Accuracy test of satellite imagery-derived bathymetry in shallow waters using Sentinel-2A multispectral imagery

DOI: https://doi.org/10.3846/gac.2025.21128

Abstract

Continuous bathymetry mapping for shallow waters is very important considering that these waters are prone to change. Bathymetry measurements obtained from satellite imagery are an alternative that can be used. This study aimed to evaluate and develop algorithms that can be used to estimate shallow water depth values obtained from satellite imagery. In this study, the depth mapping results were obtained from Surface Reflectance derived from Sentinel-2A image processing. A comparative analysis was performed by comparing measurements obtained with an echosounder and estimated depths estimated with Lyzenga, Stumpf, and modified Stumpf algorithms. In this study, where the depth ranged from 2–6 meters, the Lyzenga algorithm performed the best algorithm with the R2 value of 0.94 and the RMSE 0.23, followed by the modified Stumpf algorithm with an R2 value of 0.93 and RMSE 0.24, and Stumpf algorithm with a R2 value of 0.88 and a RMSE of 0.32. Overall, this study provides an important contribution to comparing Lyzenga and Stumpf algorithms for estimating water depths. This study provides guidance on choosing the correct algorithm for bathymetric mapping using satellite imagery in similar water locations.

Keywords:

satellite derived bathymetry, shallow water, Google Earth Engine, satellite imaging, Sentinel-2A, statistical modelling

How to Cite

Hidayat, R. R., Amron, A., Husni, I. A., Prihatiningsih, I., Hartoyo, H., Trenggono, M., & Hakim, M. R. (2025). Accuracy test of satellite imagery-derived bathymetry in shallow waters using Sentinel-2A multispectral imagery. Geodesy and Cartography, 51(2), 107–114. https://doi.org/10.3846/gac.2025.21128

Share

Published in Issue
July 21, 2025
Abstract Views
67

References

Al Najar, M., Thoumyre, G., Bergsma, E. W. J., Almar, R., Benshila, R., & Wilson, D. G. (2021). Satellite derived bathymetry using deep learning. Machine Learning, 112(4), 1107–1130. https://doi.org/10.1007/s10994-021-05977-w

Aryal, B., Escarzaga, S. M., Vargas Zesati, S. A., Velez-Reyes, M., Fuentes, O., & Tweedie, C. (2021). Semi-automated semantic segmentation of arctic shorelines using very high-resolution airborne imagery, spectral indices and weakly supervised machine learning approaches. Remote Sensing, 13(22), Article 4572. https://doi.org/10.3390/rs13224572

Aulia, Z. S., Ahmad, T. T., Ayustina, R. R., Hastono, F. T., Hidayat, R. R., Mustakin, H., Fitrianto, A., & Rifanditya, F. B. (2020). Shallow water seabed profile changes in 2016 - 2018 based on Landsat 8 satellite imagery (Case study: Semak Daun Island, Karya Island and Gosong Balik Layar). Omni-Akuatika, 16(3), 26–32. https://doi.org/10.20884/1.oa.2020.16.3.848

Caballero, I., Stumpf, R. P., & Meredith, A. (2019). Preliminary assessment of turbidity and chlorophyll impact on bathymetry derived from sentinel-2A and sentinel-3A satellites in South Florida. Remote Sensing, 11(6), 1–20. https://doi.org/10.3390/rs11060645

Casal, G., Harris, P., Monteys, X., Hedley, J., Cahalane, C., & McCarthy, T. (2020). Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GIScience & Remote Sensing, 57(3), 271–286. https://doi.org/10.1080/15481603.2019.1685198

Cesbron, G., Melet, A., Almar, R., Lifermann, A., Tullot, D., & Crosnier, L. (2021). Pan-European satellite-derived coastal bathymetry–review, user needs and future services. Frontiers in Marine Science, 8, 1–15. https://doi.org/10.3389/fmars.2021.740830

Chaves, M. E. D., Picoli, M. C. A., & Sanches, I. D. (2020). Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18), Article 3062. https://doi.org/10.3390/rs12183062

Cordeiro, M. C. R., Martinez, J. M., & Peña-Luque, S. (2021). Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sensing of Environment, 253, Article 112209. https://doi.org/10.1016/j.rse.2020.112209

Duan, Z., Chu, S., Cheng, L., Ji, C., Li, M., & Shen, W. (2022). Satellite-derived bathymetry using Landsat-8 and Sentinel-2A images: Assessment of atmospheric correction algorithms and depth derivation models in shallow waters. Optics Express, 30(3), 3238–3261. https://doi.org/10.1364/OE.444557

Duplančić Leder, T., Baučić, M., Leder, N., & Gilić, F. (2023). Optical satellite-derived bathymetry: An overview and WoS and Scopus bibliometric analysis. Remote Sensing, 15(5), Article 1294. https://doi.org/10.3390/rs15051294

Ferreira, I. O., Rodrigues, D. D., Santos, G. R. dos, & Rosa, L. M. F. (2017). In bathymetric surfaces: IDW or Kriging? Boletim de Ciências Geodésicas, 23(3), 493–508. https://doi.org/10.1590/s1982-21702017000300033

Hidayat, R. R., Harun, I., Eddiyanto, E., Prihatiningsih, I., & Farabi, A. (2023). Characteristics and dispersion model of wastewater PT Kayu Lapis Indonesia, Kendal, Central Java. Journal of Applied Geospatial Information, 7(2), 875–882. https://doi.org/10.30871/jagi.v7i2.5841

Jeyar, M., Chaabelasri, E. M., & Salhi, N. (2015). Computational modelling of tidal effect on wastewater dispersion in coastal bays, case of Tangier’s bay (Morocco). Journal of Materials and Environmental Science, 6(6), 1715–1718.

Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H. O., Kampel, M., Richey, J., Stadler, P., Crawford, J., Striegl, R., Vermote, E., Pahlevan, N., & Butman, D. (2019). Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sensing of Environment, 224, 104–118. https://doi.org/10.1016/j.rse.2019.01.023

Kumaat, J. C., Andaria, K. S., & Maliangkay, D. (2021). Hydro-oceanographic and bathymetric survey in Tanjung Merah as a basis for modelling coastal spatial plans of Bitung City. E3S Web of Conferences, 328, Article 08006. https://doi.org/10.1051/e3sconf/202132808006

Li, S., Wang, X. H., Ma, Y., & Yang, F. (2023). Satellite-derived bathymetry with sediment classification using ICESat-2 and multispectral imagery: Case studies in the South China Sea and Australia. Remote Sensing, 15(4), Article 1026. https://doi.org/10.3390/rs15041026

Lubis, M. Z., Budiana, Gustin, O., Puspita, W. R., Hastuti, A. W., Antoni, S., Rahimah, I., Kausarian, H., & Prasetyo, B. A. (2020). Physical oceanography and hydrodynamic modelling in Tembesi reservoir waters, Batam. In Proceedings of ICAE 2020 – 3rd International Conference on Applied Engineering (pp. 1–4), Batam, Indonesia. https://doi.org/10.1109/ICAE50557.2020.9350549

Lyzenga, D. R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17(3), Article 379. https://doi.org/10.1364/ao.17.000379

Lyzenga, D. R. (1985). Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 6(1), 115–125. https://doi.org/10.1080/01431168508948428

Maslukah, L., Ismunarti, D. H., Widada, S., Sandi, N. F., & Prayitno, H. B. (2022). the interaction of chlorophyll-a and total suspended matter along the Western Semarang Bay, Indonesia, based on measurement and retrieval of Sentinel 3. Journal of Ecological Engineering, 23(10), 191–201. https://doi.org/10.12911/22998993/152428

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714

Mudiyanselage, S. S. J. D., Abd-Elrahman, A., Wilkinson, B., & Lecours, V. (2022). Satellite-derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters. GIScience & Remote Sensing, 59(1), 1143–1158. https://doi.org/10.1080/15481603.2022.2100597

Muzirafuti, A., Barreca, G., Crupi, A., Faina, G., Paltrinieri, D., Lanza, S., & Randazzo, G. (2020). The contribution of multispectral satellite image to shallowwater bathymetry mapping on the Coast of Misano Adriatico, Italy. Journal of Marine Science and Engineering, 8(2), Article 126. https://doi.org/10.3390/jmse8020126

Ngoc, D. D., Loisel, H., Jamet, C., Vantrepotte, V., Duforêt-Gaurier, L., Minh, C. D., & Mangin, A. (2019). Coastal and inland water pixels extraction algorithm (WiPE) from spectral shape analysis and HSV transformation applied to Landsat 8 OLI and Sentinel-2 MSI. Remote Sensing of Environment, 223, 208–228. https://doi.org/10.1016/j.rse.2019.01.024

Parente, C., & Vallario, A. (2019). Interpolation of single beam echo sounder data for 3D bathymetric model. International Journal of Advanced Computer Science and Applications, 10(10), 6–13. https://doi.org/10.14569/ijacsa.2019.0101002

Poliyapram, V., Raghavan, V., Metz, M., Delucchi, L., & Masumoto, S. (2017). Implementation of algorithm for satellite-derived bathymetry using open source GIS and evaluation for tsunami simulation. ISPRS International Journal of Geo-Information, 6(3), 1–17. https://doi.org/10.3390/ijgi6030089

Prasetya, M. I., Siregar, V. P., & Agus, S. B. (2023). Comparison of satellite-derived bathymetry algorithm accuracy using Sentinel-2 multispectral satellite image. Jurnal Kelautan Tropis, 26(1), 113–125. https://doi.org/10.14710/jkt.v26i1.16050

Purba, N. P., Faizal, I., Syamsuddin, M. L., Wulandari, A., Bratasena, T., & Therie, R. (2022). Oceanography dataset in Bonpies archipelago as remote island in Java Seas, Indonesia. Data in Brief, 40, Article 107769. https://doi.org/10.1016/j.dib.2021.107769

Rossi, L., Mammi, I., & Pelliccia, F. (2020). UAV-derived multispectral bathymetry. Remote Sensing, 12(23), 1–20. https://doi.org/10.3390/rs12233897

Sagawa, T., Yamashita, Y., Okumura, T., & Yamanokuchi, T. (2019). Shallow water bathymetry derived by machine learning and multitemporal satellite images. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 8222–8225). IEEE. https://doi.org/10.1109/IGARSS.2019.8899043

Said, N. M., Mahmud, M. R., & Hasan, R. C. (2017). Satellite-derived bathymetry: Accuracy assessment on depths derivation algorithm for shallow water area. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W5(4W5), 159–164. https://doi.org/10.5194/isprs-archives-XLII-4-W5-159-2017

Seto, M. L., & Crawford, A. (2016). Autonomous shallow water bathymetric measurements for environmental assessment and safe navigation using USVs. In OCEANS 2015 - MTS/IEEE Washington (pp. 1–5), Washington, DC, USA. https://doi.org/10.23919/oceans.2015.7404407

Stumpf, R. P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1), 547–556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547

Wei, J., Wang, M., Lee, Z., Briceño, H. O., Yu, X., Jiang, L., Garcia, R., Wang, J., & Luis, K. (2020). Shallow water bathymetry with multi-spectral satellite ocean color sensors: Leveraging temporal variation in image data. Remote Sensing of Environment, 250, Article 112035. https://doi.org/10.1016/j.rse.2020.112035

Westley, K. (2021). Satellite-derived bathymetry for maritime archaeology: Testing its effectiveness at two ancient harbours in the Eastern Mediterranean. Journal of Archaeological Science: Reports, 38, Article 103030. https://doi.org/10.1016/j.jasrep.2021.103030

Yuliastini, L. F., Zainuri, M., & Widiaratih, R. (2023). Analisis kerentanan pesisir di kabupaten Kendal [Analysis of coastal vulnerability in Kendal regency]. Indonesian Journal of Oceanography, 5(1), 80–89. https://doi.org/10.14710/ijoce.v5i1.16061

View article in other formats

CrossMark check

CrossMark logo

Published

2025-07-21

Issue

Section

Articles

How to Cite

Hidayat, R. R., Amron, A., Husni, I. A., Prihatiningsih, I., Hartoyo, H., Trenggono, M., & Hakim, M. R. (2025). Accuracy test of satellite imagery-derived bathymetry in shallow waters using Sentinel-2A multispectral imagery. Geodesy and Cartography, 51(2), 107–114. https://doi.org/10.3846/gac.2025.21128

Share