Drought safety levels assessment in Uzbekistan part of the Khorezm oasis by geospatial methods
DOI: https://doi.org/10.3846/gac.2025.23771Abstract
The issue of drought has emerged as a significant challenge in the Khorezm oasis over recent decades. Furthermore, the construction of the Kushtepa canal in Afghanistan is expected to exacerbate the impact of drought in the region. It is of the utmost importance to evaluate the resilience of the oasis to drought in order to ensure effective planning and mitigation strategies. This study employed geospatial data, including the normalized difference of vegetation index (NDVI), land surface temperature (LST), normalized difference of moisture index (NDMI), soil brightness, groundwater table, digital elevation model (DEM), and distance to Amudarya river, derived from Landsat 5 TM, and Landsat 8 OLI/TIRS data (2000–2023). A weighted overlay analysis was employed to identify the most influential factors, which were found to be distance from the river, canal density, soil brightness, LST, and groundwater table. The findings indicate that 3746 km2 of the oasis is safe, while 4644.32 km2, 5563.77 km2, 5486.17 km2, 7832.64 km2 are classified as dangerous, mid dangerous, high dangerous, and extreme dangerous, respectively. It is recommended that agricultural use be prioritised in areas deemed safe, that construction be restricted, and that population migration from high-risk regions to safer areas be facilitated.
Keywords:
drought, LST, the main canals’ density, groundwater table, distance from Amudarya, drought safety levels assessment mapHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Assal, T. J., Anderson, P. J., & Sibold, J. (2016). Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. Forest Ecology and Management, 365, 137–151. https://doi.org/10.1016/j.foreco.2016.01.017
Baniya, B., Tang, Q., Xu, X., Haile, G. G., & Chhipi-Shrestha, G. (2019). Spatial and temporal variation of drought based on satellite-derived Vegetation Condition Index in Nepal from 1982–2015. Sensors, 19(2), Article 430. https://doi.org/10.3390/s19020430
Boymurodov, R., Matchanov, M., Tajiyev, Q., Amandurdiyev, D., Mansourian, A., & Ashurov, A. (2024). Monitoring land use and land cover (LULC) in the Khorezm Oasis using the ESRI Sentinel-2 Land Cover Explorer database. E3S Web of Conferences, 590, Article 04001. https://doi.org/10.1051/e3sconf/202459004001
Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J., & Reed, B. C. (2008). The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience & Remote Sensing, 45(1), 16–46. https://doi.org/10.2747/1548-1603.45.1.16
Chen, X., Tian, F., & Su, Y. (2022). How did the late 1920s drought affect northern Chinese society? Weather and Climate Extremes, 36, Article 100451. https://doi.org/10.1016/j.wace.2022.100451
Climate Engine. (2023). Desert Research Institute and University of California, Merced. http://climateengine.org
Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34(1), 71–73. https://doi.org/10.1016/0034-4257(90)90085-Z
Das, A., Shahriar, S. A., Chowdhury, M. A., Hossain, M., Mahmud, S., Tusar, M. K., Ahmed, R., & Salam, M. (2023). Assessment of remote sensing-based indices for drought monitoring in the north-western region of Bangladesh. Heliyon, 9(6), Article e13016. https://doi.org/10.1016/j.heliyon.2023.e13016
Dubey, A., Swami, D., Gupta, V., & Joshi, N. (2023). From the peaks to the plains: Investigating the role of elevation in governing drought dynamics over the Indus River Basin. Atmospheric Research, 291, Article 106824. https://doi.org/10.1016/j.atmosres.2023.106824
Gao, B.-C. (1996). NDWI–A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
Gonçalves, S., Vasconcelos, F. C., Jr., Silveira, C. S., Cid, D. A., Martins, E. S. P. R., & Costa, J. E. (2023). Comparative analysis of drought indices in hydrological monitoring in Ceará’s semi-arid basins, Brazil. Water, 15(7), Article 1259. https://doi.org/10.3390/w15071259
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Gu, Y., Hunt, E., Wardlow, B., Basara, J. B., Brown, J. F., & Verdin, J. P. (2008). Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35(22), Article L22401. https://doi.org/10.1029/2008GL035772
Hao, Z., Yuan, X., Xia, Y., Hao, F., & Singh, V. P. (2017). An overview of drought monitoring and prediction systems at regional and global scales. Bulletin of the American Meteorological Society, 98(9), 1879–1896. https://doi.org/10.1175/BAMS-D-15-00149.1
Hosseinzadehtalaei, P., Van Schaeybroeck, B., Termonia, P., & Tabari, H. (2023). Identical hierarchy of physical drought types for climate change signals and uncertainty. Weather and Climate Extremes, 41, Article 100573. https://doi.org/10.1016/j.wace.2023.100573
Jang, D. (2018). Assessment of meteorological drought indices in Korea using RCP 8.5 scenario. Water, 10(3), Article 283. https://doi.org/10.3390/w10030283
Li, F., Jackson, T. J., Kustas, W. P., Schmugge, T. J., French, A. N., Cosh, M. H., & Bindlish, R. (2004). Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sensing of Environment, 92(4), 521–534. https://doi.org/10.1016/j.rse.2004.02.018
Lloyd-Hughes, B. (2014). The impracticality of a universal drought definition. Theoretical and Applied Climatology, 117(3–4), 607–611. https://doi.org/10.1007/s00704-013-1025-7
Mansourian, A., Matchanov, M., Farnaghi, M., & Pilesjö, P. (2023). Chapter 12 – iMSEP: A GIT-based digital solution for disaster management. In J. F. Shroder, P. Paron, & G. Di Baldassarre (Eds.), Hydro-meteorological hazards, risks, and disasters (2nd ed., Vol. 5, pp. 323–334). Elsevier. https://doi.org/10.1016/B978-0-12-819101-9.00012-1
Matchanov, M. (2020). Comparison ASTER, SRTM and GOOGLE DEM with ground data in a small-scale agricultural land. Journal of Agricultural Science, 10(5), 288–395.
Matchanov, M. (2021). Ecological safety and its physical geographical aspects (in the case of Khorezm region). Quvonchbek-Mashhura.
Matchanov, M., Teodoro, A., & Schröder, C. (2016). Criterion definition for the identification of physical-geographical boundaries of Khorezm Oasis through remotely sensed data. Environmental Monitoring and Assessment, 188(1), Article 35. https://doi.org/10.1007/s10661-015-5035-z
McKee, T. B., Doesken, N. J., & Kleist, J. R. (1993). The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology, Anaheim, California.
Mirmohammad Hosseini, T., Hosseini, S. A., Ghermezcheshmeh, B., & Sharafati, A. (2020). Drought hazard depending on elevation and precipitation in Lorestan, Iran. Theoretical and Applied Climatology, 142(3–4), 1369–1377. https://doi.org/10.1007/s00704-020-03386-y
NASA JPL. (2020). NASA Shuttle Radar Topography Mission Global 1 arc second [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003
Patil, A., Patil, A., Somnath, P., Sushant, S., Shital, K., & Panhalkar, S. (2021). Analysis of the agriculture drought severity and spatial extent using Vegetation Health Index (VHI) in Manganga watershed of Maharashtra, India. Disaster Advances, 14(5), 36–47.
Raczynski, K., & Dyer, J. (2022). Variability of annual and monthly streamflow droughts over the southeastern United States. Water, 14(23), Article 3848. https://doi.org/10.3390/w14233848
Rahman, M. M., Shi, Z.-H., & Chongfa, C. (2014). Assessing regional environmental quality by integrated use of remote sensing, GIS, and spatial multi-criteria evaluation for prioritization of environmental restoration. Environmental Monitoring and Assessment, 186(10), 6993–7009. https://doi.org/10.1007/s10661-014-3905-4
Salleh, S. A., Latif, Z. A., Pradhan, B., Wan Mohd, W. M. N., & Chan, A. (2014). Functional relation of land surface albedo with climatological variables: A review on remote sensing techniques and recent research developments. Geocarto International, 29(2), 147–163. https://doi.org/10.1080/10106049.2012.748831
Schneider, K., & Mauser, W. (1996). Processing and accuracy of Landsat Thematic Mapper data for lake surface temperature measurement. International Journal of Remote Sensing, 17(11), 2027–2041. https://doi.org/10.1080/01431169608948757
Shah, D., & Mishra, V. (2020). Integrated Drought Index (IDI) for drought monitoring and assessment in India. Water Resources Research, 56(6), Article e2019WR026284. https://doi.org/10.1029/2019WR026284
Tajudin, N., Ya’acob, N., Mohd Ali, D., & Adnan, N. (2021). Soil moisture index estimation from Landsat 8 images for prediction and monitoring landslide occurrences in Ulu Kelang, Selangor, Malaysia. International Journal of Electrical and Computer Engineering, 11(3), 2101–2108. https://doi.org/10.11591/ijece.v11i3.pp2101-2108
Van Loon, A. F., Rangecroft, S., Coxon, G., Werner, M., Wanders, N., Di Baldassarre, G., Tijdeman, E., Bosman, M., Gleeson, T., Nauditt, A., Aghakouchak, A., Breña-Naranjo, J. A., Cenobio-Cruz, O., Costa, A. C., Fendekova, M., Jewitt, G., Kingston, D. G., Loft, J., Mager, S. M., & Van Lanen, H. A. J. (2022). Streamflow droughts aggravated by human activities despite management. Environmental Research Letters, 17(4), Article 044059. https://doi.org/10.1088/1748-9326/ac5def
Wang, S., Davidson, A., & Latifovic, R. (2004). Impact of drought on land surface albedo. AGU Spring Meeting Abstracts, 2004, H31C-03.
Wilhite, D. A., & Glantz, M. H. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10(3), 111–120. https://doi.org/10.1080/02508068508686328
Wu, J., Zhou, L., Liu, M., Zhang, J., Leng, S., & Diao, C. (2013). Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China. International Journal of Applied Earth Observation and Geoinformation, 23, 397–410. https://doi.org/10.1016/j.jag.2012.11.003
Yao, Y., Qin, Q., Zhu, L., & Yang, N. (2008). Relationship between surface albedo, vegetation index, and surface dryness using Landsat ETM+ imagery. IGARSS 2008 – 2008 IEEE International Geoscience and Remote Sensing Symposium, 1, 315–318. https://doi.org/10.1109/IGARSS.2008.4778856
Zarei, A. R. (2018). Evaluation of drought condition in arid and semi-arid regions, using RDI index. Water Resources Management, 32(5), 1689–1711. https://doi.org/10.1007/s11269-017-1898-9
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.