tained its objectives. This method adjusts parking demand 
by reducing prices during low parking occupancy and in-
creasing prices during high parking occupancy.

The proactive pricing strategies proposed in this study 
have been applied to the real-world dataset of the SF Park 
project in San Francisco. Experimental results showed that 
the parking-occupancy prediction model has good perfor-
mance, showing an average improvement in prediction ac-
curacy of 17.71% compared to the baseline models. The 
price elasticity of most parking facilities falls within the 
range of 0.20 to 0.23, with an average value of 0.18. By visu-
alizing the price elasticity values of each parking facility on 
road network maps of San Francisco, it has been shown that 
neighboring facilities exhibit close on-street parking price 
elasticity values, reflecting real-world experience where 
neighboring facilities generally share similar levels of attrac-
tiveness. Finally, based on the elasticity-occupancy parking 

management strategy, we selected areas with higher price 
elasticity for parking pricing research. Through the optimi-
zation method and utilization of data from the prediction 
model, the price of each parking facility for each hour from 
9 AM to 5 AM in one day was calculated. The conclusion 
was drawn that there is still room for optimization in on-
street parking prices in the SF Park project.

On-street parking mainly serves as short-term parking, 
which has a certain impact on road traffic conditions and 
surrounding commercial activities. So reasonable on-street 
parking management is very necessary. Proactive pricing 
strategies for on-street parking can alleviate spatiotempo-
ral disparities in parking occupancy, making them effective 
tools for parking management. However, parking pricing 
is particularly effective in areas with high price elasticity of 
parking demand. For areas with low elasticity, the impact 
of pricing measures is minimal. Additionally, the relation-
ship between parking price elasticity and the surrounding 
land-use types is significant. To address these two issues, 
there is a need for research on how to integrate parking 
pricing with other methods to enhance parking-manage-
ment efficiency. Nevertheless, only the spatial differences 
in price elasticity for different parking facilities have been 
considered in this study. In the future, temporal variations 
in price elasticity should also be taken into account.
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