PHASE: a Matlab-based software for the DInSAR PS processing
DOI: https://doi.org/10.3846/gac.2025.21995Abstract
The availability of free Synthetic Aperture Radar (SAR) images, like the ones delivered by the ESA Copernicus Sentinel-1 satellites, has led to the development of several processing tools, some of which are also free and open source. In this framework, when analyzing Sentinel data, the ESA SNAP software is usually required for data preprocessing, while, in the context of free and open source (FOS), Persistent Scatterer Interferometry (PSI) analysis can be performed by StaMPS (released by Stanford University). The workflow could be completed by the snap2stamps package, aiming at integrating the two main software packages. However, these tools are not designed to automate all the required steps to perform a complete PSI analysis. For this reason, the aim of this work is to develop PHASE (Persistent scatterer Highly Automated Suite for Environmental monitoring), a Matlab-based software suite that relies on already available FOS software, properly updated, enhanced and integrated, all accessible and customizable through a simple GUI. The focus is on minimizing the user interaction with the software, thus decreasing potential sources of error, while improving processing repeatability. The user will therefore primarily be responsible for configuring the processing parameters. Indeed, a streamlined procedure has been established, covering the entire process from downloading the SAR images to exporting the PS time series into a simple table format. In the paper, we present the developed software, highlighting its strengths compared to the status quo, while also providing a short example of successful application of the entire procedure.
Keywords:
Persistent Scatterers, DInSAR, automatization, time series, displacement, Matlab, software, GUIHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Laczniak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27(6), Article 483. https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2
Antonielli, B., Monserrat, O., Bonini, M., Righini, G., Sani, F., Luzi, G., Feyzullayev, A., & Aliyev, C. (2014). Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR). Tectonophysics, 637, 163–177. https://doi.org/10.1016/j.tecto.2014.10.005
Bekaert, D. P. S., Hooper, A., & Wright, T. J. (2015a). A spatially variable power law tropospheric correction technique for InSAR data. Journal of Geophysical Research: Solid Earth, 120(2), 1345–1356. https://doi.org/10.1002/2014JB011558
Bekaert, D. P. S., Walters, R. J., Wright, T. J., Hooper, A. J., & Parker, D. J. (2015b). Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, 170, 40–47. https://doi.org/10.1016/j.rse.2015.08.035
Carnec, C., Massonnet, D., & King, C. (1996). Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophysical Research Letters, 23(24), 3579–3582. https://doi.org/10.1029/96GL03042
Covello, F., Battazza, F., Coletta, A., Lopinto, E., Fiorentino, C., Pietranera, L., Valentini, G., & Zoffoli, S. (2010). COSMO-SkyMed an existing opportunity for observing the Earth. Journal of Geodynamics, 49(3–4), 171–180. https://doi.org/10.1016/j.jog.2010.01.001
Crosetto, M., Devanthéry, N., Cuevas-González, M., Monserrat, O., & Crippa, B. (2015). Exploitation of the full potential of PSI data for subsidence monitoring. Proceedings of IAHS, 372, 311–314. https://doi.org/10.5194/piahs-372-311-2015
Crosetto, M., Monserrat, O., Cuevas, M., & Crippa, B. (2011). Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement. Remote Sensing, 3(2), 305–318. https://doi.org/10.3390/rs3020305
Dalla Via, G., Crosetto, M., & Crippa, B. (2012). Resolving vertical and east‐west horizontal motion from differential interferometric synthetic aperture radar: The L’Aquila earthquake. Journal of Geophysical Research: Solid Earth, 117(B2), Article B02310. https://doi.org/10.1029/2011JB008689
Delgado Blasco, J. M., Foumelis, M., Stewart, C., & Hooper, A. (2019). Measuring urban subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sensing, 11(2), Article 129. https://doi.org/10.3390/rs11020129
European Space Agency. (2018a, May 4). How to prepare Sentinel-1 images stack for PSI/SBAS in SNAP – Microwave Toolbox / StaMPS [Online post]. STEP Forum. https://forum.step.esa.int/t/how-to-prepare-sentinel-1-images-stack-for-psi-sbas-in-snap/4981/514
European Space Agency. (2018b, July 1). Snap2stamps package: A free tool to automate the SNAP-StaMPS Workflow—Microwave Toolbox / StaMPS - STEP Forum [Online post]. STEP Forum. https://forum.step.esa.int/t/snap2stamps-package-a-free-tool-to-automate-the-snap-stamps-workflow/10971
European Space Agency. (2022, March 8). Sentinel-1B in-flight anomaly summary report. https://sentinel.esa.int/documents/247904/4819394/Sentinel-1B+In-Flight+Anomaly+Summary+Report.pdf
European Space Agency. (2023, December 12). STEP – Science Toolbox Exploitation Platform. https://step.esa.int/main/
Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202–2212. https://doi.org/10.1109/36.868878
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. https://doi.org/10.1109/36.898661
Fletcher, K. (2012). Sentinel-1: ESA’s radar observatory mission for GMES operational services. ESA Communications.
Foumelis, M., Delgado Blasco, J. M., Desnos, Y.-L., Engdahl, M., Fernandez, D., Veci, L., Lu, J., & Wong, C. (2018). Esa Snap – stamps integrated processing for Sentinel-1 persistent scatterer interferometry. In IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 1364–1367). IEEE. https://doi.org/10.1109/IGARSS.2018.8519545
Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. A. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34(10), 2573–2585. https://doi.org/10.1029/98WR01285
Goldstein, R. M., Engelhardt, H., Kamb, B., & Frolich, R. M. (1993). Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science, 262(5139), 1525–1530. https://doi.org/10.1126/science.262.5139.1525
Herrera, G., Tomás, R., Lopez-Sanchez, J. M., Delgado, J., Mallorqui, J. J., Duque, S., & Mulas, J. (2007). Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Engineering Geology, 90(3), 148–159. https://doi.org/10.1016/j.enggeo.2007.01.001
Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514–517, 1–13. https://doi.org/10.1016/j.tecto.2011.10.013
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), Article L23611. https://doi.org/10.1029/2004GL021737
Louet, J., & Bruzzi, S. (1999). ENVISAT mission and system. IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293), 3, 1680–1682. https://doi.org/10.1109/IGARSS.1999.772059
Massonnet, D., & Sigmundsson, F. (2000). Remote sensing of volcano deformation by radar interferometry from various satellites. Washington DC American Geophysical Union Geophysical Monograph Series, 116, 207–221. https://doi.org/10.1029/GM116p0207
Massonnet, D., Briole, P., & Arnaud, A. (1995). Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375(6532), Article 6532. https://doi.org/10.1038/375567a0
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138–142. https://doi.org/10.1038/364138a0
Mateo-Garcia, G., Veitch-Michaelis, J., Smith, L., Oprea, S. V., Schumann, G., Gal, Y., Baydin, A. G., & Backes, D. (2021). Towards global flood mapping onboard low cost satellites with machine learning. Scientific Reports, 11(1), Article 7249. https://doi.org/10.1038/s41598-021-86650-z
Narayan, A. B., Tiwari, A., Dwivedi, R., & Dikshit, O. (2018). Persistent scatter identification and look-angle error estimation using similar time-series interferometric pixels. IEEE Geoscience and Remote Sensing Letters, 15(1), 147–150. https://doi.org/10.1109/LGRS.2017.2778421
Peltzer, G., & Rosen, P. (1995). Surface displacement of the 17 May 1993 Eureka Valley, California, Earthquake observed by SAR interferometry. Science, 268(5215), 1333–1336. https://doi.org/10.1126/science.268.5215.1333
Pitz, W., & Miller, D. (2010). The TerraSAR-X satellite. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 615–622. https://doi.org/10.1109/TGRS.2009.2037432
Rignot, E. J., Gogineni, S. P., Krabill, W. B., & Ekholm, S. (1997). North and northeast Greenland ice discharge from satellite radar interferometry. Science, 276(5314), 934–937. https://doi.org/10.1126/science.276.5314.934
Van Leijen, F. J. (2014). Persistent Scatterer Interferometry based on geodetic estimation theory. https://repository.tudelft.nl/islandora/object/uuid%3A5dba48d7-ee26-4449-b674-caa8df93e71e
Zhang, B., Chang, L., & Stein, A. (2021). Spatio-temporal linking of multiple SAR satellite data from medium and high resolution Radarsat-2 images. ISPRS Journal of Photogrammetry and Remote Sensing, 176, 222–236. https://doi.org/10.1016/j.isprsjprs.2021.04.005
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.