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Introduction

In a perfect market with homogeneous commodities, price 
changes would be observable, and price valuations would 
be accurate (Chau et al., 2005). However, a residential 
property is a spatially immobile, durable, expensive, and 
highly heterogeneous commodity (McClusky et al., 2000). 
Also, various factors such as market segmentation and 
government intervention can affect the real estate prices, 
so it has been a challenge to construct accurate and de-
pendable automatic valuation models that capture those 
characteristics causing the complexity. In Glumac and 
Rosiers (2021), the purpose of the valuation model is “to 
provide a credible, reliable, and cost-effective estimate of 
market value as of a given point in time”. Nevertheless, for 
practical purposes, such as local tax estimates, portfolio 
risk assessment, insurance risk assessment, lending risk, 
and land planning, appraising real estate accurately is es-
sential. Moreover, international banking standards, such 
as the Basel accords, require real estate to be valued more 
frequently than before (Hong et al., 2020; Pi-ying, 2011). 

Because of its importance, studies have been conducted on 
the development of automated valuation models and their 
applications (Wang & Li, 2019).

The classical automated valuation method is the he-
donic pricing model using multiple linear regression 
analysis. The advantage of this model is its simplicity and 
computational tractability: It is not difficult to calculate 
and interpret the regression coefficients of a linear regres-
sion model to explore how the value of a property var-
ies with its attributes. Wang and Li (2019) state that “[b]
ecause the target of mass appraisal is a large number of 
properties, and the valuation results need to be explained 
to the public, the basic needs are convenient operation 
and simple understanding”. Because of these advantages, 
studies have constructed valuation models based on the 
hedonic pricing model. However, it has been pointed out 
in the literature that the model oversimplifies real estate 
market behavior to increase interpretability and analytical 
tractability. Most models assume a separable preference, 
perfect competition, market equilibrium, and an integrat-
ed market–qualities that do not reflect the characteristics 
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of the actual market (Chau & Chin, 2003; Malpezzi, 2003; 
Sheppard, 1999). These assumptions weaken the model’s 
predictive accuracy. Zurada et al. (2011) established that 
this model might yield imprecise coefficients because of 
functional form misspecification, multicollinearity, and 
non-linearity.

In this situation, the applicability of non-parametric 
machine learning (ML) methods has been rapidly grow-
ing because of significant advances in computational and 
data collection techniques, and numerous valuation mod-
els applying ML techniques have been proposed for real 
estate appraisal (Antipov & Pokryshevskaya, 2012; Čeh et 
al., 2018; Fan et al., 2006; Pace & Hayunga, 2020; Selim, 
2009). A main strength of the ML technique is its predic-
tive power. In most studies, the predictive power of the 
technique is reported to be significantly greater than that 
of the hedonic model, assuming a functional form. The 
technique does not require the model to take a pre-spec-
ified form. The non-parametric ML technique does not 
explicitly express the relationship between variables (i.e., 
it is less interpretable), but it can be constructed indepen-
dently without specific assumptions about the relationship 
between the independent variables and between the in-
dependent and dependent variables. Therefore, attempts 
have been made to construct valuation models using the 
ML technique. For information on ML-based mass ap-
praisal real estate models, please refer to the review paper 
by Wang and Li (2019).

Previous computer science research has reported that 
a more accurate predictor can be obtained when com-
pared with individual models when the combination of 
models is properly constructed because they can compen-
sate for errors caused by each model’s characteristics. In 
other fields, such as computer science, various methods 
of comprising a committee (combining predictors) have 
been introduced, including averages (Taniguchi & Tresp, 
1997), weighted averages (Krogh & Vedelsby, 1995; Merz 
& Pazzani, 1996), aggregation by NNs (Liu, 2005; Verikas 
et al., 2002), and probabilistic aggregation (Kittler et al., 
1998). The design of the combination, which models to 
select, and how to combine them are important because 
the predictive accuracy of the combined model may fur-
ther decline due to predictors with low predictive power. 
Although there are many studies (i.e., the aforementioned 
literature) on prediction or classification problems using 
combined models in other fields, there are few studies on 
developing an automated valuation model using the com-
bination of predictors. Our research is motivated by the 
lack of results. Thus, the goal of our research is to investi-
gate the feature of combined predictors for real estate mass 
appraisal based on a proper volume or coverage of data.

In this paper, the combination of predictive models is 
proposed to obtain a model with a high level of predictive 
accuracy. Three methods of combining predictive models 
are presented and examined. The first method is that of 
performing predictions by averaging the values obtained 
from each predictive model. The results show that the 

performance of averaging predictors was better than the 
average of the performance measure of predictors com-
bined; its predictive performance approximate to the most 
performative model. The second is that of assigning dif-
ferent weights according to each model’s performance. If 
the performance of a model is too poor, the model may be 
automatically excluded from the combination. In the third 
method, a model with a high level of predictive power is 
selected by re-learning the pattern of the errors. That is to 
say, after learning training data through various ML tech-
niques, the error is derived by calculating the difference 
between the predicted value and the actual value when 
each algorithm is applied. The ML technique is then re-
applied to learn which model exhibits the highest predic-
tive power for an observation with a certain characteristic. 
This is done to select a highly predictive model according 
to the characteristics of each property. We demonstrate 
that the combination of models obtained by parameter-
izing the difference in performance of each model or by 
re-learning the error pattern of each model provides a su-
perior result for mass appraisals. The algorithms employed 
in this paper are the support vector regression (SVR), 
Random Forest (RF), XGBoost, LightGBM, and CatBoost 
models. The SVR and RF algorithms have been widely 
used in other studies, but XGBoost, LightGBM, and Cat-
Boost are recently proposed algorithms, and few studies 
have used the algorithms for mass appraisal problems.

Our contributions are as follow. First, as mentioned 
in many previous studies, the ML-based predictors are 
more performative than the ordinary least squares (OLS) 
regression-based predictor is. While the mean absolte per-
centage error (MAPE), R2 values, coefficient of dispersion 
(COD) of the OLS-based predictor were 11.864, 0.898 and 
11.892, respectively, the performance measure of the ML-
based predictors was found to be superior. Especially, the 
recently developed boosted tree-based algorithms (i.e., 
XGBoost, LightGBM, and CatBoost) show sufficiently 
accurate performance for them to be applied to practi-
cal mass real estate appraisal. The MAPE, R2 values and 
COD of the most performative model, CatBoost model, 
were 4.485, 0.978 and 4.487, respectively. The standard 
deviation of the absolute percentage error was also 11.429 
for the OLS-based predictor, whereas 4.924 for CatBoost, 
which showed that the percentage error of ML-based pre-
dictor had less variability. Also, the probability of the Cat-
Boost model predictions deviating more than 25% from 
the actual price was only 0.843%, while that for OLS-based 
predictions was 9.525%. Hong et al. (2020) mentioned that 
“It is important to obtain an accurate estimation of the 
value of a house whose market price is not observed in 
order to construct a reliable house price index or to con-
duct a successful mass appraisal”. Our results suggests that 
the ML based predictors could be an alternative to the 
conventional OLS-based predictors in the development of 
mass appraisal models or house price indices. Second, we 
demonstrate that the predictive performance of the com-
bination of single predictors could be improved. The result 
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indicates that it is helpful to improve the predictive ac-
curacy by taking a simple average of the predictors. The 
method of simply taking the average of the prediction 
values of single predictors shows similar performance to 
the best predictor, and the MAPE value, R2 values, and 
COD values were 4.505, 0.977, and 4.504, respectively. 
The standard deviation of the absolute percentage error 
was found to be 4.918. The percentage of prediction error 
exceeding 50% and 100% of the actual value was 0.052% 
and 0% in the naive averaging model, whereas 0.087% and 
0.08% in CatBoost model. In addition, we demonstrate 
that the combination of models obtained from the weight-
ed averaging or by re-learning the error pattern provides 
more accurate predictions. The MAPE value, R2 values, 
and COD values of the combined model constructed us-
ing the weighted average and ML-based voting techniques 
were 4.408, 0.978, 4.407 and 4.378, 0.977, 4.389, respec-
tively. This result is evidence that if the prediction errors 
from single predictors can be eliminated in the combined 
model, the predictive performance may be improved. 
Moreover, the major advantage of these methods is their 
reliability. From a practical point of view, it will be an im-
portant issue to decide which technique to apply when 
employing machine learning techniques for mass appraisal 
problems. The combined model presented in this study 
learns the performance of single predictors according to 
features. After that, when estimating the price of a real 
estate, prediction is performed by selecting and using ap-
propriate techniques based on the learned performance 
of single predictors considering the features of the real 
estate. Thus, it is not necessary to search for a model with 
the best predictive power because the combined model 
assigns higher weights to the most suitable ML-based 
models or makes them recommended to be used. Even 
if a model that has poor performance and uses specific 
data were to be incorporated into the combined model, it 
would be given either low weights or no recommendation 
for use. Hence, it will have a negligible effect on the mod-
el’s predictive performance. We expect that this approach 
will help practitioners of mass appraisals to utilize various 
ML models with less apprehension. Third, the accuracy 
could be further increased by synthesizing the two com-
bination methods, namely, the weighted average method 
and the error pattern re-learning method. The MAPE and 
R2 values of the model were 4.3142% and 97.84%, respec-
tively, which were superior to those of the other models.

The remainder of this paper is organized as follows. In 
Section 1, we review relevant previous literature. Previous 
studies on mass appraisal models and related techniques 
are presented. In Section 2, the techniques and data analy-
sis process used in this study are introduced. Individual 
ML techniques such as SVR, RF, XGBoost, LightGBM and 
CatBoost used in this study and methods of combining 
predictive models are presented. Our data set and basic 
statistics are described in Section 3. Section 4 provides the 
results. Conclusions are summarized in the last section.

1. Literature review

In this section, literature related to this study is presented. 
Especially, we focus on the literature related to hedonic 
models and machine learning techniques frequently used 
in mass appraisal models. Note that there are various 
methods for estimating the market price of real estate. 
Pagourtzi et al. (2003) reviews various methods including 
comparable method, investment method, profit method, 
residual method, time series analysis, etc. Although these 
methods are proven methods that have been studied for a 
long time, some of them are not suitable for mass apprais-
al, either because of the need for human effort (qualita-
tive judgement) or the characteristics of the methodology. 
For example, in the case of the comparable method, the 
characteristics and selling prices of recently sold proper-
ties in a similar area are investigated in order to evaluate 
the value of a certain property (subject property). The ex-
pert evaluates the subject property by adjusting the price 
of the properties sold in consideration of the difference 
between the characteristics of the properties sold and the 
characteristics of the subject property. Since the method 
is based on expert judgment, it requires human effort and 
is not suitable for mass appraisal. In the case of time se-
ries analysis, it has been successfully used in estimating 
the price of land in some studies (Hannonen, 2005), but 
other studies mentioned that it was difficult to construct 
a model that considers various attributes that affect house 
prices including location, property attributes and envi-
ronmental amenities. In Raymond (1997) and Adamczyk 
and Bieda (2015), time series analysis was employed for 
real estate appraisal. In Pagourtzi et al. (2003), it was men-
tioned that “it is in any case difficult to identify the most 
appropriate proxy for the price index in the real estate 
market, since this heterogeneous sector includes different 
types and classes of building …” about the study of Ray-
mond (1997). Also, in Adamczyk and Bieda (2015), it was 
stated that “Estimation of the market value by this method 
(time series analysis) is a big challenge. The assumptions 
adopted in this work (the scaling of the attributes … ) … 
in reality, the valuation by forecasting methods using time 
series would be very laborious”. In the market, real estate 
with various characteristics is traded at non-uniform time 
intervals, so it is difficult to scale it when applying time 
series analysis. For a study on various valuation models, 
please refer to Pagourtzi et al. (2003), Gabrielli and French 
(2021), Binoy et al. (2022).

1.1. Hedonic pricing models

The hedonic pricing model based on multiple regression 
analysis is the most widely used model for estimating 
the price of real estate in the recent past. The hedonic 
model originated from a study by Lancaster (1966) and 
its theoretical foundation was developed in Rosen (1974). 
In the model, real estate is assumed to be a heterogeneous 
commodity containing a bundle of characteristics that 
provide utilities. Thus, when a customer purchases a 
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1.2. Non-parametric machine learning (ML) 
methods and combined approach

In order to solve the above-mentioned shortcomings of 
the hedonic model, automated valuation models based on 
nonparametic ML techniques have been proposed. Re-
garding the advantages of the technique, Hong et al. (2020) 
mentioned that “the main advantage of the proposed 
method is that it constructs the model, while exploring 
the complexity, without the modeler explicitly describing 
it”. Although the ML-based valuation models have a dis-
advantage in that their interpretability is lower than that 
of linear regression-based existing models, most studies 
have revealed that they have higher predictive accuracy. 
Thus, various machine learning techniques were applied 
in the study to develop real estate mass appraisal models. 
The ML methods most often used in the literature are the 
neural network (NN) and random forest (RF) models. For 
NN models, refer to Zhou et al. (2018), McCluskey et al. 
(2012), McCluskey and Anand (1999), Do and Grudnit-
ski (1992), Limsombunchai (2004), Selim (2009), Torres-
Pruñonosa et al. (2021) and Deaconu et al. (2022). The 
RF approach was employed in Yilmazer and Kocaman 
(2020), Hong et al. (2020), Dimopoulos et al. (2018), An-
tipov and Pokryshevskaya (2012), Ho et al. (2021), Bogin 
and Shui (2020) and Guo et al. (2020). Kok et al. (2017) 
used a regression tree model to evaluate multi-family as-
sets in California, Florida, and Texas in the United States. 
Various tree-based regression techniques are examined to 
analyze the properties in Dallas, Texas, the United States, 
by Pace and Hayunga (2020). The k-nearest neighbor ap-
proach was employed to value the property prices in Lon-
don (Bellotti, 2017) and in Szczeci (Gnat, 2021). Support 
vector machine technique was adopted to forecast residen-
tial housing price in Taipei city by Chen et al. (2017) and 
Lee and Chen (2016). Sing et al. (2022) recently employed 
the boosting tree ensemble technique to predict the price 
of real estate in Singapore. For more information on ML-
based mass appraisal real estate models, please refer to the 
review paper by Wang and Li (2019).

In computer science field, in order to improve the pre-
dictive performance the concept of construct a better pre-
dictor by combining several predictors has been proposed. 
Various methods of comprising a committee (combining 
predictors) have been introduced. Krogh and Vedelsby 
(1995) and Merz and Pazzani (1996) proposed methods 
for constructing a combination of neural networks to im-
prove predictive power. The methodology was applied to 
the computer hardware set data in the UCI repository and 
the bodyfat data set provided by Carnegie Mellon Univer-
sity for validation (Merz & Pazzani, 1996). In Taniguchi 
and Tresp (1997), neural networks with different hyperpa-
rameter values were combined. Four averaging methods 
(simple averaging, bagging, variance-based weighting and 
variance-based bagging) were examined and applied to 
Breast Cancer data and german stock index data (DAX 
data). The combination of multiple predictors has been 
employed in various studies dealing with handwritten 

property, the customer gains a package of the characteristics 
in it, and these characteristics can be converted into 
utilities. From this point of view, various characteristics 
can affect the price of real estate, and several studies 
have been conducted to explore the factors that affect 
the price (Chau & Chin, 2003). The characteristics that 
are commonly included in the model are those related 
to the structural characteristics of the real estate, such 
as the number of rooms and toilets. In Malpezzi (2003), 
to estimate the price of a house, the type and number of 
rooms, floor area, availability and type of heating and 
cooling system, the age of the property were considered. 
Fletcher et al. (2000) and Li and Brown (1980) found that 
the number of rooms and floor area of a house had a 
positive effect on its price. In Kain and Quigley (1970), it 
was found that there was a negative relationship between 
the age of the house and the price. In addition, various 
studies have used the hedonic model to analyse the effects 
of accessibility to public transportation systems or CBD 
(Dubin & Sung, 1990; Hong et al., 2020; Kryvobokov & 
Wilhelmsson, 2007), socio-economic variables and local 
government service (Huh & Kwak, 1997) on prices. Sims 
et al. (2008) discusses the impact of a wind farm on house 
prices using a hedonic pricing model. Regarding the 
studies on real estate appraisal using the hedonic model, 
please refer to Malpezzi (2003), McMillan et al. (1980), 
Chau and Chin (2003), Dubin and Sung (1990), and Huh 
and Kwak (1997).

The major strength of the hedonic models is their in-
terpretabilty (Wang & Li, 2019). It is not difficult to under-
stand and interpret the relationship between each attribute 
(characteristic) and price through the regression coeffi-
cients of the obtained model. Wang and Li (2019) men-
tioned that one of the advantages of the hedonic model is 
that it is easy to explain the results of price estimation to 
the public. This interpretability comes from a prespecified 
form of the model, and some studies have criticized the 
model for oversimplifying the complexity or nonlinearity 
of the real world (Chau & Chin, 2003; Sheppard, 1999). 
In Hong et al. (2020), it was stated that “the functional 
form of the conventional hedonic pricing model is based 
on the simplification of household’s preferences and strict 
assumptions about the housing. The model depends on 
the assumption that the effects from each attribute are 
separable and constant, which implies a separable prefer-
ence, perfect competition, market equilibrium, and an in-
tegrated market”. Due to the simplification, in practice, the 
prediction accuracy of the model may decrease. In Zurada 
et al. (2011), it was mentioned that “failures [that] would 
result in untenable or imprecise coefficients caused by 
functional form misspecification, interaction among vari-
ables, multicollinearity, and non-linearity problems”. Non-
linear models have been proposed to solve these problems 
(Feng et al., 2021; Yeap & Lean, 2020), and studies on esti-
mating prices using the nonparametric machine learning 
algorithm have been conducted.
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model is constructed using the prediction results (Set 1), 
and the combined model is assessed using Set 2.

Th erefore, we divide the plot of analysis into two parts, 
called fi rst- and second-stage analyses. In the fi rst-stage 
analysis, we examine the single ML algorithm models only. 
Th e single predictors are trained, and the performances of 
the single predictors are measured and analyzed (on the 
entire data set excluding Set 2). A 5-fold cross-validation 
technique is employed. In the second-stage analysis, we 
construct the combinations of the single-algorithm-based 
predictors on the basis of the result obtained in the fi rst-
stage analysis. To discuss the features of combined pre-
dictors, the predictive accuracy of all the single-algorithm 
predictors and the combined predictors are estimated with 
another test set (Set 2).

Figure 1 shows a fl owchart illustration of our model. 
Th e samples are fi rst randomly divided into in-samples 
and out-samples at a ratio of 8:2. Th e in-samples are 
(Set 1) used to train and evaluate the single predictors, 
and the out-sample (Set 2) is used to evaluate the com-
bined model. Th e single predictors are trained and evalu-
ated on the in-samples (Set  1) based on a 5-fold cross-
validation technique in the fi rst stage analysis. In this step, 
the hyperparameters of each algorithm are optimized. In 
the second-stage analysis, the combination of the predic-
tors is constructed based on the predictive performance 
on Set 1 and evaluated using Set 2. Th ere are three models 
of combining the predictors suggested and discussed: na-
ïve averaging, weighted averaging with parameterization, 
and ML-based voting. We evaluate and analyze the perfor-
mances of all predictors (including the single-algorithm 
predictors and the combined model) on Set 2.

digit recognition problem, medical diagnosis problem, 
and face and voice recognition problems (Liu, 2005; Veri-
kas et al., 2002; Kittler et al., 1998; Verikas et al., 1999), 
and it has been shown to have better predictive perfor-
mance than individual predictors. Although the combined 
method is used in regression and classifi cation problems 
in various fi elds, to our best knowledge, it has not been 
used in real estate appraisal problems. Th us, the objec-
tive of our study is to investigate the feature of combined 
predictors for the appraisal problems based on a proper 
volume or coverage of data. Also, the latest ML algorithms 
(XGBoost, LightGBM, and CatBoost algorithms) are ex-
amined as automatic valuation models.

2. Methodology

2.1. Process of the model

Th is section illustrates the process of constructing an 
improved appraisal machine by combining predictors. 
A common task required to build models by applying 
ML techniques is to divide a dataset into several parts. In 
the case of training a single predictor, this is simply treated 
by randomly dividing the entire dataset into in-samples 
(training set) and out-samples (test set). Th en, initially, the 
model is built by learning the data from the in-samples 
(training set). Aft er the model is constructed, the data 
from the test set (which was not used in the estimation of 
the model) will be used to evaluate the accuracy (predic-
tive power) of the mass appraisal model. Cross-validation 
techniques are frequently used to reduce bias and to more 
accurately estimate model performance.

However, an additional set is required when we de-
sign the procedure to construct the combination of single 
ML algorithm-based predictors. Th is is because the pre-
dictive powers of each single predictor are employed in the 
process of combining the predictors. In other words, the 
single predictors are initially trained on a dataset (training 
set) and each model is constructed. Th en, another dataset 
(test dataset), which is independent of the training dataset, 
is used to evaluate each predictor. Th e predictive power of 
each single predictor is calculated based on the test dataset 
and the trained models are integrated to construct a com-
bined model based on the predictive powers. For example, 
by observing the predictive powers of each predictor, it is 
possible to determine which predictors’ predictions are ac-
curate in a case. In this case, by assigning diff erent weight 
values to each model, a combined model can be created 
to perform prediction with a weighted average of the pre-
diction values from the single predictors. As the data in 
the test set are used in the construction of the combined 
model, another dataset is needed to evaluate the predictive 
power of the combined model. To avoid confusion, the set 
used to train and evaluate single predictors is defi ned as 
Set 1, and the test set used to evaluate the combined mod-
el is defi ned as Set 2. In other words, the single predictors 
are trained and evaluated by applying the 5-fold cross-val-
idation technique to the data of Set 1. Th en, a combined Figure 1. Flowchart illustrating our model
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The features employed in our study are determined 
based on the feature selection methods of decision tree-
based models. Feature selection methods of tree-based 
machine learning models fall under the category of em-
bedded methods. They are implemented by algorithms 
that have their own built-in feature selection methods. 
The importance of each feature can be calculated, which 
means the ability of that feature to increase the purity of 
leaves in the tree structure. Hong et al. (2020) employed 
the random forest technique for a mass appraisal model of 
real estate and determined the list of variables to improve 
predictive power using recursive feature elimination. The 
features used in this study were determined using the 
same procedure (recursive feature elimination) used in 
the study of Hong et al. (2020).

2.2. The combination models

2.2.1. Naïve averaging

In naïve averaging, the arithmetic mean of the value pre-
dicted by each algorithm is used to predict the outcome 
variable of a sample. This might be the simplest combina-
tion method. The naïve averaging predictor for sample j, 
AVGj, can be expressed as follows:

,
1

1 ,
n

j i j
i

AVG z
n =

= ∑  (1)

where zi,j is the predicted value of the outcome variable of 
sample j calculated using the i-th (single) predictor, and n 
is the number of single predictors.

The naïve averaging model assumes that the same 
weights are assigned to all the combined predictors. This 
implies that the naïve averaging predictor does not use 
any information about the predictive performance of the 
combined model. The pros and cons of this method come 
from its simplicity. The advantage is that this method can 
be immediately applied to the combined predictors with-
out any additional testing. This feature can be particularly 
virtuous when the volume or coverage of the data is lim-
ited. One weak point is that, while the predictive perfor-
mance of the combined predictors can vary, the naïve av-
eraging eliminates them. Nevertheless, the predictive per-
formance of this combined predictor is often higher than 
that of each predictor obtained from a single algorithm is, 
particularly if the residuals due to each algorithm’s calcu-
lation method are idiosyncratic. This is because when the 
error-generating patterns of the models are independent 
(i.e., not similarly biased), their deviation could be offset 
using simple averaging.

2.2.2. Weighted averaging with parameterization

The weighted averaging model allocates different weights 
to each predictor through the process of averaging. When 
the predictors exhibit different levels of performance, we 
may conjecture that some of the algorithms are better (or 
worse) fitted to capture the complexity embodied in the 
analysis objective. Therefore, in the averaging of predic-

tors, weighting based on their relative performance could 
be helpful in improving the accuracy of the combined 
predictor.

There are many ways to calculate the weights. In this 
paper, we suggest that the parameterization of the mini-
mum performance gap is an efficient method. One issue 
about setting a minimum performance model may arise, 
especially when some algorithms are not suitable for the 
prediction. In that case, as the inferiority of a model might 
pull down the predictive power of the combined model, 
we need to eliminate the predictions from those algo-
rithms.

One intuitive way to deal with this issue is to define a 
threshold for the allowable performance gap. The perfor-
mance gap can be defined as the gap between the MAPE 
of a predictor and the MAPE of the most performative 
one. If the performance gap is greater than the threshold, 
we can discard the predictor in the combination process 
by setting zero weight on the predictor. Moreover, for the 
predictors within the threshold gap, their performance 
gaps can be used as the parameters for smoothing the 
weights. If we standardize the weight on the most per-
formative predictor as 1, the weight for the i-th predictor, 
fi, can be defined as follows:
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0,  
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ii

MAPE MAPE
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where q is the parameter for the cut-off threshold, which is 
a positive scalar, and iMAPE  and MAPE  are the MAPE 
of i-th single-algorithm predictor and the lowest MAPE 
among the predictors, respectively.

Then, the weighted averaging predictor can be ob-
tained as follows:
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where 
1

n

k
k=

φ = φ∑ . Note that zi,j was defined as the predicted 

value of the outcome variable of sample j by using the i-th 
(single) predictor.

The parameter q represents the degree of dependence 
on the most performative predictor. When q decreases 
(increases), it narrows (widens) the boundary allowing 
predictors to be used in the combination and provides 
more (less) weight on the most performative predictor. 
The weighted averaging predictor falls between the naïve 
averaging predictor and the most performative single-
algorithm predictor because lim j jWVG AVG

θ→∞
→  and 

,0
lim j k jWVG z
θ→

→ . Figure 2 shows how the size of the 
weight is smoothed with the relative performance, by pro-
viding an example.

In this example, the horizontal axis indicates the per-
formance gap of the model, ( )sMAPE MAPE− . The verti-
cal axis indicates the weight of the model, fs. The weight is 
illustrated assuming the cut-off threshold, q, is 3. The main 
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advantage of this parameterization method is its simplic-
ity and intuitiveness. Th e modeler is only required to set 
a single parameter, q, and then, the parameter determines 
not only which algorithms are used but also the relative 
value of the weights. Since unsuitable algorithms would 
eventually be eliminated from the combined predictor us-
ing this approach, employing various algorithms during 
the fi rst-stage prediction is less harmful if the threshold 
is well-optimized. So, this combination model can be ex-
pected to reduce modeling cost in the practice of mass ap-
praisal. Th is advantage is remarkable because it is exceed-
ingly diffi  cult for a model designer to know in advance 
which algorithm is suitable for analysis due to the nature 
of ML method.

2.2.3. Machine learning (ML)-based voting and 
averaging

In the averaging approaches (the naïve averaging and 
weighted averaging), it can be expected that the noises 
from a ML predictor can be diluted by noise from other 
predictors. Another approach could be employing the ML 
algorithms to learn the relative performance of the pre-
dictors and making predictions by voting. Th e rationale 
underlying this approach is that a certain predictor might 
capture the complexity of the samples in terms of specifi c 
types or situations better than the other predictors might. 
We expect that a more powerful combined model can be 
obtained if the pattern of the predictive power can be ana-
lyzed using the ML algorithms.

Aft er the single-algorithm predictors are trained on 
the training set, their predictive performance is compared 
in Set  1. Th en, we select the predictor with the highest 
predictive power for each observation and replace it with 
the existing outcome variable, price. In other words, a 
new dataset consisting of the features of the existing data 
and the predictor with the highest predictive power (out-
come variable) is created. Th e most performative predic-
tor might be diff erent for each observation as each one 
has distinctive characteristics. On the basis of the data, 
we build ML classifi ers predicting which ML algorithm 
performs better with the given features of the sample. 
Th us, the ML algorithm is used to predict the predictor 

with the highest predictive power based on the features 
of observation.

To determine which algorithms are best using Set 1, all 
algorithms used to build the single predictors can be used. 
Th erefore, we use support vector machine (SVM), RF, 
XGBoost, LightGBM, and CatBoost algorithms to calcu-
late a predictor with an elevated level of predictive power 
for each observation. Each of the trained classifi ers recom-
mends one algorithm for each sample. Note that there are 
fi ve classifi ers recommending which algorithm would be 
the best. To make predictions, the recommendation re-
sults from the fi ve classifi ers (it may be diff erent) should 
be integrated. Here, we combine the results through soft  
voting (i.e., averaging the predicted values). For example, 
if two classifi ers recommend the RF algorithm for a cer-
tain sample, and three classifi ers recommend the XGBoost 
algorithm, the predicted value is (2/5)*(predicted value 
obtained from RF algorithm)+(3/5)*(predicted value ob-
tained from XGBoost).

2.3. Machine learning (ML) algorithms

In this section, the ML algorithms used as single predic-
tors are briefl y introduced.

2.3.1. Support vector regression (SVR)

Th e SVM model was fi rst introduced by Boser et al. (1992) 
to address binary classifi cation issues, which can be viewed 
as the task of separating two classes in the feature space, 
and the main goal of SVM is to determine a linear clas-
sifi er, or a so-called “hyperplane”, that separates the data 
into classes. Th e classifi cation problems is formulated as a 
convex optimization problem with the goal of establishing 
the hyperplane to maximize the distance from the plane 
to the nearest data point in each class. Th e concept of the 
hyperplane in two dimensions is depicted in Figure 3.

Th e SVM concept has been extended toward solving 
various regression problems (Smola & Schölkopf, 2004). 
Whereas SVM is used to classify data into binary classes, 
SVR is a generalization of SVM that is used to predict 
real values. In SVR, the input value is fi rst mapped in a 

Figure 2. An example of the relationship between the 
performance gap and model weighting (θ = 3)

Figure 3. Th e hyperplane of the support vector 
machine (SVM) model
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high-dimensional feature space, and then, the function as-
sociated with the mapped value is found (Lu et al., 2009). 
A convex, e-insensitive loss function called “e-tube” is em-
ployed to formulate the optimization problem in order to 
determine the tube that best approximates the function 
that balances the complexity of the model and the predic-
tion error. As in SVM, the support vectors in SVR are 
crucial factors that aff ect the shape of the tube. SVR has 
been applied to real estate valuation problems in previ-
ous studies (Chen et al., 2017; Lee & Chen, 2016; Han & 
Clemmensen, 2014; Lin & Chen, 2011).

2.3.2. Decision tree (DT) model

Th e RF, XGBoost, LightGBM, and CatBoost algorithms 
used in this paper are based on the decision tree (DT) 
model. Accordingly, we now introduce the decision tree 
(DT) model and briefl y discuss how each technique is de-
rived from it. DT models are predictive models based on 
the form of a tree structure that can be applied to both 
classifi cation and prediction problems. A tree structure 
consists of decision nodes and leaf nodes, and each deci-
sion node has two or more branches based on a feature 
with a threshold. For example, we consider a DT model 
with several nodes in Figure 4.

An arrow represents a branch, and a diamond and a 
square represent a decision node and a leaf node, respec-
tively. In the classifi cation problem, when a new observa-
tion arrives, it is classifi ed in a node based on a feature (xi) 
with a threshold (ti). In Figure 4, the value of feature x1 of 
a new observation is greater than t1, the tree takes the ob-
servation to the left  branch (otherwise, it goes to the right 
branch). Th en, the value of feature x2 of the observation is 
compared with threshold t2. Th e classifi cation of an obser-
vation is fi nished by following the branches from the root 
node to a leaf node. Each leaf node represents a class. For 
a regression problem, the average values are applied to the 
divided subspaces defi ned by the leaf nodes aft er follow-
ing the branches, as in classifi cation. Th us, a DT model is 
a predictive model that works by recursively partitioning 

the feature space. Th e advantages and application of DT 
models have been presented in Safavian and Landgrebe 
(1991), Myles et al. (2004) and Song and Lu (2015).

2.3.3. Random forest (RF) regression

An RF regression is an ensemble learning method for re-
gression based on multiple DTs that provides predictions 
by averaging the predictions from individual trees. Th is 
technique was fi rst proposed by Ho (1995), who found 
that a combination of tree predictors splitting with hyper-
planes yields better predictive power as they expand with-
out suff ering from overtraining. Since the concept for the 
ensemble method was proposed, various extensions have 
been developed (Amit & Geman, 1997; Breiman, 2001).

In RF, several DTs are constructed using a diff erent 
bootstrapped sample of the data during the training time, 
and the trees in the ensemble grow independently. In a 
standard tree model, each node is split using the best 
split among all of the features (variables). However, an RF 
model performs its split process by randomly using a sub-
set of features. An unpruned regression tree is grown for 
each bootstrapped sample. Aft er a large number of trees 
are generated, predictions are averaged over the diff erent 
trees. Liaw and Wiener (2002) stated that “this somewhat 
counterintuitive strategy turns out to perform very well 
compared to many other classifi ers, including discriminant 
analysis, support vector machines and neural networks, 
and is robust against overfi tting”. Due to its strength, this 
method has been applied to various real estate valuation 
problems (Antipov & Pokryshevskaya, 2012; Čeh et al., 
2018; Hong et al., 2020; Levantesi & Piscopo, 2020).

2.3.4. Gradient-boosting technique

Th e XGBoost, LightGBM, and CatBoost techniques fall 
under the category of so-called “gradient-boosting tech-
niques”. Boosting refers to an ensemble learning method 
that creates a more accurate learner by combining simple 
and weak learners (i.e., DTs) in a direction that minimizes 
error. While bagging techniques, such as RF, train multi-
ple trees independently in parallel and average the results 
from the trees to make predictions, the boosting technique 
builds the trees sequentially such that each subsequent 
tree aims to reduce the error of the previous tree. In other 
words, we attempt to minimize the errors made by previ-
ous tree models in succeeding trees by adding weights to 
the model. Th is technique is based on the intuition that 
the next best possible model will reduce the overall pre-
diction error when combined with previous models. Th e 
trees in an ensemble can only be interdependent as each 
successive tree learns from its predecessors.

Th e gradient-boosting algorithm constructs new base-
learners to be maximally correlated with the negative gra-
dient of the loss function, which is associated with the 
whole ensemble. Th e loss function defi ned in gradient 
boosting is a measure that indicates how good the coef-
fi cients of the model are at fi tting the underlying data. Th e 
loss function can be arbitrarily applied, but in real estate Figure 4. An illustration of the decision model
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valuation, it would be based on the difference between the 
true and predicted real estate prices. The gradient descend 
procedure is employed to minimize the loss when trees are 
added. For a more detailed description of the gradient-
boosting algorithm, please refer to Friedman (2001, 2002).

2.3.5. XGBoost algorithm

XGBoost (extreme gradient boosting) is a gradient-boost-
ing technique (ensemble) with enhanced performance 
and speed used in tree-based (sequential DTs) learning 
algorithms. It was developed by Tianqi Chen and initially 
maintained by the Distributed (Deep) Machine Learning 
Community group (Chen & Guestrin, 2016).

As XGBoost is described as a scalable ML system in 
Chen and Guestrin (2016), the advantage of the algorithm 
is its scalability. The model runs more than 10 times faster 
than existing popular solutions do on a single machine 
and scales to billions of examples in distributed or mem-
ory-limited settings. Similar to other gradient-boosting 
techniques, XGBoost uses the gradients of different cuts 
to select the next cut. However, XGBoost also computes 
second partial derivatives of the loss function just as New-
ton’s method does. This provides information about the 
direction of the gradients to minimize the loss function. 
Computing the derivative imposes a slight cost, but it 
helps to estimate the cut that should be used. In addition, 
the algorithm employs advanced regularization to improve 
model generalization.

2.3.6. LightGBM algorithm

The LightGBM technique was developed to overcome the 
disadvantage that gradient-boosting decision tree (GBDT) 
models operate inefficiently when the feature dimension 
is high and the quantity of data is large (Ke et al., 2017). 
The existing gradient-boosting tree models investigate 
all data points to estimate the information gain that will 
yield the best split point, which leads to an increase in 
computational complexity. To deal with this problem, two 
techniques are employed in the LightGBM technique: 
gradient-based one-sided sampling (GOSS) and exclusive 
feature bundling (EFB). Thus, the GBDT algorithm with 
GOSS and EFB is defined as LightGBM.

The goal of GOSS is to reduce the number of data 
points while maintaining the accuracy of the learned DTs. 
The basic idea of GOSS is to use the gradient for each data 
instance for data sampling. After the algorithm calculates 
the absolute value of the gradient for each data point, an 
instance with a gradient of a large absolute value is pre-
served. The algorithm performs random sampling on the 
instances with a small gradient. Ke et al. (2017) proved 
that GOSS can efficiently reduce the number of samples 
while not losing any theoretical training accuracy. The 
EFB method deals with the sparsity of the feature space. 
In a sparse feature space, mutually exclusive features can 
be bundled, and it can reduce the training duration of the 
model without sacrificing accuracy.

2.3.7. CatBoost algorithm

Dorogush et al. (2018) and Prokhorenkova et al. (2017) 
introduce a new gradient-boosting technique called Cat-
Boost, with which they propose to manage heterogene-
ous datasets that contain features with different data 
types. Its development was motivated by a statistical issue 
called “prediction shift” that arose in all existing gradient-
boosting techniques. In the implementation of the gradi-
ent-boosting technique, the predictive model relies on the 
targets of the training samples after boosting. Prokhoren-
kova et al. (2017) stated that this boosting process leads to 
a shift in the distribution of the training dataset from the 
distribution of the test dataset. A similar problem occurs 
in preprocessing categorical features. In this paper, these 
problems are called “target leakage” and “prediction shift”.

The CatBoost algorithm employs several methods to 
deal with the aforementioned problems. First, the algo-
rithm employs a new encoding technique called “ordered 
target encoding”. In many existing gradient-boosting al-
gorithms, one-hot encoding is used at the preprocessing 
stage. In one-hot encoding, each categorical value is con-
verted into a new categorical column, and a binary value 
of 1 or 0 is assigned to each column. This causes an in-
crease in the number of features. The target encoding in 
CatBoost is a more scalable method as the encoded quan-
tity is an estimation of the expected target value for each 
category of the feature. Next, “ordered target statistics” are 
used to solve the target leakage problem. They arrange ob-
servations in a training dataset according to an artificial 
timeline defined by a permutation of the training dataset. 
For an observation from a training set, target statistics are 
computed using its own “history”. The ordered boosting 
technique is integrated with ordered target statistics. In 
practice, several permutations of the training set are then 
generated, and a randomly chosen permutation is used to 
compute the target statistics at each step of the gradient-
boosting algorithm.

3. Dataset and descriptive statistics

Seoul is the capital and largest city of South Korea. With 
a population of 9.7 million and an area of 605.21 square 
kilometers (km2), Seoul’s real estate market was ranked 
second in the world in terms of the price per square meter 
to buy an apartment in the city center (downtown) in 2020 
(Chris, 2020).

Seoul is composed of 25 administrative divisions called 
“gu”. Each gu is different in size (between 10 and 47 km2), 
and the population of each ranges between 140,000 and 
630,000 residents (Figure 5). Each gu is subdivided into 
“dongs”. In total, Seoul consists of 423 administrative 
dongs.

We collected our dataset on the apartments sold in 
2018 from South Korea’s Ministry of Land, Infrastruc-
ture, and Transport (MOLIT). After excluding data with 
missing values, analysis was performed on the remain-
ing 56,897 data points. The dataset covers about 76% of 
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all apartment transactions that occurred in Seoul during 
the period. Our models involve regressing the observed 
apartment price against apartment features that are hy-
pothesized to contribute to the price. The target variable 
and features used in our analysis are provided in Table 1.

The property attributes consist of intrinsic character-
istics of the property, including the number of bedrooms 
and bathrooms, the floor area, and the age of the property, 
and they are commonly used to determine the property’s 
value. In previous studies, the number of bedrooms and 
the floor area of a property were found to be positively 
related to its price (Fletcher et al., 2000; Garrod & Willis, 
1992; Li & Brown, 1980). Kain and Quigley (1970) ob-
served that the elapsed year (i.e., the age) of a property 
can negatively affect its price. In this study, we employ the 
number of elapsed years (transaction year–construction 
year), area, floor level, number of bedrooms and bath-
rooms, and heating system.

Apartment attributes are characteristics common to 
all properties of an apartment. For example, two apart-
ments may have different areas and different numbers of 
rooms but still have the same floor area ratio value. Thus, 
the characteristics of an apartment having the same value 
are defined as an apartment attribute. For these attributes, 

Figure 5. A map of Seoul, Korea (source: Wikimedia 
Commons, 2005)

Table 1. The variables used in our models

Category Variable Units

Target variable Traded apartment prices Korean won
Property 
attributes

Years elapsed years
Size (in area) square meters (m2)
Floor floor level
Number of bedrooms number
Number of bathrooms number
Heating system central/individual/local district (categorical)

Apartment 
attributes

Hallway type stairs/corridors/combined (categorical)
Number of households in complex number
Number of apartment buildings in complex number
Average number of parking spots per household number of parking spots/number of units
Floor area ratio ratio
Building coverage ratio ratio
The top floor of an apartment floor level
The lowest floor of an apartment floor level

Neighborhood
attributes

Dong 423 categorical variables
Latitude latitude of a property
Longitude longitude of a property
Distance to subway station meters
Distance to national park meters
Distance to elementary school meters
Distance to middle school meters
Distance to high school meters
Distance to university meters
Distance to museum meters
Distance to district office meters
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we consider hallway type, number of households in the 
apartment complex, number of buildings in the apartment 
complex, parking lot availability, fl oor area ratio, building 
coverage ratio, and the highest/lowest fl oor of the build-
ing. To evaluate the quality of an apartment complex’s 
parking lot, we calculate the average number of parking 
spots per apartment (total number of parking spots in an 
parking lot divided by the number of households in the 
complex). Th e fl oor area ratio (FAR) and building cover-
age ratio (BCR) are the ratio of the gross fl oor area and 
the building area divided by the land area, respectively.

Neighborhood attributes are the characteristics related 
to a property’s geographic location. Yu (2007) posited that 
the characteristics include all of the externalities associ-
ated with a house’s geographic location, such as accessi-
bility, proximity to externalities, environmental amenities, 
and land use information. To account for the geographic 
location of the properties in our models, we employ an 
apartment’s administrative division (dong) and its lati-
tude and longitude for ML models. For OLS-based linear 
regression, accessibility (distance) to nearby facilities is 
also used. Th e facilities considered are subway stations, 
national parks, elementary schools, middle schools, high 
schools, universities, museums, and district offi  ces. Except 
for information about the administrative division to which 
the apartment belongs (which can be found in the data 
provided by MOLIT), all other information was calculated 
as the distance from each property to the center point of 
the facility using the MAP Open Application Program-
ming Interface (API).

Th e descriptive statistics are presented in Table  2. 
A histogram of the traded apartment prices (target vari-
able) is presented in Figure 6.

4. Quantitative results

4.1. First-stage analysis: comparison of single-
algorithm predictors

In this step, the OLS-based predictor and the single-al-
gorithm predictors (i.e., SVR, RF, XGBoost, LightGBM, 
and CatBoost) are trained on the same train set, and 
their performances are compared. As previously men-
tioned, 80% of the entire dataset (in-samples, Set 1) will 
be used to train and evaluate single predictors, and 20% 
(out-samples, Set 2) will be used to evaluate the combined 
model. Th e single predictors are trained and evaluated on 

Figure 6. A histogram of the distribution of prices

Table 2. Descriptive statistics

Variable Mean Median Standard
deviation Min. Max.

Number of years elapsed 16.824 17.000 7.774 0.000 47.000
Area 81.381 84.670 28.043 12.100 273.310
Floor level 9.368 8.000 6.280 1.000 63.000
Number of rooms 3.033 3.000 0.628 1.000 7.000
Number of bathrooms 1.685 2.000 0.484 1.000 5.000
Number of households in complex 1,060.615 700.000 1,096.367 6.000 6,864.000
Number of apartment buildings in the complex 12.146 8.000 12.957 1.000 122.000
Average number of parking spots per household 1.137 1.130 0.440 0.080 11.950
Floor area ratio 271.444 253.000 95.427 72.000 1096.000
Building coverage ratio 22.264 21.000 7.203 2.000 49.000
Latitude 37.558 37.553 0.057 37.439 37.688
Longitude 126.989 127.013 0.091 126.807 127.181
Distance to a subway station 832.997 639.495 663.299 3.806 5,112.545
Distance to a national park 1,030.008 970.290 520.581 63.869 3,268.238
Distance to an elementary school 334.372 319.441 168.536 10.597 1,810.038
Distance to a middle school 469.687 435.007 250.278 2.587 2,130.155
Distance to a high school 577.090 507.220 336.620 24.616 2,771.288
Distance to a university 1,843.071 1,524.187 1,206.868 55.467 7,111.538
Distance to a museum 1,897.700 1,699.641 1,084.829 45.630 6,839.077
Distance to a district offi  ce 1,968.059 1,896.326 994.141 16.821 6,521.695
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the in-samples (Set 1) based on a 5-fold cross-validation 
technique in the first stage analysis.

To measure the accuracy of the predictors, we employ 
three conventional measurements: the MAPE, R-squared 
value and COD. The MAPE is a straightforward measure-
ment for determining the average percentage error from 
actual prices. Percentage deviations (for each sample) are 
averaged after taking the absolute value by ignoring the 
sign on the error. Because of its convenience and intuitive-
ness, this measurement is frequently used in mass apprais-
als. The formula is expressed as follows:
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The R-squared value measures the proportion of the 
variance in the target variable (i.e., actual transaction 
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tion of the observed price that is predictable by the model. 
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where ip  is the sample mean of the actual transaction 
price for property i .

The COD measures the dispersion of sales ratio, the 
quotient obtained by dividing the predicted price with 
actual transaction price, around the median sales ratio 
(Hong et al., 2020). The COD is a measure of uniformity 
and relates to the consistency of assessment levels within 
a group of properties. It can be expressed as:
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where Ri is the ratio between the predicted value and ac-
tual value for the apartment price i; Rm is the median ratio.

Let us observe the result for the single-algorithm pre-
dictors.  Figure 7 shows the scatter plot between the ac-
tual transaction prices and the predicted values. Table 3 
presents the accuracy measurements obtained from the 

Figure 7. Scatter plots of the actual contract prices (depicted on the horizontal axis) and the predicted values  
(shown on the vertical axis) of the single predictors

a) OLS b) Support vector regression

c) Random forest d) XGBoost

e) LightGBM f) CatBoost
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single-algorithm predictors. In summary, the result tells 
the following. First, the ML-based predictors are more 
performative than the OLS-based predictor is. The val-
ues of MAPE for ML-based predictors are around 4.4 to 
6.6, while the corresponding value of the OLS predictor is 
11.68, more than double the ML-based predictors’ values. 
The R-squared of ML-based predictions are also notice-
ably higher than the R-squared of the OLS. The R-squared 
of SVR, RF, XGBoost, LightGBM, and CatBoost are 0.945, 
0.969, 0.971, 0.969, and 0.976, respectively, which implies 
that 95% to 97% of the variance of the dependent variable 
has been accounted for while the remaining 5% to 3% of 
the variability has not. Details about the hedonic model 
and the hyperparameters of the ML models are presented 
in Appendix 1 and Appendix 2, respectively.

Second, the predictions obtained from ML predictors 
(particularly, the boosted tree algorithms, XGBoost, Light-
GBM, and CatBoost) are accurate enough to be directly 
applied to a wide range of practical mass appraisals. The 
value of the MAPE for those predictors is around 5, which 
indicates that the percent deviation of the predictions 
from the actual contract price is approximately 5%, on av-
erage. If we consider that, in the transaction price, there is 
noise that is impossible to capture (such as a contractor’s 
preference or imperfect information), the absolute level of 
accuracy obtained from the ML predictors may be close 
to a professional appraiser’s evaluation. The reason that 
our model shows accurate predictive power is related to 
the fact that the data only include apartment transactions. 
Hong et al. (2020) stated that “the structural characteris-
tics of the apartments can be sufficiently represented by a 
number of common and measurable features … Housing 

in different residential areas or in detached dwellings are 
usually more various in their amenities, interior decora-
tions, and features and consequently are difficult to codify 
or consolidate in a dataset, which eventually undermines 
the accuracy of predictors”. Nevertheless, this study shows 
that ML-based automated valuation models may success-
fully estimate the market price. Cannon and Cole (2011) 
stated that the MAPE of human appraisal is about 12%.

An interesting point is that the DT-based algorithms 
(i.e., RF, XGBoost, LightGBM, and CatBoost) are more 
performative than both OLS and SVR predictors. The 
MAPE values of the RF, XGBoost, LightGBM, and Cat-
Boost algorithms are 4.96, 4.77, 5.05, and 4.43, respec-
tively, while the corresponding SVR value is 6.67. We also 
found that the R-squared value of SVR is significantly less 
(0.945) than that of each of the tree-based predictors. This 
implies the DT algorithm has an advantage in capturing 
the complexity of the housing market.

The existence of housing submarkets can be related 
to the advantages of tree-based algorithms. The housing 
market is not a single, integrated market but is broken 
down into submarkets that can be distinguished according 
to various classifiers, such as property type, size, quality, 
and location. For example, for small houses, if the number 
of bathrooms is greater than one, the relationship between 
the property value and the number of bathrooms might be 
insignificant. Conversely, for large houses, the number of 
bathrooms may have more significance as the families that 
live in such houses are likely to be relatively larger.

The structure of the housing submarket is complex be-
cause of its multiple layers. For example, submarkets exist 
not only for high-priced and low-priced houses but also for 

Table 3. Accuracy measurements: first-stage analysis

OLS SVR RF XGBoost LightGBM CatBoost

1st MAPE 11.871 6.629 5.069 4.855 4.959 4.481
R2 0.901 0.957 0.974 0.975 0.977 0.98
COD 11.889 6.637 5.06 4.86 4.957 4.48

2nd MAPE 11.862 6.752 5.023 4.831 4.975 4.46
R2 0.898 0.941 0.974 0.971 0.972 0.978
COD 11.886 6.735 5.007 4.833 4.972 4.45

3rd MAPE 11.846 6.901 5.087 4.862 5.09 4.511
R2 0.897 0.953 0.973 0.976 0.974 0.979
COD 11.868 6.903 5.073 4.864 5.08 4.504

4th MAPE 11.664 6.63 4.972 4.769 4.932 4.401
R2 0.902 0.927 0.967 0.968 0.97 0.973
COD 11.721 6.651 4.972 4.775 4.935 4.406

5th MAPE 12.078 6.769 5.096 4.939 5.052 4.57
R2 0.892 0.956 0.972 0.974 0.974 0.979
COD 12.095 6.77 5.083 4.942 5.047 4.568

Average MAPE 11.864 6.736 5.049 4.851 5.0016 4.485
R2 0.898 0.947 0.972 0.973 0.973 0.978
COD 11.892 6.739 5.039 4.855 4.9982 4.482
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different property types and locations. Therefore, to improve 
the predictive accuracy of a mass appraisal model, the hier-
archical structure of housing submarkets should be explored.

The DT algorithm can be used to explore the hierar-
chical structure of conditions that classifies properties in 
the housing market with similar characteristics (Fan et al., 
2006). This algorithm forms a tree of conditions classify-
ing the sample in the order of variables with a high level 
of information. The advantage is that this model can ex-
plore different valuation structures for each branch. For 
example, in the upper condition node, if housing size is 
divided above and below a certain level, then the valua-
tion structures for large and small houses (distinguished 
by the upper condition) can be established separately. This 
means that the ML algorithm can capture heterogeneity in 
housing submarkets and consequently prevent the loss of 
explanatory power that might be attributable to the exist-
ence of submarkets. In other words, the ML algorithm can 
serve as a data-driven model to determine the hierarchy of 
the housing submarkets.

4.2. The features of prediction errors

We investigate the feature of prediction errors obtained in 
the first-stage analysis. Table 4 presents the pairwise cor-
relation coefficients between different models. The correla-
tion coefficients extend from 0.55 to 0.84, which implies 
that there are considerable positive correlations among the 
errors.

This reminds us that errors can come not only from 
the incompleteness of the model but also from the sto-
chasticity of the property price itself. The positive cor-
relations imply that when a certain predictor makes an 

error, other predictions tend to deviate from the price in 
the same way. It might be impossible to take account of 
all of the complexity of the real world as models are a 
simplification and standardization of the real world. If an 
unobservable factor is affecting the transaction price, the 
predictions tend to deviate similarly from the observed 
price. This means that the prediction error cannot be per-
fectly eliminated even if the model is perfect.

The transaction price includes various types of noise. 
While some types of noise (such as fire sales and con-
tractor’s psychology or caprice) are idiosyncratic, the sizes 
of some types of noise (such as valuation ambiguity or 
information asymmetricity between seller and buyer) 
could be dependent on the characteristics of the property 
because each market participant is unique. The relation-
ship between the error and housing characteristics would 
become more significant the more definitive the housing 
submarket is.

Table 5 shows the MAPEs of the model for the differ-
ent property sizes. The prediction accuracy for small hous-
ing (<60  m2) is higher than that for the others. Table  6 
compares the MAPEs for housing with different ages. It is 
shown that the predictions for new housings (the elapsed 
years of which are less than, or equal to, five) are lower. 
The interesting point is that the relative performance of 
the models can also change with property characteristics. 
When each segmented market has different complexity, 
the model’s adaptiveness to each complexity can vary. 
For example, in Table 5, the MAPE of SVR for the small 
housings has decreased from 6.7133 to 6.6619, while the 
MAPEs of the other models increased. Table  6 shows 
that the most performative model can vary with property 

Table 4. Pairwise correlation coefficients for percentage error

SVR RF XGBoost LightGBM CatBoost

SVR – 0.586 0.558 0.601 0.617
RF – – 0.849 0.747 0.740
XGBoost – – – 0.730 0.781
LightGBM – – – – 0.717
CATBoost – – – – –

Note: Numbers were rounded off to three decimal places.

Table 5. Mean absolute percentage error (MAPE) values calculated according to property size

SVR RF XGBoost LightGBM CatBoost

<60 m2 6.7133 4.6894 4.4200 4.9134 4.2958

≥60 m2 6.6619 5.1161 4.9667 5.1305 4.5100

Table 6. MAPE values calculated according to the number of years elapsed

SVR RF XGBoost LightGBM CatBoost

<5 years 6.8373 5.1131 5.0173 5.433 5.0696
≥5 years 6.6692 4.957 4.7592 5.029 4.3922
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characteristics. On average, the most performative single-
algorithm predictor was CatBoost; however, XGBoost has 
the lowest MAPE for newer housing. Therefore, it would 
be appropriate to use XGBoost when estimating the price 
of real estate that is less than 5 years old, and CatBoost 
algorithm otherwise. This implies that the appropriate al-
gorithm may differ depending on the property character-
istics. Note that one of the combined models is a method 
that recommends the most suitable algorithm after learn-
ing the errors of single predictors according to features 
with ML techniques (ML-based voting). As such, the 
performance of the prediction model can be improved by 
learning the errors of a single predictor according to the 
feature and finding the predictor with the best predictive 
power through ML-based voting.

4.3. Second-stage analysis

To examine whether the combination of predictors can 
provide improvement, we consider the three aforemen-
tioned approaches. The first approach is the naïve aver-
aging, which implies that the difference in a predictor’s 
relative performance is eliminated. In the approach, the 
prediction value is calculated as the average of the pre-
diction values obtained from each single predictor. The 
second approach is the weighted average. We set a param-
eter for the allowable performance gap, and the weights of 
the predictors in averaging can be obtained based on their 
relative accuracy. The third approach is the ML-based vot-
ing and averaging. The ML algorithms can also be trained 

for which predictor is most performative with the inter-
mediate test samples. By training so, the predictors can 
recommend algorithms for each sample in the test set. The 
predictions from recommended predictors are averaged 
(soft voting).

To compare the performance of combined predictors 
and single predictors, evaluation must be performed on 
the same set. Note that in the previous evaluation pro-
cedure, the performance measures were calculated on 
Set  1 (5-fold cross validation). The results of calculat-
ing MAPE, R2 and COD of the single predictors and the 
combined predictors on Set  2 are presented in Table  7 
and Figure 8.

Table 7. Accuracy measurements: second-stage analysis

MAPE R2 COD

OLS 11.7395 0.9095 11.748
SVR 6.7548 0.9497 6.7586
RF 5.0279 0.9725 5.0209
XGBoost 4.8234 0.9727 4.8331
LightGBM 5.0223 0.9740 5.0223
CatBoost 4.449 0.9777 4.4476
Naïve averaging 4.5055 0.9777 4.5041
Weighted 
averaging (q = 3)

4.4086 0.9783 4.4078

ML-based voting 4.3788 0.9774 4.3894
Mixed 4.3209 0.9785 4.3201

Figure 8. Scatter plots of the actual contract prices (depicted on the horizontal axis) and the predicted values  
(shown on the vertical axis) of the combined predictors

a) Naïve averaging b) Weighted averaging

c) Machine learning-based voting d) Mixed
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4.3.1. Naïve averaging

The results of the naïve averaging approach show that even 
when the relative performance of models is ignored, it is 
helpful to improve the predictive accuracy by taking the 
arithmetic mean of the predictors. If the naïve combina-
tion cannot provide an improvement at all by attribu-
tion, the performance of the combined predictor would 
be the average performance of the predictors combined. 
We could find that the naïve averaging predictor is bet-
ter in MAPE (4.5) than the average MAPE of predictors 
combined (5.16). The predictive accuracy of the combined 
predictor is closest to the most performative algorithm 
(CatBoost, 4.49).

4.3.2. Weighted averaging with parameterization

In combining predictors, it is helpful to consider that 
predictor performance differs. Since a higher accuracy 
implies that the algorithm better captures the complex-
ity of the real world, we can impose a greater weight on 
the predictor based on the algorithm. As suggested in the 
previous section, we set a parameter for the allowable per-
formance gap, q, and the weights of the predictors were 
calculated based on this gap.

Table 7 demonstrates that the weighted average com-
bination provides an improvement in prediction accura-
cy. The MAPE from the weighted averaging predictor is 
4.4076, an improvement on the naïve averaging predictor. 
The performance of the combined predictor is better than 
that of the most performative single-algorithm predictor. 
The result indicates that prediction errors due to modeling 
can be offset by the combination of multiple predictors, 
and the weighted averaging approach is an efficient way 
of combining single-algorithm predictors. When each al-
gorithm fails to capture the complexity of the real market, 
the predictors tend to over- or under-estimate some cases. 
However, if those algorithms are not biased in the same 
way (i.e., the errors are independent), the error from one 
model could be neutralized by errors from another model, 
at least partially.

Another virtue of this combination approach is that 
it reduces the modeling costs incurred in the practice of 
mass appraisal. Sometimes a modeler is required to use 
various algorithms, but it is difficult for him or her to 
know in advance which algorithm is suitable. This prob-
lem can be solved by employing this approach as unsuit-
able algorithms are automatically ignored in the combined 
predictor. The modeler is only required to set a single pa-
rameter, θ.

4.3.3. Machine learning (ML)-based voting and 
averaging

Next, the features of ML-based voting are discussed. Be-
fore the combination model is examined, we investigate 
whether the performance of single-algorithm predictors 
can be trained using ML algorithms. As discussed, if some 
errors are related to the characteristics of the property, 
some variations in predictive accuracy would be expected. 
At first, we train the five ML algorithms (i.e., SVR, RF, 
XGBoost, LightGBM, and CatBoost) for the absolute per-
centage errors obtained from Set 1. Then, we construct the 
combined model, and the model will be evaluated in Set 2.

Table 8 shows the correlation coefficient between the 
predicted performances and the actual performances. 
We could find that there are weakly positive correlations 
(around 0.2 to 0.4), which implies that performances 
themselves contain predictable components and that the 
ML algorithms can (at least partially) capture them. If ML 
algorithms can predict how predictor performance chang-
es, the predicted performance can be used in constructing 
a more sophisticated predictor by choosing the most ef-
ficient algorithm for a different observation.

We apply the ML algorithms to predict which predic-
tor is the best for each sample. On Set 1, the most accurate 
single-algorithm model is trained. Five ML classifiers are 
trained for the most performative algorithm in Set 1. In 
the evaluation process, each classifier will recommend one 
algorithm for each sample in Set 2. Finally, the predictions 
from the recommended algorithms (there are five recom-
mended algorithms for each sample) are combined using 
soft voting (an arithmetic average).

Table 8. Correlation coefficients of predicted and actual percentage error

Actual absolute percentage error

SVR RF XGBoost LightGBM CatBoost

Predicted 
absolute 
percentage 
error

SVR 0.186 0.164 0.124 0.108 0.085

RF 0.356 0.400 0.365 0.348 0.326

XGBoost 0.329 0.366 0.335 0.281 0.287

LightGBM 0.318 0.373 0.336 0.291 0.284

CatBoost 0.335 0.384 0.323 0.324 0.289

Note: Numeric values were rounded off to four decimal places. Rows indicate the predicted model accuracy obtained by each algorithm. Columns 
indicate the actual accuracy obtained by each algorithm. For example, the value in the second row and third column (i.e., 0.365) indicates the correla-
tion coefficient between the actual absolute percentage error and the predicted absolute percentage error of the XGBoost predictor, which is predicted 
using the RF model.
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In Table  7, we can find that the predictor obtained 
from ML-based voting also provides a performance im-
provement. The MAPE of the combined predictor (4.3796) 
is less than not only that of the most performative single-
algorithm predictor (CatBoost, 4.449) but also that of 
naïve averaging (4.5055) and that of weighted averaging 
(4.4076). This implies that the pattern in the prediction 
residuals of an algorithm can be further analyzed by using 
another algorithm. If a certain predictor could better cap-
ture the complexities of the market than other predictors 
in some cases, and those pattern could be detected by ML 
algorithms, the algorithms can also be used in the voting 
process. The result of voting (the combined predictor ob-
tained) would be more powerful than the most performa-
tive single-algorithm predictor would be.

Table 9 shows the number of recommendations from 
each classifier. The recommendation pattern partially re-
flects the relative performance of the algorithms. At first, 
in all classifiers, CatBoost seems the most frequently rec-
ommended. This might relate to the relative performance 
of the model, as CatBoost is the most performative predic-
tor in the comparison of single-algorithm predictors (see 
Table 7). For the 11,380 samples in the test set, CatBoost is 
recommended 6,015, 3,256, 11,380, 3,155, and 3,287 times 
by SVR, RF, XGBoost, LightGBM, and CatBoost, respec-
tively. The second-most selected algorithm is SVR. This is 
interesting because the performance of the SVR predictor 
is the poorest among the single-algorithm predictors. As 
discussed in the previous section, all of the other algo-
rithms, except for SVR, are based on the DT algorithm. 
This implies that the mechanism of SVR is different from 
that of the others, so this can compensate for capturing 
complexity, which is not captured well by the DT-based 
models.

4.3.4. Mixed predictor

Last, we examine the performance of the combination 
between the weighted averaging predictor and ML-based 
voting. The weighted averaging method and the ML rec-
ommendation method rely on different combinatorial 
advantages, so balancing those combination approaches 
might further improve the performance of mass ap-
praisal.

For simplicity, the two predictors are averaged with the 
same weight (1:1). The accuracy of the mixed approach is 
shown in Table 7. Interestingly, we found that the predic-
tive accuracy can be increased further from the combina-
tion of predictors.

4.4. Distributions and features

The distributions of the absolute percentage errors are 
shown in Figures 9 and 10, and the corresponding statis-
tics are presented in Tables 10 and 11.

The skewness of the predictors is around 3–4, except 
for the SVR predictor (= 9). It happens because we take 
the absolute value of percentage errors. In the same con-
text, we could find that the median percentage errors 
are significantly lower than the means. The high level of 
skewness of the SVR predictor implies that it may make 
extraordinary errors more frequently. This is also revealed 
in a comparison of 75% quantile points. The 75% quantile 
point of the SVR predictor is 8.79, which is significantly 
higher than that of the other ML predictors (around 6).

We investigate the occurrence of outliers in predictions 
because they are particularly undesirable in the practice of 
mass appraisals. Tables 12 and 13 compare the frequency 
of outliers obtained from all of the single-algorithm pre-
dictors and the combined predictors. The percentages for 
which the error of prediction exceeds 25%, 50%, 75%, and 
100% are presented, respectively. Under these criteria, we 
may find that the occurrence of outliers is markedly re-
duced in the DT-based ML algorithms (i.e., RF, XGBoost, 
LightGBM, CatBoost). If we define the outliers as devia-
tions greater than 50% from the actual value, then about 
1% of the OLS-based predictions and 0.3% of SVR pre-
dictions are revealed outliers in comparison with the ap-
proximately 0.08% of the tree-based algorithms. Moreover, 
the four tree-based algorithms make no errors over 100%.

We also find that the combined predictors have as high 
a level of stability in predictors as the tree-based algo-
rithms do. However, the ML-based voting method creates 
a few more outliers than the weighted averaging method 
in the distribution of percentage error. Based on the 50% 
criteria, the proportion of percentage error of ML-based 
voting is double (0.061%) that of the weighted averaging 
method (0.035%).

Table 9. Number of recommendations in machine learning (ML)-based voting (N = 11,380)

Recommended
SVR RF XGBoost LightGBM CatBoost

Algorithm 
used

SVR 1,455 1,309 1,240 1,361 6,015
RF 2,237 1,986 1,781 2,120 3,256
XGBoost 0 0 0 0 11,380
LightGBM 2,220 2,007 1,878 2,120 3,155
CatBoost 2,291 1,901 1,973 1,928 3,287

Note: For example, the number in the second row and third column (i.e., 1,781) indicates the number that XGBoost predicted using RF as the most 
performative algorithm.
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Note: The horizontal axis indicates the deviation of the ratio from the actual price. For example, a prediction error of 10% is expressed as 0.1. 
The vertical axis indicates the probability density function for the kernel density estimation.

Figure 10. Distribution of prediction errors (combined models)

Note: The horizontal axis indicates the deviation of the ratio from the actual price. For example, a prediction error of 10% is expressed as 0.1. 
The vertical axis indicates the probability density function for the kernel density estimation.

Figure 9. Distribution of prediction errors (single predictors)

a) OLS b) Support vector regression

c) Random forest d) XGBoost

e) LightGBM f) CatBoost

a) Naïve averaging b) Weighted averaging

c) Machine learning-based voting d) Mixed
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Conclusions

In this paper, several ML-based prediction models are ex-
amined as automatic valuation models, and we propose 
that the combined models improve predictive power. As 
single predictors, the SVR, RF, XGBoost, LightGBM, and 
CatBoost algorithms were employed. To construct the 
combined model based on single predictors, naïve av-
eraging, weighted averaging, and the ML-based voting 
method were employed. The results indicate that predic-
tive performance can be improved by a combination of 
single predictors using apartment transaction data for 
2018 in Seoul, the capital of and largest city in South Ko-
rea. From South Korea’s MOLIT, we collected data on all 
apartment transactions in 2018 and used about 76% of it 
(i.e., 56,897 observations) after excluding data with miss-
ing values. The dataset was randomly divided into training 

sets (consisting of 80% of all of the transactions) and test 
sets (20% of the transactions) to construct the combined 
model. Since the performance evaluation results of single 
predictors must construct the combined models, we ran-
domly selected 80% of the data in the training set to train 
the single predictors and used the remaining 20% to assess 
the predictors.

Because of the performance evaluation of single pre-
dictors, the tree-based algorithms (i.e., RF, XGBoost, 
LightGBM, and CatBoost) were found to be superior to 
other algorithms (support vector, OLS regression). The 
MAPEs of the RF, XGBoost, LightGBM, and CatBoost al-
gorithms are 5.03%, 4.82%, 5.02%, and 4.45%, respective-
ly, while that of the OLS and SVR models is 11.74% and 
6.75%, respectively. In particular, the performance of the 
algorithms based on the gradient-boosting tree was quite 
high. The CatBoost algorithm showed superior predictive 

Table 10. Statistics for absolute percentage error: single-algorithm predictors

OLS SVR RF XGBoost LightGBM CatBoost

Standard deviation 11.428750 7.7838 5.5557 5.4530 5.564381 4.924121
Skewness 3.893300 3.5452 9.2260 3.6800 3.883400 4.529300
25% quantile 4.059275 2.4644 1.4995 1.4344 1.511737 1.379700
Median 8.893264 5.1735 3.3654 3.2559 3.354949 3.076825
75% quantile 16.059570 8.7968 6.2616 6.1183 6.321019 5.625845

Table 11. Statistics for absolute percentage error: combined predictors

Naïve averaging Weighted averaging Machine learning (ML)-
based voting Mixed

Standard deviation 4.9184 4.8582 4.8934 4.7768
Skewness 3.8320 3.8530 4.5252 4.1148
25% quantile 1.4351 1.3459 1.3636 1.3569
Median 3.1294 3.0372 3.0209 2.9812
75% quantile 5.6871 5.5450 5.5829 5.4207

Table 12. Right-tail probability of absolute percentage error: single-algorithm predictors

OLS SVR RF XGBoost LightGBM CatBoost

>25% 9.525% 1.880% 1.326% 1.239% 1.3% 0.843%
>50% 0.975% 0.272% 0.079% 0.0105% 0.105% 0.087%
>75% 0.219% 0.123% 0.026% 0.026% 0.026% 0.017%
>100% 0.105% 0.079% 0% 0% 0% 0.008%

Table 13. Right-tail probability of absolute percentage error: combined predictors

Naïve averaging Weighted averaging Machine learning (ML)-
based voting Mixed

>25% 0.913% 0.905% 0.843% 0.861%
>50% 0.052% 0.035% 0.061% 0.052%
>75% 0.017% 0.017% 0.026% 0.017%
>100% 0% 0% 0% 0%
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power to the other algorithms with a MAPE and R2 value 
of 4.45% and 97.78%, respectively. On average, combina-
tions of single predictors exhibited better performance 
than single predictors did. The MAPEs of the combined 
model based on naïve averaging, weighted averaging, 
and ML-based voting were 4.51%, 4.41%, and 4.38%, 
respectively. In the case of the naïve averaging method, 
the predictive accuracy was close to the most performa-
tive algorithm (CatBoost) even though the method sim-
ply takes the mean. In the case of combinations based on 
weighted averaging or ML-based voting, the MAPE was 
less than that of single predictors. Furthermore, we found 
that the combined predictors exhibited as high a level of 
stability in predictors as the tree-based algorithms did. In 
outlier predictions, the probability of the predictions de-
viating more than 25% from the actual price was found 
to be 0.91%, 0.91%, and 0.84% for the combined models 
(i.e., naïve averaging, weighted averaging, and ML-based 
voting), while that of the predictions by single predictors 
(i.e., OLS, SVR, RF, XGBoost, LightGBM, and CatBoost) 
were 9.53%, 1.89%, 1.33%, 1.24%, 1.3%, and 0.843%, re-
spectively.

From a theoretical perspective, our results on single 
predictors demonstrate that ML-based predictors are 
more performative than OLS regression-based predictors 
as mentioned in many previous studies are. Regarding 
the combined models, our results indicate that predic-
tion errors due to modeling can be eliminated by con-
structing a combination of multiple predictors. The per-
formance of the combined predictor (weighted averaging 
and ML-based voting) was better than that of the most 
performative single-algorithm predictor. This means that 
the errors from one model may be neutralized by the er-
rors in another model if those algorithms are not biased 
in the same way (i.e., the errors are independent). In ad-
dition, the superiority of the combined model based on 
ML-based voting implies that the pattern in the prediction 
residuals of one algorithm can be further analyzed by em-
ploying another algorithm. When one algorithm predicts 
better than another algorithm in some cases and a pattern 
is detected, ML-based algorithms may be used in the vot-
ing process to determine the most predictive algorithm.

From a practical perspective, our model reduces the 
practitioner’s modeling costs incurred in mass appraisals. 
Practitioners have recently been brought face-to-face with 
the various ML techniques being developed every day but 
cannot be proficient in all of the computational skills and 
relevant real estate issues. It is difficult for practitioners 
to know in advance which algorithm is most suitable for 
analysis. Our methods suggest that the quality of auto-
matic valuation models can be improved by combining 
multiple ML models based on simple parameterization or 
the ML-based voting scheme. In this approach, employ-
ing various algorithms is less potentially harmful as any 
unsuitable algorithms would be eventually ignored in the 
combined predictor. This enables practitioners to simply 
examine the various ML models as possible for the com-
bination.

Our research can be extended in several directions. 
First, it is possible to employ more diverse ML techniques 
to construct combined models. In the present study, most 
of the predictors used to construct the combined model 
are DT-based techniques. Note that the second-most 
selected algorithm was SVR in the combined model based 
on ML-based voting. The predictive power of a combined 
model may increase if it is composed of predictive models 
based on various principles. One idea would be to use an 
artificial neural network in the model. Various methods of 
combining predictors may also be considered. A second 
direction would be to analyze why there is a difference 
between the predicted values generated through the 
ML technique and the actual values. To use ML-based 
valuation models in practice, it is necessary to determine 
the conditions under which ML techniques provide 
inaccurate prediction values. The results of this study 
indicate that the errors in valuation models may also 
be analyzed using ML techniques. This is useful from a 
practical point of view if we can derive the conditions 
for using the ML-based valuation model. Developing a 
reliable housing price index based on the ML technique 
is another idea for extending this research.
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Appendix 1. Hedonic pricing model

The formula of the hedonic model is expressed as follows:
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where lnPi is the logarithm of housing prices for the i th observation. xs indicates the structural attributes including years 
elapsed, property size (the natural logarithm of m2), floor level, number of bedrooms, number of bathrooms, heating 
system (dummy), hallway type (dummy), number of households in the complex, average number of parking spots in the 
complex, FAR, BCR, and the highest and lowest floors in the complex. xl is the accessibility measurement. It contains 
the Euclidean distance from the closest subway station, national park, elementary school, middle school, high school, 
university, museum, and government office.

We also considered the spatiotemporal dummies as discussed in Pace and Hayunga (2019). Id indicates the location 
dummy based on the administrative district, “Dong”. Dong is the most granular level of administrative districts, and 
functions similarly to a zip code dummy. Id contains 264 variables. It is the temporal dummy variable that indicates the 
month of the contract data. Because we examine data for 2018, it contains 12 variables. The spatiotemporal dummy is the 
interaction between the spatial and temporal dummies. It contains 2,678 variables (264 × 12 = 3,168); however, 490 vari-
ables are omitted due to a lack of observations. Lastly, ei is an error term that independently follows a normal distribution.

Appendix 2. Hyperparameters

The hyperparameters of the optimized machine learning models are as follows.

SVR Random forest XGBoost LightGBM CatBoost

C: 50
degree: 3
epsilon: 0.1
gamma: 0.05
kernel: ‘rbf ’

max_depth: default
max_features: default
max_leaf_nodes: default
max_samples: default
min_samples_leaf: 1
min_samples_split: 2
min_weight_fraction_leaf: 0
n_estimators: 100

max_depth: 20
colsample_bylevel: default
colsample_bynode: default
colsample_bytree: default
learning_rate: 0.1
min_child_weight: default
reg_alpha: default
reg_lambda: 2
n_estimators: 100

boosting_type: ‘gbdt’
class_weight: default
colsample_bytree: 1.0
learning_rate: 0.1
max_depth: 200
min_child_samples: 20
min_child_weight: 0.001
reg_alpha: 0
reg_lambda: 0
n_estimator: 3000

Iterations: 4000
learning_rate: 0.1
depth: 10
l2_leaf_reg: 1
model_size_reg: 0.5
loss_function: ‘RMSE’
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