Estimation of land surface temperature based on GIS and remote sensing data in Dahuk city
DOI: https://doi.org/10.3846/gac.2025.21047Abstract
Land Surface Temperature (LST) is a crucial variable across various domains, including studies on the global ramifications of climate change, urban land use and cover, and geo- and biophysical modelling. Satellite data from Landsat 8, specifically the NIR channel, was utilized to generate LST maps, NDVI, and LU/LC for Dahuk City. The correctness of LULC maps was verified by ground observation locations. The results indicate that the LST ranged from 4 to 14 degrees Celsius in 2013 and from 10 to 20 degrees Celsius in 2023. The highest temperatures, ranging from 14 to 20 degrees Celsius, occur in urban areas, whilst the lowest temperatures, recorded in 2013 and 2023, are in forests and aquatic environments, measuring 4 and 10 degrees Celsius, respectively and this occurred because of unplanned expansion of urban areas on behalf of green area as indicated by NDVI. Through this study planners and decision making could predict the future increase in LST if no action taken against these activities.
Keywords:
Land Surface Temperature (LST), land use/land cover, Normalized Difference Vegetation Index (NDVI), GIS, Landsat 8 Satellite, Dahuk, IraqHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahmad, S., Kalra, A., & Stephen, H. (2010). Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33(1), 69–80. https://doi.org/10.1016/j.advwatres.2009.10.008> https://doi.org/10.1016/j.advwatres.2009.10.008
Aires, F., Prigent, C., Rossow, W. B., & Rothstein, M. (2001). A new neural network approach including first-guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature and emissivities over land from satellite microwave observations. Journal of Geophysical Research, 106, 14887–14907. https://doi.org/10.1029/2001JD900085> https://doi.org/10.1029/2001JD900085
Aman, A., Randriamanantena, H. P., Podaire, A., & Froutin, R. (1992). Upscale integration of normalized difference vegetation index: The problem of spatial heterogeneity. IEEE Transactions on Geoscience and Remote Sensing, 30, 326–338. https://doi.org/10.1109/36.134082> https://doi.org/10.1109/36.134082
Avdan, U., & Jovanovska, J. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016(1), Article 1480307. https://doi.org/10.1155/2016/1480307> https://doi.org/10.1155/2016/1480307
Azua, S., Nnah, S. I., & Ikwueze, H. U. (2020). Spatio-temporal variability of landuse landcover and its impact on land surface temperature in Zaria Metropolis, Nigeria. FUTY Journal of the Environment, 14, 1–11.
Barsi, J. A., Lee, K., Kvaran, G., Markham, B. L., & Pedelty, J. A. (2014a). The spectral response of the Landsat-8 operational land imager. Remote Sensing, 6(10), 10232–10251. https://doi.org/10.3390/rs61010232> https://doi.org/10.3390/rs61010232
Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L., & Radocinski, R. G. (2014b). Landsat-8 Thermal Infrared Sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11), 11607–11626. https://doi.org/10.3390/rs61111607> https://doi.org/10.3390/rs61111607
Becker, F., & Li, Z.-L. (1995). Towards a local split window method over land surface. International Journal of Remote Sensing, 3, 17–33.
Betts, A. K., Ball, J. H., Beljaars, A. C. M., Miller, M. J., & Viterbo, P. A. (1996). The land surface-atmosphere interaction: A review based on ob-servational and global modeling perspectives. Journal of Geophysical Research, 101, 7209–7225. https://doi.org/10.1029/95JD02135> https://doi.org/10.1029/95JD02135
Bhaga, T. D., Dube, T., Shekede, M. D., & Shoko, C. (2020). Impacts of climate variability and drought on surface water resources in sub-Saharan Africa using remote sensing: A review. Remote Sensing, 12(24), Article 4184. https://doi.org/10.3390/rs12244184> https://doi.org/10.3390/rs12244184
Erol, H., & Akdeniz, F. (1998). A new supervised classification method for quantitative analysis of remotely-sensed multi-spectral data. International Journal of Remote Sensing, 19(4), 775–782. https://doi.org/10.1080/014311698216008> https://doi.org/10.1080/014311698216008
Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G. A., & Washington, W. M. (2005). The importance of land-cover change in simulating future climates. Science, 310(5754), 1674–1678. https://doi.org/10.1126/science.1118160> https://doi.org/10.1126/science.1118160
Hall, F. G., Huemmrich, K. F., Goetz, S. J., Sellers, P. J., & Nickeson, J. E. (1992). Satellite remote sensing of surface energy balance: Success, failures, and unresolved issues in FIFE. Journal of Geophysical Research, 97, 19061–19089. https://doi.org/10.1029/92JD02189> https://doi.org/10.1029/92JD02189
Ibraheem, I. F. (2022). Remote sensing application for the assessment of urban heat island development in Baghdad, Iraq. International Journal of Advances in Engineering and Emerging Technology, 13(2), 182–192.
Ibraheem, I. F. (2023). Remote sensing data and environmental parameters usage for the establishment of a mapping of solar energy potential in Iraq. AIP Conference Proceedings, 2787(1), Article 080032. https://doi.org/10.1063/5.0149069> https://doi.org/10.1063/5.0149069
Ibraheem, I. F., & Al-Hadithi, M. (2022). Remote sensing utilization for the modelling of land surface temperature for sustainable city development. Open Access Repository, 8(7), 95–106. https://doi.org/10.17605/OSF.IO/3AVNW> https://doi.org/10.17605/OSF.IO/3AVNW
Ibraheem, I. F., & Al-Hadithi, M. (2024). Application of remote sensing and GIS techniques in integrated management of changes in LULC and effective community participation in Baghdad-Aldora. AIP Conference Proceedings, 3105(1), Article 050092. https://doi.org/10.1063/5.0212230> https://doi.org/10.1063/5.0212230
Joshi, R. C., Ryu, D., Sheridan, G. J., & Lane, P. N. J. (2020, May 4–8). A new remote sensing-based vegetation water stress index: Temperature Vegetation Water Stress Index (TVWSI) [Online]. EGU General Assembly. https://doi.org/10.5194/egusphere-egu2020-12308> https://doi.org/10.5194/egusphere-egu2020-12308
Li, Z. L., Tang, B., & Wu, H. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37. https://doi.org/10.1016/j.rse.2012.12.008> https://doi.org/10.1016/j.rse.2012.12.008
Nivedha, D. S., Jasmineniketha, M., Geetha, P., & Soman, K. P. (2017). Agricultural drought analysis for Thuraiyur taluk of Tiruchirappali District using NDVI and land surface temperature data. In 11th International Conference on Intelligent Systems and Control (ISCO) (pp. 155–159). Coimbatore. https://doi.org/10.1109/ISCO.2017.7855972> https://doi.org/10.1109/ISCO.2017.7855972
Qin, Z., & Karnieli, A. (1999). Progress in remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data. International Journal of Remote Sensing, 20(12), 2367–2393. https://doi.org/10.1080/014311699212074> https://doi.org/10.1080/014311699212074
Rouse, J. W., Jr., Haas, R. W., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (NASA / GSFC Type III Final Report). Texas A&M University, Remote Sensing Center, College Station.
Schmugge, T. J., Kustas, W. P., Ritchie, J. C., Jackson, T. J., & Rango, A. (2002). Remote sensing in hydrology. Advances in Water Resources, 25(8–12), 1367–1385. https://doi.org/10.1016/S0309-1708(02)00065-9> https://doi.org/10.1016/S0309-1708(02)00065-9
Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM5. Remote Sensing of Environment, 90(4), 434–440. https://doi.org/10.1016/j.rse.2004.02.003> https://doi.org/10.1016/j.rse.2004.02.003
Stathopoulou, M., & Cartalis, C. (2007). Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Solar Energy, 81(3), 358–368. https://doi.org/10.1016/j.solener.2006.06.014> https://doi.org/10.1016/j.solener.2006.06.014
Sun, D., & Pinker, R. T. (2003). Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES-8). Journal of Geophysical Research, 108, 4326–4241. https://doi.org/10.1029/2002JD002422> https://doi.org/10.1029/2002JD002422
Xu, H. Q., & Chen, B. Q. (2004). Remote sensing of the urban heat island and its changes in Xiamen City of SE China. Journal of Environmental Sciences, 16, 276–281.
Yagoub, H. (2015). Cartographie et suivi du couvert végétal des zones semi-arides par l’imagerie satellitaire [Mapping and monitoring of vegetation cover in areas semi-arid by satellite imagery] [Thesis]. Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, Faculté de Physique.
Zhou, J., Li, J., Zhang, Li., Hu, D., & Zhan, W. (2012). Intercomparison of methods for estimating land surface temperature from Landsat-5 TM image in an arid region with low water vapor in the atmosphere. International Journal of Remote Sensing, 33(8), 2582–2602. https://doi.org/10.1080/01431161.2011.617396> https://doi.org/10.1080/01431161.2011.617396
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.