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Introduction

The key role of markets is to coordinate mechanism that 
uses prices to convey information between stakeholders. 
Due to heterogeneities entrenched in each asset, geogra-
phy, and transaction, however, the scarcity of commercial 
real estate price information makes the process of price 
discovery slower and the scope for asymmetrical infor-
mation great (Geltner et al., 2003). This implies that the 
development of models that accurately measure commer-
cial real estate prices assumes greater importance in the 
process of price discovery and eventually supports invest-
ment decisions.

The conventional approaches to measuring the price of 
a targeted property mainly consist of a sales comparison 
approach, a cost approach, and an income approach. First, 
a sales comparison approach has often been employed 
by investment practitioners and appraisers, as it actively 
takes into account the current market conditions. Despite 
its distinct benefit, due to careless selection of compara-
ble properties and/or misspecification of weights given to 
each comparable, it may adjust sales prices inconsistently. 

Second, a cost approach is mainly utilized for new con-
struction projects that may not have relevant comparisons. 
However, it is considered less reliable than sales compar-
ison and income approaches, as it may not fully reflect 
demand conditions in the market. Lastly, an income ap-
proach that valuates income-generating properties via dis-
counted cashflow (DCF) analysis and/or direct capitaliza-
tion has also been utilized to determine market values. An 
income approach, however, has critical pitfalls to predict 
market values as well: it is often difficult to measure key 
elements of cashflows of leased properties, such as effec-
tive rental incomes, maintenance costs, and net operating 
incomes; furthermore, it is thorny to predict capitalization 
rates that reflect distinct features of a targeted property.

To address those issues and limitations, econometric 
techniques that rely on null hypothesis testing have com-
monly been employed to examine underlying dynamics 
in commercial real estate markets. Fundamentally, econo-
metric techniques such as a hedonic approach can infer 
the value of real properties by examining property het-
erogeneities that consist of distinct structural, locational, 
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and transaction characteristics. Due to the abundant avail-
ability and continuous quality improvement of informa-
tion regarding commercial real estate markets in recent 
decades, those econometric techniques are increasingly 
able to address sampling errors and/or unobserved heter-
ogeneity, so-called omitted variable bias (OVB). Further-
more, there have been numerous efforts to reflect distinct 
locational features by addressing spatial dependence and 
heterogeneity as well (McMillen & Redfearn, 2010; Par-
meter et al., 2007).

These techniques, however, are still criticized, as they 
cannot fully reflect complex interrelationships between 
property values and their key determinants. According to 
Liu et al. (2015), for instance, non-local investors tend to 
overpay by an estimated 13.5% when they purchase and 
sell at an estimated 7% discount value relative to local in-
vestors. These empirical results imply that intermediation 
factors and/or transaction characteristics are also crucial 
determinants of property values.

The previous real estate literature suggests that such 
systematic differences between local and non-local in-
vestors may arise from selection bias, asymmetric infor-
mation, and investor clienteles. The selection bias often 
occurs when non-local investors purchase extraordinary, 
incomparable properties such as prime offices (Liu et al., 
2015). The asymmetric information that stems from in-
termediation factors and/or the lack of market knowledge 
will result in higher search costs and/or a higher variance 
in the distribution of their estimated price (Han & Hong, 
2016; Turnbull & Sirmans, 1993). The investor clientele 
represents non-local investors who can systematically 
show premiums or discounts in commercial real estate 
transactions, for instance, due to their tax-exempt status. 
Furthermore, the previous literature commonly points out 
that such systematic distortions often arise from non-lin-
ear, complex relationships between agents (Han & Hong, 
2016; Shi & Tapia, 2016; Turnbull & Sirmans, 1993). That 
is, standard parametric econometric approaches will re-
veal critical pitfalls to examine such complex relations due 
to their pre-built, rigid functional forms. As a result, novel 
approaches such as various machine learning (ML) tech-
niques have become promising alternatives thanks to their 
flexible, evolving features to predict market dynamics (see 
e.g., Ho et al., 2021; Pérez-Rave et al., 2019; Simlai, 2021).

While conventional econometric approaches aim to 
infer causal relationships among correlated variables in 
the given data with pre-defined model specifications, ma-
chine learning aims to return the most accurate predic-
tion model that is built over its complex learning process, 
led by artificial intelligence. In principle, machine learn-
ing keeps adjusting its “flexible” learning algorithms to 
improve prediction accuracy and model stability. Hence, 
we believe that machine learning approaches can alleviate 
concerns about the pitfalls of conventional models, which 
are grounded on pre-determined, inflexible statistical in-
ference, and eventually support investment decisions by 
providing more accurate, reliable models for understand-

ing the underlying mechanics of commercial real estate 
markets.

The goals of this study are as follows. First, this study 
aims to construct optimal, accurate predictive models to 
estimate commercial real estate transaction prices. We 
build predictive models based upon various machine 
learning approaches such as a Random Forest (RF), a 
Gradient Boosting Machine (GBM), a Support Vector 
Machine (SVM), and Deep Neural Networks (DNN), as 
well as conventional econometric approaches such as a 
standard parametric hedonic approach. We then focus on 
improving the predictive power by comparing the Root 
Mean Squared Error (RMSE), the Mean Absolute Percent-
age Error (MAPE), and the Mean Absolute Error (MAE) 
of each model, given the default and optimal settings of 
hyperparameters of each ML approach. By doing so, we 
eventually specify the best predictive model based upon 
the comparisons of the levels of prediction accuracy of 
each model, which are particularly differentiated based 
upon the nature of irregular transaction frequency, which 
is typically observed in commercial real estate trading.

Second, this study also aims to validate the power of 
flexible functional specifications in modeling commercial 
real estate prices. Like the previous real estate literature, 
we also posit that non-linear, complex relationships be-
tween variables can better explain the underlying dynam-
ics in the commercial real estate market. Each ML method 
will reflect such non-linear relations between property val-
ues and key determinants by maintaining variables such 
as an investor status, a proxy for asymmetric information 
and/or investor clientele. As ML approaches outperform 
relative to standard “parametric” econometric approaches 
while reflecting such complex relations, we can conclude 
that ML methods reduce the generalization error of the 
prediction by addressing misspecification errors and/or 
entrenched non-linearities.

Lastly, this study also focuses on increasing the inter-
pretability of ML models. One of the common criticisms 
regarding ML approaches mainly results from their com-
plex algorithms and less clear functional specifications 
(Mullainathan & Spiess, 2017). Hence, this study provides 
a partial dependent plot (PD plot) that indicates the rela-
tive impact of each input feature on the predictability of 
each model. By doing so, this study can provide the in-
fluence of each feature on the predictive power of each 
model more clearly.

Correspondingly, based upon the 215,344 US office 
transactions data over the period of 2004–2017, we extend 
the literature on modeling commercial real estate prices by 
employing various ML frameworks. First, among various 
ML approaches and a standard hedonic approach, we find 
that both RF and GBM methods provide better predictive 
powers to estimate a commercial real estate transaction 
price at the national level. Furthermore, we categorize 
the sample into each CMSA level and provide the best 
predictive model for each CMSA. Second, ML methods 
successfully address misspecification errors and/or en-
trenched non-linearities relative to a standard hedonic 



International Journal of Strategic Property Management, 2022, 26(5): 345–361 347

approach while maintaining variables regarding investor 
status, which are representative features of such non-line-
arities. Like Liu et al. (2015), non-local investor behavior 
is a significant impact on transaction price in the hedonic 
based model due to an embedded misspecification prob-
lem associated with hedonic regression and controlling for 
all necessary variables. However, the influence of investor 
status in ML models is not considered as much critical a 
factor as in the regression model. Finally, we find that the 
partial dependent plot shows a less percentage of decreas-
ing predictive power, and the relative decrease in accuracy 
of the ML model is marginal compared to the hedonic ap-
proach. Thus, the predictive estimate of transaction price 
will be a possible initial negotiating price as an unbiased 
initial reference price for non-local investors in the com-
mercial real estate market.

In addition, the traditional valuation process may be 
biased by client feedback and the level of available in-
formation set to the commercial market (Hansz & Diaz, 
2001; Gallimore & Wolverton, 2000). Especially, the real 
estate brokers and local appraisers are known to have an 
influential market information for their familiar market 
and are commissioned to overcome inferior information 
accessibility by uninformed market participants such as 
out-of-state investors. Thus, we expect out-of-state inves-
tors to employ these machine learning valuation models 
and to reduce a potential error caused by the traditional 
valuation method1. We believe the practitioners can lever-
age machine learning valuation to achieve more accurate 
investment value by collecting much larger amounts of 
available data from data providers. Therefore, this study 
provides a groundwork to practitioners to overcome a 
current challenged investment issues in commercial real 
estate transactions in a wide range of labor-intensive pro-
cesses such as valuation, underwriting, portfolio valua-
tion, assessments of underlying collateral, and potential 
risk management. With the increasing number of data 
providers and improved quality of available transaction 
data, we believe the commercial real estate investors will 
widely adopt the machine learning valuation method.

This paper is comprised of the following sections: Sec-
tion 1 describes the literature review; Section 2 provides a 
description of the data; Section 3 outlines methodology; 

1 The rise of machine learning allows a privately-held informa-
tion main sourced from individual network available to reduce 
a disparity of information quality between of private network 
group and client who adopt machine learning based informa-
tion platform (Egan, 2019). A major equity investment firm 
provides a value platform that uses machine learning tools to 
advise their clients. The new platform based on machine learn-
ing is now available for nonlocal investors and foreign client 
as investors with a tailored research reports for investors, and 
possible solution for upcoming strategic decision making for 
their portfolio including real estate. Thus, this will enhance 
information efficiency for nonlocal investor and foreign inves-
tors to dampen information asymmetry, allowing to negotiate 
with counterparts based on relatively accurate prediction on 
possible transaction price.

Section 4 presents an analysis of results; Section 5 presents 
a robustness check and, the last section presents a conclu-
sion and policy implication.

1. Literature review

The development of models that accurately measure com-
mercial real estate prices assumes greater importance in 
the process of price discovery and eventually supports in-
vestment decisions. In real estate and urban economic lit-
erature, a hedonic approach has generally been employed 
to measure prices and quantities in commercial real estate 
markets on account of the absence of asset fundamentals 
(Colwell et al., 1998; Hill, 2013). In principle, the hedonic 
relation arises due to heterogeneity: this model posits an 
explanation for a market containing heterogeneous prop-
erties, which possess diversified structural, spatial, and 
contract characteristics. By examining those heterogenei-
ties, a standard parametric hedonic approach can infer 
values of real properties.

Appraisals are generally adopted the income approach 
using the capitalization of the net income of an asset ob-
served from transactions in a similar real estate market. 
However, this approach is also criticized for using mis-
matched comparable in either time or building charac-
teristics, and appraisers are also anchored on previous 
valuations or the previous transaction price of a building. 
Therefore, the estimated appraised price shows a lag of 
the market and provides smoothed approximations of true 
market prices (Kok et al., 2017).

In general, the hedonic approach is widely adopted 
in a real estate evaluation model, especially for mass ap-
praisal. As the mass appraisal methods became more and 
more necessary, the International Association of Assessors 
(IAAO) proposed an automatic evaluation method (AVM) 
which suggested standardized methods such as Coefficient 
of Dispersion (COD) and Price-Related Differential (PRD) 
(International Association of Assessing Officers, 2013).

While hedonic AVMs are preferred for mass apprais-
als because of their simplicity based on simple regression 
models that are easy to implement and understand, AVMs 
are also criticized for inaccurate estimation caused by 
non-linear relationships between the predicted value and 
explanatory variables. Therefore, a single predictive for-
mula model might not be successful at predicting property 
value most accurately.

This methodology often reveals critical pitfalls due to 
specification errors (Hill, 2013; McMillen & Redfearn, 
2010) and/or sampling errors (Peterson & Flanagan, 
2009). To mitigate those issues, non- or semi-parametric 
estimation techniques have consistently been employed. 
Due to the combination of highly flexible functional 
forms and spatially varying coefficients, these alternatives 
can estimate property values without imposing arbitrary 
contiguity matrices and/or distributional assumptions on 
the data (see e.g. McMillen & Redfearn, 2010; Meese & 
Wallace, 1991; Parmeter et  al., 2007). In the same vein, 
machine learning approaches have increasingly played a 



348 J. Jung et al. Does machine learning prediction dampen the information asymmetry for non-local investors?

learning approaches have broadly been employed to ad-
dress non-linearities that are embedded in structural and 
spatial features, the underlying dynamics within convo-
luted transactions have not been fully explored in the 
prediction of commercial real estate prices. By compar-
ing the commercial real estate price prediction power of 
various machine learning techniques that include Random 
Forest (RF), Boosting, Support Vector Machines (SVM), 
and Deep Neural Networks (DNN), this study suggests 
implementable, reliable predictive models for commercial 
real estate prices.

2. Data

The raw data consist of 215,344 transaction-based of-
fice properties provided by Costar corresponding to the 
2004–2017 period. However, we only include the office 
transaction data only for ten major CMSA; Boston, Chi-
cago, Denver, Las Vegas, Los Angeles, Miami, New York, 
San Diego, San Francisco, and Washington DC. We also 
exclude data with one or more missing variables and 
property with special conditions such as auction, 1031 
tax-deferred exchanges, and building contaminations. Af-
ter verifying the data with regional matching and miss-
ing variables, we include a total of 19,640 transactions for 
ten major CMSA. Table  1 contains descriptive statistics 
for commercial property included in this study including 
transaction price, floor, building size(sf), land size(sf), 
age, number of parking space, number of tenants, Co-
Star 5 Star rating classification system2, Broker informa-
tion3, Sunbelt as indicating variable if property located in 
Sunbelt4, Investor Status (non-local buyer or seller), and 
CMSA GDP5. The average transacted property price is 
$ 1,483,627, which is 14.21 in natural logarithm value, and 

2 The CoStar 5 Star Building Rating System provides a nation-
al rating for commercial buildings. Properties are evaluated 
and rated using a universally recognized 5 Star scale based 
on the characteristics of each property type, including: ar-
chitectural attributes, structural and systems specifications, 
amenities, site and landscaping treatments, third party cer-
tifications and detailed property type specifics (see more at 
https://www.costar.com/).

3 Top global brokerage firm list obtained from reonomy web-
site, https://www.reonomy.com/. This website provides top 
sixteenth CRE brokerage companies lists; Cushman and Wake-
field, CBRE, SVN, Lee & Associates, JLL, Colliers, NAI Glob-
al, Avison Young, Transwestern, Marcus & Millichap, Kidder 
Matthews, Newmark Knight. Frank, RE/MAX Commercial, 
Keller Williams, Savills, Coldwell Banker.

4 The sunbelt is a region of the US generally considered to 
stretch across the Southeast and Southwest. The sunbelt 
consists of 13 states; Alabama, Arizona, California, Florida, 
Georgia, Louisiana, Mississippi, Nevada, New Mexico, North 
Carolina, South Carolina, Texas, Utah.

5  Gross domestic product estimates the value of the goods and 
services produced in each CMSA. A comprehensive measure 
of the economies of each CMSA areas (https://www.bea.gov/
data/gdp/gdp-county-metro-and-other-areas).

crucial role in inferring property values, as they can ide-
ally reflect such non-linearities.

Since the traditional hedonic model is criticized for its 
statistical limitation and a researcher’s quasi-selection bias 
toward a standard set of explanatory variables, we attempt 
to apply machine learning models which can improve pre-
diction accuracy through numerous trials of combinations 
of unlimited explanatory variables, training, and testing 
the model on randomly selected parts of the datasets, 
leading to precise out-of-sample tests of predictive perfor-
mance. The machine learning (ML) method in real estate 
valuation is suitable for conducting mass appraisal tech-
niques because ML method will reflect such non-linear 
relations between property values and key determinants 
by maintaining variables and self-learning algorithms. A 
well-known case is the housing valuation model of Zes-
timate by the American agency Zillow (Kok et al., 2017).

Machine learning can be classified into two major cat-
egories: supervised learning and unsupervised learning 
(Bishop, 2006; Conway, 2018; Ho et al., 2021; Mullaina-
than & Spiess, 2017). Supervised learning is defined as the 
estimated relationship between a dependent variable and 
an observed outcome and applies it to new input to pre-
dict the new outcome. When the training data includes 
outcomes, it is referred as labeled data (Bishop, 2006; 
Mullainathan & Spiess, 2017). Unsupervised learning is 
defined as a method to uncover relationship among vari-
ables through hidden structures within given sample data.

The unsupervised learning prediction or estimation 
aims to cluster a set of variables and conducts an optimi-
zation process to provide predictive value. The K-mean 
clustering algorithm and artificial neural network are clas-
sified as unsupervised learning. The unsupervised learning 
is associated with clustering problems and dimensionality 
reduction problems. In this study, linear regression, Ran-
dom Forest, Gradient Boosting Machines, Support Vector 
Machines, and Deep Neural Networks methods are classi-
fied into supervised learning to measure the prediction er-
ror on test data. Machine learning techniques are specifi-
cally appropriate for modeling complex hidden patterns 
and non-linearities that are entrenched in the relation-
ships between property prices and their structural, spa-
tial, and contract features (Cowden et al., 2019; Peterson 
& Flanagan, 2009). Unlike stochastic models, whose range 
of forecasting is often limited to the scope of variables they 
choose, furthermore, machine learning models can better 
predict a stochastic variety of commercial real estate prices 
without such limitations. Especially, we adopt the Neural 
Network method, which provides a practical alternative to 
the traditional least square model and efficiently analyzes 
the non-linearities in the underlying relationships among 
the parameters. We propose that neural networks could 
be robust to model misspecification and especially to vari-
ous peculiarities in how various explanatory variables are 
measured (Peterson & Flanagan, 2020).

This study particularly focuses more on examining 
the impact of complex transaction processes (Wong et al., 
2012; Zhou et al., 2015). Even though previous machine 

https://www.costar.com/
https://www.reonomy.com/
https://www.bea.gov/data/gdp/gdp-county-metro-and-other-areas
https://www.bea.gov/data/gdp/gdp-county-metro-and-other-areas
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3. Methods

3.1. Standard parametric hedonic methods

The hedonic approach decomposes expenditures on com-
mercial real estate into measurable prices and quantities so 
that prices for different assets or for identical assets in dif-
ferent places can be predicted and compared (Hill, 2013; 
Meese & Wallace, 1991). Existing hedonic models have 
employed various functional forms, and the advantages 
and disadvantages of each model substantially rely on 
their functional forms. A standard parametric hedonic ap-
proach, for instance, is a simple way to measure price. Due 
to its rigid structure, however, this method commonly re-
veals omitted variable bias, which refers to bias that arises 
from missing characteristics of assets, and inflexibility that 
exerts severe restrictions on the potential interactions be-
tween features (Hill, 2013; Peterson & Flanagan, 2009).

To examine discrepancies between a conventional he-
donic approach and various machine learning approach-
es more explicitly, this study constructs a hedonic price 
model as follows:

( ) 1 2 3 4ln P X Z T G= γ + γ + γ + γ + ε , (1)

the assessed value is $ 782,305, which is 13.57 in natural 
logarithm value. The property size(ln) is 15,367 SF which 
is 9.64 in natural logarithm value. The average building 
age is approximately 43 years, and the number of floors 
is 2.88 floors. The average number of parking is 101.69, 
and the average number of tenants is approximately 7 ten-
ants in each building. Also, approximately 13% of buyer’s 
broker is listed within the top 16th broker company, and 
24% of seller’s broker is one of top 16th broker company. 
A total 21% of transactions occurred in the Sunbelt state. 
A total 21% of buyer is non-local buyer and 43% of seller 
is non-local seller involved in transaction, respectively.

It is worth noting that, unlike capital assets such as 
stocks and bonds that are traded frequently, commercial 
real estate transactions irregularly occur in nature, and so 
the total observations in our study are also irregularly oc-
curring series of office transactions over the study period. 
We postulate that this nature of irregular data frequency 
that is typically embedded in real estate trading will deci-
sively have effects on the learning process and, eventually, 
the prediction power of each machine learning approach.

Table 1. Descriptive statistics

Variable Mean S.D. Min. Max.

Transaction price (ln) 14.21 1.56 2.30 20.99
Assessed value (ln) 13.57 1.99 3.00 26.89
Building SF (ln) 9.64 1.32 6.14 15.17
Land SF (ln) 10.29 1.35 4.23 17.27
Building Age 43.74 27.73 1.00 288.00
Building Age2 2,681.81 4,092.27 1.00 82,944.00
Floor 2.88 4.22 1.00 110.00
# of Parking 101.69 196.20 1.00 4,051.00
# of Tenant 6.97 11.05 1.00 226.00
CoStar Rating 2.49 0.72 1.00 5.00
Buyer Broker 0.13 0.33 0.00 1.00
Seller Broker 0.24 0.43 0.00 1.00
Nonlocal Buyer 0.21 0.40 0.00 1.00
Nonlocal Seller 0.43 0.49 0.00 1.00
Sunbelt 0.57 0.50 0.00 1.00
CMSA GDP (ln) 13.13 0.80 11.40 14.35

Note: This table presents summary statistics for total 19,640 office property transactions for 10 major CMSA The first column shows name of each 
variable for analysis. Mean is sample mean. S.D. is standard deviation. Min and Max are minimum and maximum, respectively. The transaction price 
is denoted as price (ln) which is a natural logarithm of the transaction sale price in million U.S. dollars. The assessed value is a natural logarithm of the 
assessed value of property in million U.S. dollars. Building SF (ln) is a natural logarithm of rentable building area, measured in square foot. Land SF 
(ln) is a natural logarithm of the gross square foot of the lot. Building Age represents age of building at the sale date. Building Age2 present a possible 
U-shape effect from development effect. Floor is the total number of floors in the office building. # of parking is the total number of parking lots in the 
office building. # of Tenant is the total number of persons in the office building. CoStar Rating is a new CoStar’s five-star building rating system that 
replaces the existing classification system. Buyer Broker is a one if buyer’s broker is listed in top 16th global brokerage firms. Broker (Seller) is a one if 
seller’s broker is listed in top global brokerage firms. Non-local Buyer and Non-local Seller are also indicator variables, taking one value of one if the 
buyer’s address is a different geographic state. Sunbelt  is indicating variables, taking on a value of one when the office building is located in the Sunbelt 
State. CMSA GDP (ln) is a natural logarithm of gross domestic product for 10 major CMSA in million U.S. dollars.
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where: ( )ln P  denotes the log of the transaction price; 
X denotes a matrix of property characteristics; Z denotes 
a matrix of transaction characteristics; T denotes a matrix 
of time period dummies; G denotes a matrix of geographic 
dummies; e denotes the error term.

3.2. Ensemble methods

The Classification and Regression Tree (CART) is a tree-
based decision process based upon the recursive parti-
tioning algorithm, characterized as its intuitive explana-
tory power to examine non-linear relations and flexibility 
to support multi-class regression and classification (Čeh 
et al., 2018). As a result, the CART has incrementally been 
employed to predict commercial and residential real estate 
prices (Čeh et al., 2018; Gupta et al., 2022; Ho et al., 2021; 
Pérez-Rave et al., 2019; Yilmazer & Kocaman, 2020).

The predictive performance of CART models can be 
improved specifically through various ensemble learn-
ing techniques, such as bagging, boosting, and stacking 
(Breiman et  al., 2017). An ensemble learning technique 
refers to a process that aggregates the prediction of dis-
tinct, diverse models, which stem from different modeling 
algorithms and/or different training data sets. That is, an 
ensemble model performs as a single model, even though 
it works with multiple base models within the model. By 
doing so, this approach aims to reduce the generalization 
error of the prediction, which consists of bias, variance, 
and irreducible errors (Kotu & Deshpande, 2014).

According to the type of prediction error in which en-
semble learning techniques specifically address, ensemble 
methods can broadly be categorized into two groups: bag-
ging and boosting. The variance of the prediction error 
commonly arises when models are overfitting on a specific 
given number of training data points. As Breiman (1996) 
suggested, bagging can better perform and reduce the var-
iance of classification and regression trees by aggregating 
individual base models that have distinct statistical prop-
erties. The bias of the prediction error, on the other hand, 
typically arises when models are not learning enough from 
the training data and hence lead to unreliable predictions 
and poor generalization. The boosting algorithm converts 
a collection of weak learners into accurate, reliable learn-
ers (Schapire, 1990; Schapire & Freund, 1995).

According to ways of how models generate learners, 
furthermore, ensemble methods can broadly fall into two 
groups: parallel and sequential ensemble techniques. Par-
allel ensemble methods basically generate base learners 
in a parallel format to secure independence between the 
base learners. Random Forest models, for instance, which 
is a tweaked version of bagging, mitigate the variance of 
the prediction error by combining weak base learners that 
are independent to form a single strong learner (Breiman, 
2001). Due to their ensemble procedures, however, paral-
lel ensemble methods particularly perform less with small 
training datasets.

Sequential ensemble methods improve the predictive 
performance of models by assigning higher weights to 

previously misrepresented learners in which data depend-
ency resides. Gradient boosting, for example, reduces the 
bias of the prediction error, as new predictors are fit to 
counter the impacts of prediction error in the preceding 
predictors (Friedman, 2001). When the depth of CARTs 
and/or the number of boosting iterations increase, how-
ever, sequential ensemble methods can overfit the training 
data. To prevent this undesirable pitfall, sequential ensem-
ble methods regularize their procedures by modifying the 
update rule, penalizing the complexity of trees, and employ-
ing stochastic boosting (Friedman, 2002; Telgarsky, 2013).

3.3. Random Forest (RF)

To examine distinct features of ensemble methods ex-
plicitly, this study employs Random Forest and Gradi-
ent Boosting methods to predict commercial real estate 
prices, respectively. In our Random Forest (RF) models, 
the prediction of Bth tree for an input vector X can be 
represented by:

( ) ( ) 

1

1 | . ˆ ˆ
B

RandomForest tree

b
f x f X b

B =

= ∑  (2)

In the function estimation problem, meanwhile, 
models aim to find a function ( )*F X  that maps a set of 
random input X  to a random output y , given a train-
ing data set { }1,  N

i iy X  over the joint distribution of all 
( ),  y X  values:

( )
( )

( )( )*
, arg min , y XF X

F X E y F X= ψ , (3)

where the expected value of some specified loss function y 
is minimized.

3.4. Gradient Boosting Machines (GBM)

Boosting approximates ( )*F X  to the weighted sum of 
functions from weak learners:

( ) ( ) ( )( )1, 1
, arg min , ;

N

m m i m i i
i

y F X h X−
β −

β = ψ +β∑a
a a , (4)

where: ( );h X a  denotes a base learner; a denotes the pa-
rameters; b denotes the expansion coefficients; m denotes 
boosting iterations. According to Friedman (2001), given 
( ); mh X a , gradient boosting approximates the equation 

(NUMBER) for arbitrary loss functions y, and the optimal 
value of the coefficient bm is determined as follows:

( ) ( )( )1
1

arg min , ;
N

m i m i i m
i

y F X h X a−
β =

β = ψ +β∑ . (5)

3.5. Support Vector Machines (SVM)

In the early 1990s, Vapnik (2013) suggested an algorithm 
for classification that has consistently evolved into Support 
Vector Machines (SVM), which has extensively been em-
ployed for performing data classification and prediction in 
a supervised machine learning framework. SVM typically 
utilizes linear and non-linear separating planes – such as 
linear and polynomial kernel functions, radial basis func-
tions (RBF), neural networks, and multi-dimensional 
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splines – to train classifiers (Cortes & Vapnik, 1995; Iz-
mailov et al., 2013). Those transformers turn the original 
space into a multi-dimensional feature space and eventu-
ally allow these separating planes to have a maximal mar-
gin to contain all the points with a very small error. Due 
to this distinct feature, in real estate research, SVM has in-
creasingly been employed to predict real estate prices (Ho 
et al., 2021; Lam et al., 2009), to predict default (Cowden 
et al., 2019), and to analyze developers’ decision making 
(Rafiei & Adeli, 2016).

The main limitation of SVM techniques for predict-
ing real estate prices is that they are black-box models, 
which are not able to have clear functional specifications. 
Furthermore, SVM is fundamentally designed to support 
binary classification. To mitigate this limitation, however, 
extended models and frameworks have consistently been 
developed, such as multi-class SVM, one-hot encoding for 
categorical features, and Support Vector Regression (SVR) 
algorithms for working with continuous and categorical 
features (see e.g. Ho et al., 2021; Rafiei & Adeli, 2016).

This study employs a SVM approach, which inputs the 
vector of explanatory variables for i th office transaction, 
Xi, that will be mapped onto a higher-dimensional feature 
space to optimize the problem as follows:

( )( )2

1

1 , . . 1 ,
2

 1, , 

N
T T

i i i i
i

minimize W W C u s t W X b u

i N
=

+ γ φ + ≥ −

= …

∑
 

(6)
where: N denotes the number of transactions; W denotes 
the parameter vector of Xi; C denotes a parameter that 
normalizes the error terms 2

iu ; ( )Xφ  denotes the kernel 
function for mapping the features; b  denotes the inter-
cept. We can state a positive semidefinite symmetric func-
tion, ( ),  K x γ , as an inner product of ( )xφ  and ( )φ γ :

( ) ( ) ( )
( ) ( ) ( )

, , ,  

    , 0 .

K x x

if andonly if K x g x g dxd g

γ = φ φ γ

∫ γ γ γ ≥ ∀  (7)

By taking the inner product of f, the new feature space 
can explicitly be found. Using the RBF kernel, for exam-
ple, a grid search over parameters such as C and γ are 
performed to determine the highest predictive power on 
the test data set.

3.6. Deep Neural Networks (DNN)

Over the past decade, Deep Neural Networks (DNN) have 
increasingly played a vital role in the field of real estate 
research. DNN refers to computing systems that can be 
characterized as Artificial Neural Networks (ANNs), par-
ticularly associated with the use of “multiple” hidden lay-
ers within the network. Due to this distinct feature, deep 
learning architectures and their learning algorithms have 
the capacity to model complex non-linear relationships. 
Hence, DNN models have broadly been adopted to predict 
real estate prices (Nghiep & Al, 2001; Xu & Gade, 2017), 
to assess real estate values (Shen & Ross, 2021; Yu et al., 
2018; You et al., 2017), and to examine urban dynamics 
(Yao et al., 2021).

Despite DNNs’ abundant benefits that model complex 
non-linearities, deep learning algorithms commonly con-
front the following pitfalls. First, DNN models are vulner-
able to overfitting and high variance when the abstraction 
layers empower them to model sparse dependency in the 
training data set (Rice et  al., 2020; Sun et  al., 2017). To 
address this issue, it is essentially required to increase the 
number of training data sets and/or to employ regulariza-
tion techniques such asdropout and weight decay. Second, 
DNN models can encounter vanishing gradient problems 
when they utilize a back-propagation learning algorithm 
for updating network weights to minimize error (Hochre-
iter, 1998). To mitigate this issue, gating mechanisms, such 
as Gated Recurrent Unit (GRU), and tweaked learning 
mechanisms, such as Long Short-Term Memory (LSTM), 
are increasingly utilized.

4. Results

In Table 2, we conduct a standard hedonic model to ex-
amine whether investors choosing a particular property 
have a marginal willingness to pay for an attribute equal to 
the derivative of the hedonic price function. In addition, 
we also consider a possible premium or discount in the 
transaction associated with non-local buyer and seller (Liu 
et al., 2015; Ling et al., 2018; Kandlbinder et al., 2018). The 
traditional hedonic model can be written as follows:

( ) 0 1 2 3 4 5 .ln    i i i i iP X Z NL Time Region= γ + γ + γ + γ + γ + γ +ε  
(8)

The log of the transaction price of the office ln(Pi) is 
a function of office property (i), observable individual 
office property characteristics (Xi), CoStar 5 star rating 
as Zi, NLi as an indicator variable based on investor sta-
tus such as non-local buyer or seller, and 2×2 indicating 
variable that represents buyer and/or seller status as if 
they are non-local buyers or sellers. Time and Region is 
indicator controlling for time and region6 fixed effect. 
And, eiz represents the error term. The advantage of this 
specification is that we can examine the theory of wheth-
er non-local buyer and seller pay premiums or discount 
in commercial real estate transactions.

We formally test for determinants for office transac-
tion price in the hedonic model associated with inves-
tor status. We find positive premiums on assessed value, 
building size, building age, floor, number of parking, 
number of tenants, and CoStar rating. We find the use of 
top brokerage services increases both buyer and seller’s 
transaction prices which may relate to higher quality se-
lection bias by top listing brokerage firms. In models (1) 

6 We control for region at CMSA level in addition to sunbelt in 
current result. The current analysis adopts transaction-based 
data and thus there may be higher frequency of transaction 
observation if investors are more interested in. Therefore, 
we believe that the current result can reflect the investment 
behavior in investment market with relatively high observed 
transaction in preferred market by investor at the CMSA level.
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Table 2. Hedonic regression analysis for the office transaction price

Dependent variables
Transaction Price (ln)

(1) (2) (3) (4) (5) (6)
Assessed Value 0.467*** 0.476*** 0.471*** 0.473*** 0.473*** 0.467***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Building SF 0.287*** 0.292*** 0.290*** 0.289*** 0.292*** 0.287***

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
Land SF –0.084*** –0.086*** –0.085*** –0.086*** –0.086*** –0.084***

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Building Age 0.012*** 0.012*** 0.012*** 0.012*** 0.012*** 0.012***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Building Age2 –0.0001*** –0.0001*** –0.0001*** –0.0001*** –0.0001*** –0.0001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Floor 0.024*** 0.024*** 0.024*** 0.024*** 0.023*** 0.024***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Parking 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0004***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Tenant –0.014*** –0.014*** –0.014*** –0.014*** –0.014*** –0.014***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Rating2 Star 0.112*** 0.104*** 0.106*** 0.107*** 0.107*** 0.111***

(0.032) (0.032) (0.032) (0.032) (0.032) (0.032)
Rating3 Star 0.252*** 0.245*** 0.246*** 0.249*** 0.248*** 0.252***

(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)
Rating4 Star 0.828*** 0.846*** 0.841*** 0.836*** 0.841*** 0.829***

(0.048) (0.048) (0.048) (0.048) (0.048) (0.048)
Rating5 Star 1.784*** 1.819*** 1.803*** 1.796*** 1.818*** 1.784***

(0.103) (0.103) (0.103) (0.103) (0.103) (0.103)
Buyer_Broker 0.127*** 0.127*** 0.130*** 0.121*** 0.130*** 0.127***

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021)
Seller_Broker 0.093*** 0.101*** 0.097*** 0.096*** 0.101*** 0.093***

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016)
Nonlocal_Buyer 0.202***

(0.017)
Nonlocal_Seller –0.106***

(0.013)
Local Buyer &
Local Seller

0.016
(0.013)

Non-local Buyer &
Local Seller

0.222*** 0.211***

(0.023) (0.024)
Local Buyer &
Non-local Seller

–0.141*** –0.102***

(0.014) (0.015)
Non-local Buyer &
Non-local Seller

0.094*** 0.091***

(0.021) (0.022)
Sunbelt 0.551*** 0.529*** 0.533*** 0.529*** 0.555*** 0.550***

(0.041) (0.041) (0.041) (0.041) (0.041) (0.041)
CMSA GDP 1.914*** 1.932*** 1.890*** 1.917*** 1.970*** 1.911***

(0.212) (0.213) (0.213) (0.213) (0.213) (0.212)
Year control Yes Yes Yes Yes Yes Yes
Region control Yes Yes Yes Yes Yes Yes
Constant –19.751*** –20.144*** –19.533*** –19.819*** –20.627*** –19.712***

(2.788) (2.799) (2.793) (2.792) (2.799) (2.789)
Observations 19,640 19,640 19,640 19,640 19,640 19,640
R2 0.681 0.678 0.680 0.680 0.679 0.681
Adjusted R2 0.681 0.678 0.679 0.679 0.678 0.681
Residual Std. Error 0.882 0.886 0.884 0.884 0.885 0.882
F Statistic 1,074.850*** 1,088.538*** 1,095.892*** 1,096.705*** 1,090.089*** 1,047.950***

Note: This table presents regression analysis for a total 19,640 office property transactions for 10 major CMSA. We also control for time and region 
fixed effect. The significance p-value levels at 10%, 5%, and 1% is denoted as *, **, and ***, respectively.
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and (2), we find that while the non-local buyer pays a 
premium on office property transaction compared to 
that of local buyer when they purchase, non-local seller 
transacted an office property with a discount compared to 
local seller when they sell an office property. We further 
classify the transaction into 2×2 cases such a transaction 
between a local buyer and local seller, between non-local 
buyer and local seller, between local buyer and non-local 
seller, and between non-local buyer and non-local seller 
transaction. The transaction between local buyer and lo-
cal seller shows a slightly higher transaction price com-
pared to other transactions. The transaction between 
non-local buyer and local seller shows a higher price than 
other transaction groups. The transaction between non-
local seller and local buyer shows a less transaction price 
compared to other transactions. The transaction between 
non-local buyer and non-local seller shows 8.7% of the 
transaction premium, but this premium is lower than the 
transaction non-local buyer to local seller, which is 22.7% 
of the premium on property price. In general, the results 
strongly support the research hypothesis that non-local 
buyers pay a premium on office transactions and seller 
pay a discount. We attribute this discount and premium 
to asymmetric information and increased search costs that 
appear to reduce the negotiation control in office transac-
tions. In Table 3, we present the optimization assumption 
of ML hyperparameter and calculate ranges for all hyper-
parameters. In order to estimate optimal defaults of ML 
algorithms, the default we follow the optimization pro-

cess by Probst et al. (2019). Table 1 provide a definition 
of hyperparameter and optimal and default value of ML 
algorithms including Random Forest, Gradient Boosting 
Machines, Support Vector Machines, and Deep Neural 
Networks. We attempt to measure the tunability of the ap-
plicable algorithm and define hyperparameters to verify 
the difference between the default setting of hyperparam-
eters and the optimal setting of hyperparameters. We also 
interpret the tunability value of individual parameters as 
how much performance can be improved by tuning each 
hyperparameter. The optimal value for each ML model is 
described in column.

In the first model, the random forest has two hyper-
parameter values; Number of trees and Max depth. The 
number of trees in Random Forest algorithm is nothing 
but a question of how many trees we should consider. 
Thus, the number of trees means a number of uncorrelat-
ed trees we ensemble to create the random forest. The Max 
depth of a tree in Random Forest is defined as the longest 
path between the root node and the leaf node. Random 
forest and gradient boosting machines are similar in basis 
of a large number of trees. While random forest approach 
follows the ‘average or majority rules’ and combines at 
the end of the process, gradient boosting machine is also 
combining decision trees but it starts the combining pro-
cess at the beginning instead of at the end. The Min-rows 
specify the minimum number of observations for node 
size. Learn rate is defined as a weighting factor for correc-
tion by new trees added to the existing model when new 

Table 3. Default and optimization of ML hyperparameter

Hyperparameters of model Default
hyperparameter

Range of
hyperparameters e

Optimal
hyperparameter

1. Random Forest (RF)
Number of trees (ntrees) 300 500, 1000, 2000 1000
Max-depth 10 30, 40, 50 50

2. Gradient Boosting Machines (GBM)
Number of trees (ntrees) 500 1000, 1500, 2000 2000
Max-depth 20 5, 10, 30 30
Min-rows 0 5, 10, 30 5
Learn-rate 0.01 0.1, 0.01 0.1
Sample-rate 0.8 0.5, 0.95 0.95

3. Support Vector Machines (SVM)
Epsilon (e) 0.1 0.05, 0.2 0.1
Cost (c) 0.01 0.01, 0.003, … 14.4 0.994
Sigma (s) 0 0.000, … 0.835 0.021

4. Deep Neural Networks (DNN)
Hidden layer 32 32, 64, 128 64, 64
Learn-rate 0.01 0.01, 0.02 0.02
Learning rate annealing 1.0E-6 1.0E-6, 1.0E-7, 1.0E-8 1.0E-7

Note: In order to estimate optimal defaults of ML algorithms, the default we follow the optimization process by Probst et al. (2019). Table 1 provides a 
definition of hyperparameter and optimal and default value of ML algorithms including Random Forest, Gradient Boosting Machines, Support Vector 
Machines, and Deep Neural Networks. They suggest measure for estimating the tunability of the applicable algorithm and define hyperparameters to 
verify the difference between the default setting of hyperparameters and the optimal setting of hyperparameters.
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trees are created to correct the residual errors in the pre-
dictions from the existing sequence of trees. A technique 
to slow down the learning in the gradient boosting model 
is to apply a weighting factor for the corrections by new 
trees when added to the model. This weighting is called 
the shrinkage factor or the learning rate, which specifies 
the learning rate. The range is 0.0 to 1.0, and the default 
value is 0.1. Sample rate defines the row (x-axis) sampling 
rate (without replacement). The sampling can improve 
generalization and lead to lower validation and test set 
errors. In Support Vector Model, the Epsilon (e) speci-
fies the epsilon-tube within which no penalty is associ-
ated with the training loss function with points predicted 
within a distance epsilon (e) from the actual value. Cost 
(c) is referred to when the optimization problem to opti-
mize both the fit of the line to data penalizing the amount 
of samples inside the margin at the same time, where cost 
(c)  defines the weight of how much samples inside the 
margin contribute to the overall error. Consequently, with 
a low cost, samples inside the margins are penalized less 
than with a higher cost. Sigma (s) determines how fast the 
similarity metrics decrease as parameterize the Gaussian 
kernel used to estimate non-linear classification. In Deep 

Neural Networks (DNN), a hidden layer is referring a lay-
er located between the input and output of the algorithm, 
in which the function applies weights to the inputs and 
directs them through an activation function as the output. 
Similar to that of GBM, learn rate is  a hyperparameter 
that allows how much correction of the model to apply to 
the existing model in response to the estimated error each 
time the model weights are updated. Learning rate anneal-
ing is a parameter that determines the schedule for learn-
ing rates starting with a relatively high learning rate and 
then lowering the learning rate during training. The first 
column includes the hyperparameters of the model, and 
the second column presents the default hyperparameter. 
The rangers of hyperparameter and optimal hyperparam-
eter value are included in columns 3 and 4.

Table 4 represents the performance of the predictive 
model for single CMSA and whole CMSA level with a 
transaction price as predictive value and a set of explana-
tory variables in Eq. (1) and Table 2. In consistent with 
previous literature on performance measures on market 
predictability, we also adopt the Root Mean Square Error 
(RMSE), Mean Absolute Percentage Error (MAPE), Mean 
Absolute Error (MAE), and R2 as a critical performance 

Table 4. Results of RMSE as a measure of prediction accuracy for whole and 10 CMSA

Number of 
observations OLS RF GBM SVM DNN

Single CMSA level
Boston 1,167 0.751 0.671 0.723 1.490 0.823
Chicago 1,041 0.893 0.762 0.784 1.840 1.075
Denver 1,289 0.744 0.613 0.685 1.050 0.898
Las Vegas 1,081 0.618 0.671 0.552 0.895 0.627
Los Angeles 5,668 0.728 0.481 0.497 0.778 0.707
Miami 753 0.511 0.419 0.406 1.140 0.471
New York 3,276 1.050 0.780 0.806 1.070 1.029
San Diego 1,587 0.708 0.481 0.469 0.844 0.608
San Francisco 2,050 0.663 0.922 0.545 0.985 0.654
Washington D.C. 1,728 0.644 1.037 0.578 1.340 0.718
10 CMSA level
RMSE 19,640 0.881 0.633 0.645 0.756 0.880
MAE 19,640 0.643 0.384 0.367 0.485 0.594
MAPE 19,640 4.691 2.826 2.678 3.568 4.456
R2 19,640 0.681 0.842 0.836 0.776 0.695
Rank – 5 1 2 3 4

Note: This table presents performance of each predictive model; OLS, Random Forest (RF), Gradient Boosting Machines (GBM), Support Vector Ma-
chines (SVM), and Deep Neural Networks (DNN). The Root Mean Square Error (RMSE) is the standard deviation of the prediction errors. Since the 
errors are squared before the errors are averaged, the RMSE gives a relatively high weight to large errors. Mean Absolute Error (MAE) measures the 
average magnitude of the errors in a set of forecasts without considering their direction. The MAE measures absolute average differences that are we-
ighted equally in the predictive value. The Mean Absolute Percentage Error (MAPE) is the mean or average of the absolute percentage errors of forecasts. 
Error is defined as actual or observed value minus the forecasted value, and percentage errors are summed without regard to sign to compute MAPE. 
R2 is the percentage of the dependent variable variation that a predictive model explains and measures the scatter of the sample observation around 
a predictive model. For the same data set, higher R2 measure represents smaller differences between the observed data and the predictive values. The 
analysis is based on a total of 19,640 office property transactions for 10 major CMSA. Thus, the result represents a predictive model for a commercial 
real estate market representing whole 10 CMSAs and each single CMSA.
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measure7. In our whole sample model, we find that the 
Random Forest Model shows a superior prediction ac-
curacy against Gradient Boosting Machine, Support Vec-
tor Machine, Deep Neural Networks, and Hedonic Price 
Model. Compared to other predictive models, Random 
Forest and Gradient Boosting Machine belongings to 
ensemble tree model show its RMSE measure of 0.633 
and 0.645, respectively, and a better prediction accuracy 
than Support Vector Machines, and Deep Neural Net-
works, 0.765 and 0.880 as RMSE measure. As expected, 
the Ordinary Least Square shows the highest inaccura-
cy with 0.881 as RMSE measure. We attribute a better 
performance of Random Forest and Gradient Boosting 
Machine to the bagging algorithm process and boosting 
algorithm process to provide a best fitting set of esti-
mates to predict the test data in sample transactions8. 
In addition, the Random Forest and Gradient Boosting 
Machine method is known as an advantageous predic-
tive model to predict the problems of multicollinearity 
issues among data and is free from the issue of missing 
variables. While Support Vector Machine is advanta-
geous for predicting unstructured and semi-structured 
data and efficiently solve complex issues with appropriate 
kernel function, it is less efficient for large data sets (Ho 
et al., 2021)9.

7 RMSE (Root Mean Square Error) is the standard de-
viation of the prediction errors and defined as follows; 
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8 Random Forest are based on bagging algorithms that aim 
to control overfitting and reduce variance with independent 
classifiers. In contrast, Gradient Boosting Machine is based 
on boosting algorithms which is an approach to reduce bias 
and variance based on sequential classifiers and increase the 
complexity of models that suffer from high bias.

9 There is still a room for improving model’s predictive power 
by scaling input features to a standard range. We can signifi-
cantly improve the performance measures of each model – in 
particular, DNN model – by normalizing the standardized fea-
tures based upon Min-Max Scaler transform as well as Stand-
ard Scaler transform, as all input features have the same mini-
mum and maximum values as input for a given algorithm, 
such as an algorithm that calculates distance measures. How-
ever, this will jeopardize the comparisons of such measures 
between hedonic and machine learning approaches, which is 
one of the critical goals of this study.

Table  4 also represents the results of prediction ac-
curacy for each CMSA level10. For each CMAs, the top 
three CMAs (Los Angeles, New York, and San Francisco) 
account for 55.97% of the whole sample observations, 
while the top five (Los Angeles, New York, San Francis-
co, Washington D.C., San Diego) account for 72.86% of 
the sample, respectively. Similar to the result of whole 10 
CMAs samples, Random Forest performed best in Boston, 
Chicago, Denver, Los Angeles, and New York. Since Ran-
dom Forests are based on bagging algorithms that aim to 
control overfitting and reduce variance with independent 
classifiers, thus it is meaningful to predict the transaction 
price in the above city as independent classifiers. Similarly, 
those CMSAs such as Las Vegas, Miami, San Diego, San 
Francisco, and Washington D.C. shows Gradient Boosting 
Machine as best performed model. Likewise, to predict 
the transaction price accurately, we should understand the 
boosting algorithms, which is an approach to reduce bias 
and variance based on sequential classifiers.

While it is important to know the model accuracy to 
predict the transaction price, we believe it is also wor-
thy to interpret the relative importance of each research 
variable to each model. The purpose of our research 
is not only to find the best accuracy model but also to 
identify which independent variables are most important 
to predict the model. Therefore, we conduct an analysis 
to evaluate the importance of a variable for predicting 
transaction price suggested by Breiman (2001)11. The 
advantage of relative variable importance is to enhance 
the interpretability of the predictive model. In a practical 
sense, it is also important to understand the reason be-
hind the best predictive commercial property transaction 

10 It is worth noting that overfitting problems can often arise 
from smaller training sets, as the fewer samples for training, 
the more models can fit the data out. As depicted in Table 4, 
however, there is not a huge discrepancy in a measure of 
prediction accuracy between the subsamples and the whole 
sample. According to the recent machine learning literature, 
furthermore, overfitting problems can even remain with re-
spectable sample sizes due to other factors, such as number of 
features relative to the sample size and hyper-parameter opti-
mization (Moghaddam et al., 2020; Vabalas et al., 2019). This 
implies that it is hard to regularize the relevant sample size 
in machine learning algorithms, as the sample size does not 
merely produce optimistically biased results.

11  We adopt the Mean Decreases Impurity importance measure 
to measure relative importance of variable to each predictive 
model Breiman (2001) propose to evaluate the importance of 
a variable Xm for predicting Y by adding up the weighted im-
purity decreases ( ) ( ),  ip t i s t∆ for all cases t where Xm is used, 
averaged over all Nt trees in the model. Generaly, splits are 
defined by a partition of the range Xm of possible values of 
a single variable Xm. The equation for variable importance is 

defined as follow; ( )
( )
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where ( )p t is the proportion /tN N  of samples reaching t and 
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model. In addition, it is important to understand the 
logic of the predictive model not only to verify the ac-
curacy of the model but also to find a way to improve the 
model by focusing on the important variables. In addi-
tion, the variable importance measure enables to select 
the significant variable and thus has similar performance 
in much less training time with massive train data set. In 
Figure 1, variable importance for each predictive mode 
is depicted. In all predictive models, the assessed value 
has a higher importance value scaled as 1 followed by 
building SF as an approximate value of 0.43, 0.39, and 
0.57 in RF, GBM, and SVM, respectively. However, we 
believe that the variable importance from DNN does not 
provide much useful information about the relative vari-
able importance difference among the variables.

The Random Forest and Support Vector Machine sug-
gest CoStar Rating as the third critical variable but Gradi-
ent Boosting Machines suggest land SF as an important 
variable in order. The GRDP is considered a critical vari-
able at less than 5% importance compared to the assessed 
value in Random Forest. The investor status as non-local 
buyer does have an importance value of approximately 
12% compared to the assessed value in Support Vector 
Machines. Interestingly, higher accuracy models in the 
above analysis, the Random Forest and Gradient Boost-
ing Machines do not consider investor status as the critical 
value that influence the model prediction.

Also, it is important to note that the critical research 
variable in this study is investor’ status as a local buyer 

and seller versus non-local buyer and seller. Initially, we 
establish the local buyer and seller has superior to access 
local information and network, and thus they will be in an 
advantageous position when negotiating non-local buyer 
and seller. Although we find statistically significant em-
pirical evidence in hedonic regression model reported in 
Table 2, we were not able to find the significant result from 
variable importance analysis in Figure  1. Only Support 
Vector Machine suggests the non-local buyer as an im-
portant variable predicts the model as the 6th important 
variable in order. We suspect that the significant result on 
investor status in hedonic model may be time dependent 
and focused on specific property types in certain years, 
such as financial crisis or regional economic shock in a 
certain time frame, since the significant effect has dis-
appeared in the bagging and boosting method utilizing 
bootstrapping repeat samplings such as Random Forest 
and Gradient Boosting Machine. In this sense, we expect 
from the long-term perspective that this machine learn-
ing prediction model may be an alternative tool to make 
an unbiased estimate for suggestive asking price or initial 
negotiating price for non-local buyer to overcome possible 
inferior information accessibility over local investors. In 
Figure 2, we include a partial dependent plot to show the 
marginal effect of each variable on the predicted outcome 
of a machine learning model. A partial dependence plot 
can show whether the relationship between the target and 
a feature is linear, monotonic or more complex.

Random Forest (RF) Gradient Boosting Machines (GBM)

Support Vector Machines (SVM) Deep Neural Networks (DNN)

Note: Variable importance (VI) represents the statistical significance of variables in each model with respect to its effect on the predictive model. We 
present variable importance according to the scaled standard importance measure, which rescales the related importance from 1 most critical variable 
and 0 least critical variable.

Figure 1. Variable importance by machine learning model



International Journal of Strategic Property Management, 2022, 26(5): 345–361 357

5. Robustness check

In this section, we perform an additional robustness check 
for our study. At first, we conduct additional analysis for 
model validation as a robustness check of model accuracy. 
A validation dataset is a sample of data drawn back from 
the training model process for the purpose of tuning the 
parameters of model. The initial analysis described in Ta-
ble 4 consists of dataset (100%), and we divide the whole 
dataset into two datasets; training dataset (70%) and test 
dataset (30%). Thus, the best-fitted model is estimated 
from the training dataset (70%) predict the test dataset 
(30%). However, we further examine the validation pro-
cess with a validation data set. The validation process is 
useful for estimating the test error related to fitting a pre-
dictive model on a training dataset. The validation process 

randomly divides the available set observations (100%) 
into a training set (60%) and a validation set (20%), as 
depicted in the bottom column on Figure 2. The predic-
tive model fits on the training dataset (60%), and the fit-
ted model are supposed to predict the validation dataset 
(20%) for the purpose of tuning hyperparameters of fitted 
model from training set. And fitted model after tuning 
hyperparameters at the validation process predicts the test 
dataset as a subset of the training dataset. Thus, the clear 
difference among the training set, validation set, and test-
ing set is that the training set is used for learning to fit the 
parameters of the classifier while the validation set is used 
to tune the parameters of the classifier, and test set is used 
to only to evaluate the performance of the fitted model as 
depicted in Figure 3.

Figure 2. Plots of partial dependence

<-------------------------------------------------------------- Initial process -------------------------------------------------------------- > 

Training  

dataset (70%)  
Test  

dataset (30%) 

   

<------------------------------------------------- Validation process as robustness test ------------------------------------------------>  

Training  

dataset (60%) 

Validation 

dataset (20%) 

Testing  

dataset (20%) 

Figure 3. A structure of train set, validation set, and test set of ML process
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Table 5 presents the result of RMSE in validation and 
test dataset as robustness check with validation process. 
The validation dataset is used to process for tuning the 
parameters of the fitted predictive model from the training 
dataset. Thus, we expect the validation process improves 
the stability of the predictive model by avoiding the over-
fitting issue, which implies a possible reduction of the ac-
curacy of the initial model prediction reported in Table 4. 
We find the difference between validation and test data set 
is marginal less than 0.01 in random forest and 0.015. In 
Random Forest in Table 5, as expected, the RMSE measure 
of the accuracy of test dataset shows 0.641, a lower ac-
curacy than initial process 0.633, and Gradient Boosting 
Machine shows 0.648, a lower RMSE than 0.633 of RMSE 
of initial process.

Furthermore, we conducted the validation process with 
a validation data set using 10 high variable importance de-

rived from Random Forest, Gradient Boosting Machines, 
Support Vector Machines, and Deep Neural Networks, 
and the selected variables are depicted in Figure 1. In the 
ordinary linear regression model generally, many explana-
tory variables can easily increase the explanation of model 
accuracy. In this case, model estimation is overestimated 
and challenging to interpret. To mitigate these concerns, 
we use ten relatively high-importance variables calculated 
in Figure 1. Table 6 shows the prediction accuracy results 
in validation and test dataset using the top 10 variable im-
portance. We find that all models satisfied the difference 
between validation and test data set is marginally less than 
0.05. In Random Forest in Table 6, as expected, the RMSE 
measure of the accuracy of the test dataset shows 0.661, a 
lower accuracy than the initial process 0.673, and Gradi-
ent Boosting Machine shows 0.664, a lower RMSE than 
0.655 of RMSE of the initial process. As a result, we find 

Table 5. Result of RMSE on predictive accuracy models by 10 CMSA in validation and test dataset

Single CMSA 
level

RF GBM SVM DNN

Validation Test DIFF Validation Test DIFF Validation Test DIFF Validation Test DIFF

Boston 0.707 0.701 –0.006 0.787 0.758 –0.030 1.570 1.560 –0.010 0.851 0.801 –0.050
Chicago 0.781 0.813 0.032 0.783 0.872 0.090 1.800 1.840 0.040 1.035 1.099 0.064
Denver 0.620 0.673 0.053 0.652 0.688 0.035 1.090 1.220 0.130 0.846 0.841 –0.005
Las Vegas 0.509 0.620 0.111 0.604 0.655 0.052 0.954 0.991 0.037 0.561 0.671 0.110
Los Angeles 0.494 0.494 0.001 0.539 0.501 –0.038 0.805 0.859 0.054 0.728 0.739 0.011
Miami 0.425 0.443 0.018 0.371 0.430 0.059 1.230 0.984 –0.246 0.467 0.517 0.051
New York 0.830 0.741 –0.089 0.859 0.774 –0.085 1.230 1.150 –0.080 1.058 1.053 –0.005
San Diego 0.647 0.629 –0.018 1.046 0.954 –0.092 0.938 1.010 0.072 0.710 0.696 –0.014
San Francisco 0.640 0.512 –0.128 0.658 0.545 –0.113 1.050 1.020 –0.030 0.672 0.622 –0.051
Washington D.C 0.567 0.478 –0.089 0.604 0.508 –0.095 1.410 1.490 0.080 0.781 0.650 –0.131
10 CMSA level
RMSE 0.649 0.641 –0.009 0.664 0.648 –0.015 0.755 0.760 0.005 1.066 0.980 –0.087
MAE 0.387 0.387 0.000 0.377 0.387 0.011 0.495 0.486 –0.009 0.647 0.619 –0.028
MAPE 2.979 2.873 –0.106 2.979 2.931 0.048 3.650 3.572 0.078 4.541 4.550 –0.028
R2 0.829 0.827 –0.002 0.825 0.825 0.000 0.777 0.772 –0.005 0.552 0.619 0.068

Note: Root Mean Square Error (RMSE) is the standard deviation of the prediction errors. Since the errors are squared before the errors are averaged, 
the RMSE gives a relatively high weight to large errors. Mean Absolute Error (MAE) measures the average magnitude of the errors in a set of forecasts, 
without considering their direction. The MAE measures absolute average difference that are weighted equally in the predictive value. The Mean Absolute 
Percentage Error (MAPE) is the mean or average of the absolute percentage errors of forecasts. Error is defined as actual or observed value minus the 
forecasted value and percentage errors are summed without regard to sign to compute MAPE. R2 is the percentage of the dependent variable variation 
that a predictive model explains and measures the scatter of the sample observation around a predictive model.

Table 6. Result of prediction accuracy in validation and test dataset using 10 high variable importance variables for 10 whole CMSA

RF GBM SVM DNN

10 CMSA Validation Test DIFF Validation Test DIFF Validation Test DIFF Validation Test DIFF

RMSE 0.673 0.661 –0.012 0.655 0.664 0.009 0.865 0.848 –0.017 0.843 0.874 0.031
MAE 0.423 0.403 –0.020 0.378 0.398 0.020 0.588 0.576 –0.012 0.571 0.580 0.009
MAPE 3.114 2.973 –0.141 2.788 2.921 0.133 4.349 4.256 –0.093 4.161 4.211 0.050
R2 0.821 0.827 0.005 0.830 0.826 –0.004 0.708 0.716 0.008 0.720 0.697 –0.023
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that it was the same as the results analysed in Tables 4 
and 5. The findings from Table 6 provide consistent results 
compared to our previous results.

Conclusions

In this study, we examine the machine learning method to 
measure the prediction accuracy for commercial real es-
tate transaction prices. Previous researches attempt to dis-
cuss a machine learning methodology and its application 
on the residential market (Mullainathan & Spiess, 2017; 
Ho et al., 2021). We contribute to this literature by provid-
ing an accuracy measure based on the machine learning 
method in the commercial real estate market. Utilizing 
total 19,640 CoStar office transaction data covering for 
national level and 10-CMSA level over 14 years of data 
length, we attempt to analyze machine learning methods; 
Random Forest and Support Vector Machine to estimate 
the best prediction model for commercial real estate trans-
action price. We also contribute to the existing literature 
by providing empirical evidence of investor status as non-
local buyer and non-local seller in the context of machine 
learning framework. The result from machine learning 
with superior accuracy over the hedonic regression model 
will be an unbiased estimate for non-local investor in the 
commercial real estate market. While we not only liter-
ally provide an accuracy of each prediction model, we also 
provide a relatively marginal influence to each prediction 
model to verify the relative importance of each variable.

The major finding of our study is that there is a sig-
nificant difference between the conventional hedonic ap-
proach and machine learning methods: Random Forest, 
Gradient Boosting Machine, Support Vector Machine, and 
Deep Neural Networks. Consistent with a recent study in 
the residential market by Ho et  al. (2020), we also find 
the Random Forest and Gradient Boosting Machine per-
formed best in office property transaction prices at both 
national and CMSA levels.

In the analysis of hedonic regression model, the find-
ing suggests that investor status is statistically significant 
to the transaction price. Consistent with previous litera-
ture (Liu et al., 2015; Ling et al., 2018), non-local buyers 
systematically pay a premium when they transact office 
property, and non-local seller systematically sold an office 
property with a discount when they transact. In hedonic 
regression analysis, we also find statistically significant 
property specific variables such as assessed value, build-
ing size, building age, floor, number of parking, number 
of tenants, and CoStar rating. Thus, we can confirm that 
non-local buyer pays a premium on office property trans-
action compared to that local buyer when they purchase, 
and non-local seller transacted an office property with 
discount compared to local seller when they sell an of-
fice property in the hedonic regression analysis. However, 
this investor status effect on transaction price has disap-
peared or at least dampened in optimized machine learn-
ing estimate. We find that Random Forest and Gradient 

Boosting Model as the best predictive model but none of 
these models suggest a variable of investor status as at least 
the 10th important variable. We attribute an inconsistent 
outcome to the characteristics of each machine learning 
method. The Random Forest and Gradient Boosting Ma-
chine are both based on process of sampling from training 
data set and then applies it to test dataset to adjust the 
prediction model.

In hedonic model, there might be an increase in 
non-local buyer transactions during a regional economic 
downturn or time period of increase transactions. Thus, 
the transaction associated non-local investor as a dataset 
can be treated as time-specific and regional-specific isolat-
ed dataset and treated as dummy variables that distinguish 
its effect from other variables. On the other hand, the ob-
servation randomly drawn from the training data set may 
contain general characteristics to accurately explain its test 
dataset. The possible time-specific and regional-specific 
investor’s effect might be generalized in the optimization 
process. We believe this logic is also applicable similarly 
to the validation process. The search process to optimize 
model is based on bagging algorithm and boosting algo-
rithms. If the sample observations of the predictive model 
represent a general characteristic of each model, then the 
effect transactions associated with non-local investors may 
decay, and the predicted value can be an unbiased estimate 
for non-local investors in the future transaction.

Thus, if non-local buyers and sellers are sufficiently 
informed on the possible transaction price estimated by 
machine learning method, then a possible premium paid 
by non-local buyer and discount charged by non-local 
seller will be dampened or at least reduced. However, our 
study also has a limitation in practice. Although we at-
tempt to optimize the prediction model process with a set 
choice and value range of variable size and number, we 
were not able to provide the best or most practical opti-
mization condition persistent for future trials. Also, we 
follow to make a partition of the training data set and test 
data set, but it is still not also standardized and still needs 
to be examined. Also, in a practical sense, there might be a 
trade-off between a direct interpretation of the magnitude 
of causal effect by interpreting the coefficient in a hedonic 
framework and better prediction accuracy in the machine 
learning method with an ambiguous interpretation of di-
rect causal effect on the dependent variable.

To conclude, due to increased information in the 
commercial real estate market, we were able to attempt 
to analyze a new analytical machine learning method to 
estimate commercial real estate market transaction prices. 
Since the increased amount of accessible qualitative com-
mercial data, we were able to compare the new machine 
learning method and the traditional hedonic approach. 
We believe that our study will be a groundwork for further 
discussion on methodological innovation to the valuation 
of the commercial real estate market with ongoing innova-
tion in commercial real estate datasets and technological 
innovation.
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