Share:


Assessment of recent GOCE-based global geopotential models and EGM2008 in Niger Republic

    Salissou Ibrahim Yahaya   Affiliation
    ; Driss El Azzab Affiliation

Abstract

In this study, we assessed recent GOCE-based Global Geopotential Models (GGMs) and EGM2008 in Niger.  The combined GGMs EIGEN_6C4, GECO and EGM2008 were evaluated up to their maximum degree and order (d/o) 2,190 to select the one for gravity database densification. The following pure satellite GGMs were assessed for the modelling of the long and medium wavelengths in geoid computation: GGM05G, ITU_GGC16, EIGEN_6S4v2 and the fifth releases from direct (DIR5), space-wise (SPW5) and time-wise (TIM5) approaches. The GGMs are compared to terrestrial gravity data and geoid heights from GNSS/Levelling points before and after applying spectral enhancement method (SEM) by residual terrain model (RTM) for combined models and by RTM and the coefficients of selected combined GGM for pure satellite models. The agreements of combined GGMs with terrestrial gravity data and GNSS/Levelling points, in terms of root mean square (RMS) are about 4.88 to 5.02 mGal and 0.14 to 0.16 m, respectively. EIGEN_6C4 was selected as it showed the best performance in terms of geoid height differences and the probability of 3-sigma rule for gravity anomaly differences. At d/o 200, DIR5 showed a good agreement with terrestrial gravity data (5.04 mGal) and GNSS/Levelling points (0.15 m) after applying SEM, it was then retained. All GOCE-based models exhibited a good performance in long and medium wavelengths confirming the good recovery of the gravity field by the spatial gravity mission in these spectral bands.

Keyword : geopotential model, GOCE, EGM2008, geoid, gravity anomaly, GNSS/Levelling, Niger

How to Cite
Ibrahim Yahaya, S., & El Azzab, D. (2019). Assessment of recent GOCE-based global geopotential models and EGM2008 in Niger Republic. Geodesy and Cartography, 45(3), 116-125. https://doi.org/10.3846/gac.2019.8699
Published in Issue
Oct 25, 2019
Abstract Views
1156
PDF Downloads
471
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abd-Elmotaal, H. A. (2015). Validation of GOCE Models in Africa. Newton’s Bulletin, (5), 149-162. Retrieved from http://www.isgeoid.polimi.it/Newton/Newton_5/11_Hussein_149_162.pdf

Akyilmaz, O., Ustun, A., Aydin, C., Arslan, N., Doganalp, S., Guney, C., Mercan, H., Uygur, S. O.; ,Uz, M., & Yagci, O. (2016). ITU_GGC16 The combined global gravity field model including GRACE & GOCE data up to degree and order 280. GFZ Data Services. https://doi.org/10.5880/icgem.2016.005

Apeh, O. I., Moka, E. C., & Uzodinma, V. N. (2018). Evaluation of gravity data derived from global gravity field models using terrestrial gravity data in Enugu State, Nigeria. Journal of Geodetic Science, 8(1), 145-153. https://doi.org/10.1515/jogs-2018-0015

Barthelmes, F., & Köhler, W. (2016). International Centre for Global Earth Models (ICGEM). Journal of Geodesy, The Geodesists Handbook, 90(10), 907-1205. https://doi.org/10.1007/s00190-016-0948-z

Benahmed Daho, S. A. (2010). Assessment of the EGM2008 gravity field in Algeria using gravity and GPS/Levelling data. In International Association of Geodesy (IAG)-Gravity, Geoid and Earth Observation (pp. 459-466). Chania, Crete, Greece, 23-27 June 2008. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_61

Bettadpur, S., Ries, J. C., Eanes, R., Nagel, P., Pie, N., Poole, S., Richter, T., & Save, H. (2015). Evaluation of the GGM05 Mean Earth Gravity models. In Geophysical Research Abstracts-European Geosciences Union(EGU)2015-4153 (Vol. 17). Vienna, Austria.

Brockmann, J. M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., & Schuh, W.-D. (2014). EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophysical Research Letters, 41(22), 8089-8099. https://doi.org/10.1002/2014GL061904

Bruinsma, S. L., Förste, C., Abrikosov, O., Marty, J.-C., Rio, M. H., Mulet, S., & Bonvalot, S. (2013). The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40(14), 3607-3612. https://doi.org/10.1002/grl.50716

Drinkwater, M. R., Floberghagen, R., Haagmans, R., Muzi, D., & Popescu, A. (2003). GOCE: ESA’s first earth explorer core mission. In G. Beutler, M. R. Drinkwater, R. Rummel, & R. Von Steiger (Eds.), Earth Gravity Field from Space – From Sensors to Earth Sciences (Vol. 17, pp. 419-432). Springer Netherlands. https://doi.org/10.1007/978-94-017-1333-7_36

El Brirchi, E. H., & El Azzab, D. (2011). Improving geoid determination over Morocco area using Goce Level 2 Data. In 4th International GOCE User Workshop’ (p. 6). Technical University of Munich, Germany.

Foroughi, I., Afrasteh, Y., Ramouz, S., & Safari, A. (2017). Local evaluation of Earth Gravitational Models, case study: Iran. Geodesy and Cartography, 43(1), 1-13. https://doi.org/10.3846/20296991.2017.1299839

Förste, C., Bruinsma, S. L. Abrikosov, O., Rudenko, S., Lemoine, J.-M., Marty, J.-C., Neumayer, K. H., & Biancale, R. (2016). EIGEN-6S4: A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. V. 2.0. GFZ Data Services. https://doi.org/10.5880/icgem.2016.008

Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J.-M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., & Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/icgem.2015.1

Gatti, A., & Reguzzoni, M. (2017). GOCE gravity field model by means of the space-wise approach (release R5). GFZ Data Services. https://doi.org/10.5880/icgem.2017.005

Gilardoni, M., Reguzzoni, M., & Sampietro, D. (2015). GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica Et Geodaetica. https://doi.org/10.1007/s11200-015-1114-4

Godah, W., & Krynski, J. (2015). Comparison of GGMs based on one year GOCE observations with the EGM08 and terrestrial data over the area of Sudan. International Journal of Applied Earth Observation and Geoinformation, 35, 128-135. https://doi.org/10.1016/j.jag.2013.11.003

Hirt, C., Featherstone, W. E., & Marti, U. (2010). Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. Journal of Geodesy, 84(9), 557-567. https://doi.org/10.1007/s00190-010-0395-1

Hirt, C., Gruber, T., & Featherstone, W. E. (2011). Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. Journal of Geodesy, 85(10), 723-740. https://doi.org/10.1007/s00190-011-0482-y

Hofmann-Wellenhof, B., & Moritz, H. (2005). Physical Geodesy. Vienna: Springer-Verlag. https://doi.org/10.1007/b139113

Ibrahim Yahaya, S., & El Azzab, D. (2018). High-resolution residual terrain model and terrain corrections for gravity field modelling and geoid computation in Niger Republic. Geodesy and Cartography, 44(3), 89-99. https://doi.org/10.3846/gac.2018.3787

Ibrahim Yahaya, S., & El Azzab, D. (2019). Vertical accuracy assessment of global digital elevation models and validation of gravity database heights in Niger. International Journal of Remote Sensing, 1-20. https://doi.org/10.1080/01431161.2019.1607982

Ibrahim Yahaya, S., El Brirchi, E. H., & El Azzab, D. (2017a). Impact of datum transformation on local variations of geometric geoid in Niger. Geodesy and Cartography, 43(4), 147-157. https://doi.org/10.3846/20296991.2017.1412615

Ibrahim Yahaya, S., El Brirchi, E. H., & El Azzab, D. (2017b). Mise en place d’une base de données géographique pour le calcul du géoïde gravimétrique au Niger. In Congrès International MORGEO2017 sur les Technologies Géospatiales: Applications et Perspectives, 16–17 Mai 2017, Casablanca, Maroc.

Janák, J., & Šprlák, M. (2006). A new software for gravity field modelling. Geodetic and Cartographic Horizon, (52), 1-8 (in Slovak).

Kadlec, M. (2011). Refining gravity field parameters by residual terrain modeling (Doctoral Thesis). Department of Mathematics, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic.

Merry, C. L. (2009). EGM2008 Evaluation for Africa. Newton’s Bulletin, 4, 200-206. Retrieved from http://www.isgeoid.polimi.it/Newton/Newton_4/Report_EA10_Africa.pdf

Omang, O. C. D., & Forsberg, R. (2000). How to handle topography in practical geoid determination: three examples. Journal of Geodesy, 74(6), 458-466. https://doi.org/10.1007/s001900000107

Orupabo, S., Opuaji, T. A., & Adekunle, I. A. (2014). 50-points data for deriving transformation parametrers of geodetic data in Nigeria. Indian Journal of Scientific Research and Technology, 2(1), 97-101.

Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., … Tscherning, C. C. (2011). First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85(11), 819-843. https://doi.org/10.1007/s00190-011-0467-x

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117(B4), B04406. https://doi.org/10.1029/2011JB008916

Rechenmann, J. (1966). Catalogue des stations gravimétriques réoccupables en Afrique occidentale: réseau ORSTOM, mesures effectuées de 1953 à 1965. Cahier d’ORSTOM – Série Géophysique, 7, 195. Retrieved from http://www.documentation.ird.fr/hor/fdi:14966

Šprlák, M., Gerlach, C., & Pettersen, B. (2012). Validation of GOCE global gravity field models using terrestrial gravity data in Norway. Journal of Geodetic Science, 2(2), 134-143. https://doi.org/10.2478/v10156-011-0030-y

Šprlák, M., Gerlach, C., & Pettersen, B. (2015). Validation of GOCE global gravitational field models in Norway. Newton’s Bulletin, (5), 13-24. Retrieved from http://www.isgeoid.polimi.it/Newton/Newton_5/03_Sprlak_13_24.pdf

Tocho, C., & Vergos, G. S. (2015). Assessment of different-generation GOCE-only and GOCE/GRACE Earth Global Gravity Models over Argentina using terrestrial gravity anomalies and GPS/Levelling data. Newton’s Bulletin, (Special Issue 5), 105-126.

Ulotu, P. E. (2009). Geoid model of Tanzania from sparse and varying gravity data density by the KTH method. (PhD Dissertation). Department of Transport and Economics, Division of Geodesy, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden.

Varga, M., Grgic, M., Bjelotomić, O., & Bašić, T. (2018). Investigation and comparison of RCR and LSMSA regional geoid modelling approaches. https://doi.org/10.13140/RG.2.2.35079.04008

Yakubu, C., Ferreira, V., & Asante, C. (2017). Towards the selection of an optimal global geopotential model for the computation of the long-wavelength contribution: A case study of Ghana. Geosciences, 7(4), 113. https://doi.org/10.3390/geosciences7040113