Harmonization of marine gravity data in Eastern Baltic

    Vents Zusevics Info
DOI: https://doi.org/10.3846/gac.2025.23991

Abstract

Marine gravity datasets covering areas of state scale typically are made up of data that has been surveyed over multiple campaigns. These campaigns often take place many years apart, are of varying resolution and accuracy. This is due to ship-borne campaigns being much more expensive and time consuming than the ones on land; because of this, there is added value in validating and possibly correcting older data sets.

Over the course of recent BalMarGrav marine gravity project, dense, high quality gravity data was obtained covering most of the Latvian exclusive economic zone. The new data have been compared to campaigns, both as means of new data validation, and to check for possible biases among older data sets. Purpose of this research is to further the effort, to provide wider coverage of old marine gravity points, to test automated gravity point digitization, and to perform inter-campaign comparisons, using new, filtered and more precise data.

Data recovered during this research covers the previous data gaps between sets used in previous research. Using a more complete data coverage can improve new campaign data set validation and provide insights on inter-campaign biases within older data. Recovered data cover shallow coastal areas, where gravity mapping was not done over BalMarGrav project. Thus, by applying correctional values geoid errors can be minimized in the problematic transition zone between terrestrial and marine data.

Survey reports containing 20th century marine gravity point data were digitized, using optical character recognition. Gravity point values were transferred to sea surface and transformed to modern reference frames. Both modern and historic marine gravity data were filtered for gross errors and bias tracks. Data set robustness was checked, using leave-one-out cross validation. After processing, a comparison was made between old and new data.

Results present re-processed and filtered marine gravity datasets, and their comparison statistics. Comparison statistics before and after filtering reveal the increased accuracy and precision of filtered data. Mean comparison values reveal inter-campaign biases and provide correction values, which can increase data accuracy for use as input in future research and surface modelling.

Keywords:

gravity, heights, data harmonization, navigation, cross-validation, quasigeoid

How to Cite

Zusevics, V. (2025). Harmonization of marine gravity data in Eastern Baltic. Geodesy and Cartography, 51(2), 81–87. https://doi.org/10.3846/gac.2025.23991

Share

Published in Issue
June 4, 2025
Abstract Views
90

References

Ågren, J., Strykowski, G., Bilker-Koivula, M., Omang, O., Märdla, S., Forsberg, R., Ellmann, A., Oja, T., Liepins, I., Paršeliūnas, E. K., Kaminskis, J., Sjöberg, L., & Valsson, G. (2016, September 21). The NKG2015 gravimetric geoid model for the Nordic-Baltic region [Presentation]. 1st Joint Commission 2 and IGFS Meeting International Symposium on Gravity, Geoid and Height Systems, Thessaloniki, Greece. https://doi.org/10.13140/RG.2.2.20765.20969

Aleksashin, V., Faitelson, A., & Halmuratov, A. (1968). Overview of Baltic sea gravimetry group 52/67 work in the Gulf of Riga, with overview of materials in the Baltic (Report No. 07905). State fund of Geology, Riga, Latvia.

Arlot, S., & Celisse, A. (2010). A survey of cross validation procedures for model selection. Statistics Surveys, 4, 40–79. https://doi.org/10.1214/09-SS054

Bruinsma, S., Forste, C., Abrikosov, O., Lemoine, J., Marty, J., Mulet, S., Rio, M., & Bonvalot, S. (2014). ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters, 41(21), 7508–7514. https://doi.org/10.1002/2014GL062045

Degtyar, B. F., Kuznetsov, B. P., & Moskalenko, E. P. (1969). Report occb n gravimetric research topic D.8.3./12/68, in the south-eastern part of Baltic sea (Report No. 08541). State Fund of Geology, Riga, Latvia.

Degtyar, B. F., Kovrigin, V., & Kuznetsov, V. (1970). Gravimety research in the Baltic sea (Report No. 11137). State Fund of Geology, Riga, Latvia.

Degtyar, B. F., & Dorogan, G. (1971). Gravimety research in the south eastern Baltic sea (Report No. 11138). State Fund of Geology, Riga, Latvia.

Degtyar, B. F., Dorogan, G., & Zhivov, V. (1972). Gravimety research in the south eastern Baltic sea (Report No. 11139). State Fund of Geology, Riga, Latvia.

Ellmann, A., & Oja, T. (2018, September 17–21). Development of a 5 mm geoid model – a case study for Estonia. In International Symposium Gravity, Geoid and Height Systems 2 “GRAVITY FIELD OF THE EARTH”, abstract book: The 2nd joint meeting of the International Gravity Field Service and Commission 2 of the International Association of Geodesy. Technical University of Denmark.

Ellmann, A., Oja, T., Türk, K., Gruno, A., Bloom, A., & Sulaoja, M. (2011, May 19–20). Relative gravity surveys on ice-covered water bodies. In 8th International Conference on Environmental Engineering (pp. 1394–1401). Vilnius Gediminas Technical University Press “Technika”.

Featherstone, W. E., McCubbine, J. C., Brown, N. J., Claessens, S. J., Filmer, M. S., & Kirby, J. F. (2018). The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates. Journal of Geodesy, 92(2), 149–168. https://doi.org/10.1007/s00190-017-1053-7

Forsberg, R., Olesen, A. V., Keller, K., Moller, M., Gidskehaug, A., & Solheim, D. (2001). Airborne gravity and geoid surveys in the Arctic and Baltic seas. In Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (pp. 586–592). Banff.

Förste, C., Ince, E. S., Johann, F., Schwabe, J., & Liebsch, G. (2020). Marine gravimetry activities on the Baltic Sea in the framework of the EU project FAMOS. ZfV: Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 145, 287–294. https://doi.org/10.12902/zfv-0317-2020

Haritonov, V. (1979). Technical overview of gravity surveys in shelf zone of Baltic sea (Report No. 11146). State Fund of Geology, Riga, Latvia.

Huang, J., & Véronneau, M. (2013). Canadian gravimetric geoid model 2010. Journal of Geodesy, 87, 771–790. https://doi.org/10.1007/s00190-013-0645-0

Karpitsky, V., Krivitzky, G., & Lokshin, B. (1973). Gravimety research in the south eastern Baltic sea (Report No. 11140). State Fund of Geology, Riga, Latvia.

Kovrigin, V., Lokshin, B., & Mamoshin, I. (1974). Gravimety research in the south eastern Baltic sea (Report No. 11141). State Fund of Geology, Riga, Latvia.

Liebsch, G., Schwabe, J., Varbla, S., Ågren, J., Teitsson, H., Ellmann, A., Forsberg, R., Strykowski, G., Bilker-Koivula, M., Liepiņš, I., Paršeliūnas, E., Keller, K., Vestøl, O., Omang, O., Kaminskis, J., Wilde-Piórko, M., Pyrchla, K., Olsson, P.-A., Förste, C., ... Hammarklint, T. (2023). Release note for the BSCD2000 height transformation grid. The International Hydrographic Review, 29, 194–199. https://doi.org/10.58440/ihr-29-2-n11

Lokshin, B., Mamoshin, I., & Zverev, A. (1975). Gravimety research in the south eastern Baltic sea (Report No. 11142). State Fund of Geology, Riga, Latvia.

Lokshin, B., Mamoshin, I., & Shchipachov, J. (1976). Gravimety research in the south eastern Baltic sea (Report No. 11143). State Fund of Geology, Riga, Latvia.

Mamoshin, I., & Shchipachov, I. (1977). Gravimetry research in soviet sector of the Baltic sea (Report No. 11145). State Fund of Geology, Riga, Latvia.

Märdla, S., Ågren, J., Strykowski, G., Oja, T., Ellmann, A., Forsberg, R., Bilker-Koivula, M., Omang, O., Paršelinas, E., Liepinš, I., & Kaminskis, J. (2017). From discrete gravity survey data to a high-resolution gravity field representation in the Nordic-Baltic region. Marine Geodesy, 40(6), 416–453. https://doi.org/10.1080/01490419.2017.1326428

Popovas, D., Paršeliūnas, E., Urbanas, S., Kalantaitė, A., & Žygaitė, R. (2024, March 11–14.) National report of Lithuania. Working Group Height and Geoid, Nordic Geodetic Commission Science Week, Reykyavik, Iceland.

Saari, T., Bilker-Koivula, M., Koivula, H., Nordman, M., Häkli, P., & Lahtinen, S. (2021). Validating geoid models with marine GNSS measurements, sea surface models, and additional gravity observations in the Gulf of Finland. Marine Geodesy, 44(3), 196–214. https://doi.org/10.1080/01490419.2021.1889727

Schwabe, J. (2024). Preliminary comparisons of BalMarGrav data [Presentation]. Federal Agency for Cartography and Geodesy.

Spetzgeofizika. (1992). Report on marine gravimetry survey in Baltic sea. Archive of Geodesy, Latvian Geospatial Information Agency.

Türk, K., Sulaoja, M., Oja, T., Ellmann, A., & Jürgenson, H. (2011, May 19–20). Precise gravity surveys in South Estonia from 2009 to 2010. In 8th International Conference on Environmental Engineering (pp. 1499−1505). Vilnius Gediminas Technical University Press “Technika”.

Varbla, S., Ellmann, A., Märdla, S., & Gruno, A. (2017). Assessment of marine geoid models by ship-borne GNSS profiles. Geodesy and Cartography, 43(2), 41–49. https://doi.org/10.3846/20296991.2017.1330771

Varbla, S. (2024, June 16). BalMarGrav – report on gridding [Presentation]. Tallinn University of Technology.

Wilde-Piórko, M., Bauer, T., Bilker-Koivula, M., Ellmann, A., Kamins­kis, J., Kryński, J., Olsson, P.-A., Olszak, T., Paršeliūnas, E. K., Rosowiecka, O., Schwabe, J., Strykowski, G., Szelachowska, M., Szulwic, J., Tomczak, A., Varbla, S., & Zuševics, V. (2023a). Report of availability and re-processing procedure of the historical marine gravity data of the southern and eastern Baltic Sea [Unpublished project report]. https://interreg-baltic.eu/wp-content/uploads/2023/10/report_historical_final.pdf

Wilde-Piórko, M., Bilker-Koivula, M., Dykowski, P., Ellmann, A., Kamins­kis, J., Liepiņš, I., Michałowski, R., Nilsson, T., Ols­son, P.-A., Josefsson, O., Paršeliūnas, E. K., Pyrchla, K., Pyrchla, J., Rosowiecka, O., Schwabe, J., Sękowski, M., Strykowski, G., Szulwic, J., Tomczak, A., & Zuševics, V. (2023b). Report on modern gravity data for selected areas of souther and eastern Baltic Sea [Unpublished project report]. https://interreg-baltic.eu/wp-content/uploads/2023/10/report_modern_final.pdf

View article in other formats

CrossMark check

CrossMark logo

Published

2025-06-04

Issue

Section

Articles

How to Cite

Zusevics, V. (2025). Harmonization of marine gravity data in Eastern Baltic. Geodesy and Cartography, 51(2), 81–87. https://doi.org/10.3846/gac.2025.23991

Share