PHASE: a Matlab-based software for the DInSAR PS processing

DOI: https://doi.org/10.3846/gac.2025.21995

Abstract

The availability of free Synthetic Aperture Radar (SAR) images, like the ones delivered by the ESA Copernicus Sentinel-1 satellites, has led to the development of several processing tools, some of which are also free and open source. In this framework, when analyzing Sentinel data, the ESA SNAP software is usually required for data preprocessing, while, in the context of free and open source (FOS), Persistent Scatterer Interferometry (PSI) analysis can be performed by StaMPS (released by Stanford University). The workflow could be completed by the snap2stamps package, aiming at integrating the two main software packages. However, these tools are not designed to automate all the required steps to perform a complete PSI analysis. For this reason, the aim of this work is to develop PHASE (Persistent scatterer Highly Automated Suite for Environmental monitoring), a Matlab-based software suite that relies on already available FOS software, properly updated, enhanced and integrated, all accessible and customizable through a simple GUI. The focus is on minimizing the user interaction with the software, thus decreasing potential sources of error, while improving processing repeatability. The user will therefore primarily be responsible for configuring the processing parameters. Indeed, a streamlined procedure has been established, covering the entire process from downloading the SAR images to exporting the PS time series into a simple table format. In the paper, we present the developed software, highlighting its strengths compared to the status quo, while also providing a short example of successful application of the entire procedure.

Keywords:

Persistent Scatterers, DInSAR, automatization, time series, displacement, Matlab, software, GUI

How to Cite

Monti, R., & Rossi, L. (2025). PHASE: a Matlab-based software for the DInSAR PS processing. Geodesy and Cartography, 51(2), 88–99. https://doi.org/10.3846/gac.2025.21995

Share

Published in Issue
June 5, 2025
Abstract Views
107

References

Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Lacz­niak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27(6), Article 483. https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2

Antonielli, B., Monserrat, O., Bonini, M., Righini, G., Sani, F., Luzi, G., Feyzullayev, A., & Aliyev, C. (2014). Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR). Tectonophysics, 637, 163–177. https://doi.org/10.1016/j.tecto.2014.10.005

Bekaert, D. P. S., Hooper, A., & Wright, T. J. (2015a). A spatially variable power law tropospheric correction technique for InSAR data. Journal of Geophysical Research: Solid Earth, 120(2), 1345–1356. https://doi.org/10.1002/2014JB011558

Bekaert, D. P. S., Walters, R. J., Wright, T. J., Hooper, A. J., & Par­ker, D. J. (2015b). Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, 170, 40–47. https://doi.org/10.1016/j.rse.2015.08.035

Carnec, C., Massonnet, D., & King, C. (1996). Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophysical Research Letters, 23(24), 3579–3582. https://doi.org/10.1029/96GL03042

Covello, F., Battazza, F., Coletta, A., Lopinto, E., Fiorentino, C., Pietranera, L., Valentini, G., & Zoffoli, S. (2010). COSMO-SkyMed an existing opportunity for observing the Earth. Journal of Geodynamics, 49(3–4), 171–180. https://doi.org/10.1016/j.jog.2010.01.001

Crosetto, M., Devanthéry, N., Cuevas-González, M., Monserrat, O., & Crippa, B. (2015). Exploitation of the full potential of PSI data for subsidence monitoring. Proceedings of IAHS, 372, 311–314. https://doi.org/10.5194/piahs-372-311-2015

Crosetto, M., Monserrat, O., Cuevas, M., & Crippa, B. (2011). Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement. Remote Sensing, 3(2), 305–318. https://doi.org/10.3390/rs3020305

Dalla Via, G., Crosetto, M., & Crippa, B. (2012). Resolving vertical and east‐west horizontal motion from differential interferometric synthetic aperture radar: The L’Aquila earthquake. Journal of Geophysical Research: Solid Earth, 117(B2), Article B02310. https://doi.org/10.1029/2011JB008689

Delgado Blasco, J. M., Foumelis, M., Stewart, C., & Hooper, A. (2019). Measuring urban subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sensing, 11(2), Article 129. https://doi.org/10.3390/rs11020129

European Space Agency. (2018a, May 4). How to prepare Sentinel-1 images stack for PSI/SBAS in SNAP – Microwave Toolbox / StaMPS [Online post]. STEP Forum. https://forum.step.esa.int/t/how-to-prepare-sentinel-1-images-stack-for-psi-sbas-in-snap/4981/514

European Space Agency. (2018b, July 1). Snap2stamps package: A free tool to automate the SNAP-StaMPS Workflow—Microwave Toolbox / StaMPS - STEP Forum [Online post]. STEP Forum. https://forum.step.esa.int/t/snap2stamps-package-a-free-tool-to-automate-the-snap-stamps-workflow/10971

European Space Agency. (2022, March 8). Sentinel-1B in-flight anomaly summary report. https://sentinel.esa.int/documents/247904/4819394/Sentinel-1B+In-Flight+Anomaly+Summary+Report.pdf

European Space Agency. (2023, December 12). STEP – Science Toolbox Exploitation Platform. https://step.esa.int/main/

Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202–2212. https://doi.org/10.1109/36.868878

Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. https://doi.org/10.1109/36.898661

Fletcher, K. (2012). Sentinel-1: ESA’s radar observatory mission for GMES operational services. ESA Communications.

Foumelis, M., Delgado Blasco, J. M., Desnos, Y.-L., Engdahl, M., Fernandez, D., Veci, L., Lu, J., & Wong, C. (2018). Esa Snap – stamps integrated processing for Sentinel-1 persistent scatterer interferometry. In IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 1364–1367). IEEE. https://doi.org/10.1109/IGARSS.2018.8519545

Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. A. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34(10), 2573–2585. https://doi.org/10.1029/98WR01285

Goldstein, R. M., Engelhardt, H., Kamb, B., & Frolich, R. M. (1993). Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science, 262(5139), 1525–1530. https://doi.org/10.1126/science.262.5139.1525

Herrera, G., Tomás, R., Lopez-Sanchez, J. M., Delgado, J., Mallorqui, J. J., Duque, S., & Mulas, J. (2007). Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Engineering Geology, 90(3), 148–159. https://doi.org/10.1016/j.enggeo.2007.01.001

Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514–517, 1–13. https://doi.org/10.1016/j.tecto.2011.10.013

Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), Article L23611. https://doi.org/10.1029/2004GL021737

Louet, J., & Bruzzi, S. (1999). ENVISAT mission and system. IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293), 3, 1680–1682. https://doi.org/10.1109/IGARSS.1999.772059

Massonnet, D., & Sigmundsson, F. (2000). Remote sensing of volcano deformation by radar interferometry from various satellites. Washington DC American Geophysical Union Geophysical Monograph Series, 116, 207–221. https://doi.org/10.1029/GM116p0207

Massonnet, D., Briole, P., & Arnaud, A. (1995). Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375(6532), Article 6532. https://doi.org/10.1038/375567a0

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138–142. https://doi.org/10.1038/364138a0

Mateo-Garcia, G., Veitch-Michaelis, J., Smith, L., Oprea, S. V., Schumann, G., Gal, Y., Baydin, A. G., & Backes, D. (2021). Towards global flood mapping onboard low cost satellites with machine learning. Scientific Reports, 11(1), Article 7249. https://doi.org/10.1038/s41598-021-86650-z

Narayan, A. B., Tiwari, A., Dwivedi, R., & Dikshit, O. (2018). Persistent scatter identification and look-angle error estimation using similar time-series interferometric pixels. IEEE Geoscience and Remote Sensing Letters, 15(1), 147–150. https://doi.org/10.1109/LGRS.2017.2778421

Peltzer, G., & Rosen, P. (1995). Surface displacement of the 17 May 1993 Eureka Valley, California, Earthquake observed by SAR interferometry. Science, 268(5215), 1333–1336. https://doi.org/10.1126/science.268.5215.1333

Pitz, W., & Miller, D. (2010). The TerraSAR-X satellite. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 615–622. https://doi.org/10.1109/TGRS.2009.2037432

Rignot, E. J., Gogineni, S. P., Krabill, W. B., & Ekholm, S. (1997). North and northeast Greenland ice discharge from satellite radar interferometry. Science, 276(5314), 934–937. https://doi.org/10.1126/science.276.5314.934

Van Leijen, F. J. (2014). Persistent Scatterer Interferometry based on geodetic estimation theory. https://repository.tudelft.nl/islandora/object/uuid%3A5dba48d7-ee26-4449-b674-caa8df93e71e

Zhang, B., Chang, L., & Stein, A. (2021). Spatio-temporal linking of multiple SAR satellite data from medium and high resolution Radarsat-2 images. ISPRS Journal of Photogrammetry and Remote Sensing, 176, 222–236. https://doi.org/10.1016/j.isprsjprs.2021.04.005

View article in other formats

CrossMark check

CrossMark logo

Published

2025-06-05

Issue

Section

Articles

How to Cite

Monti, R., & Rossi, L. (2025). PHASE: a Matlab-based software for the DInSAR PS processing. Geodesy and Cartography, 51(2), 88–99. https://doi.org/10.3846/gac.2025.21995

Share