Use of TLS technology in highway construction

    Jiří Plesník   Affiliation
    ; Hana Staňková Affiliation
    ; Pavel Černota Affiliation


This article deals with issues related to the measurement of TLS technology, or 3D scanning in road construction. Based on the data and results obtained, a technological procedure for the use of TLS technology on highways and  A-roads will be drawn up, mainly for monitoring the transition areas of bridges, which currently does not exist in the Czech Republic.

A smooth connection between two different structures in the transition areas should provide a comfortable crossing of the bridge structure. In order to unambiguously determine the movements in these areas, it is necessary to eliminate any inaccuracies that may affect the final result. For this reason, it was necessary to use a combination of traditional geodetic methods and special geodesy methods. In addition, several innovative methods were used, which emerged in this work based on newly emerging facts. All these operations and the presentation of the results will be described in this work.

Keyword : terrestrial laser scanning, bridge transition zone, technological procedure, transport construction

How to Cite
Plesník, J., Staňková, H., & Černota, P. (2023). Use of TLS technology in highway construction. Geodesy and Cartography, 49(1), 1–11.
Published in Issue
Mar 6, 2023
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Czech Standardization Institute. (1994). Geodetic accuracy in construction. Linear construction objects. Accuracy check. (ČSN 730212-4). Czech.

Gordon, S. J., & Lichti, D. D. (2007). Modeling terrestrial laser scanner data for precise structural deformation measurement. Journal of Surveying Engineering, 133(2), 72–80.

Guldur, B., Yan, Y., & Hajjar, J. F. (2015). Condition assessment of bridges using terrestrial laser scanners. In Structures Congress 2015 (pp. 355–366). American Society of Civil Engineers.

Hampacher, M., & Radouch, V. (1997). Teorie chyb a vyrovnávací počet 10 [Theory of errors and adjustment calculation]. České vysoké učení technické.

Harazim, T. (2014). Návrh a ověření základní vytyčovací sítě pro vytyčení prostorové polohy liniové stavby [Project and verification of the basic setting – out network for laying out the spatial position of line construction] [Thesis]. VŠB-TUO.

Johnson, W. H., & Johnson, A. M. (2012). Operational considerations for terrestrial laser scanner use in highway construction applications. Journal of Surveying Engineering, 138(4), 214–222.

Labant, S., Gergelova, M., Weiss, G., & Gašinec, J. (2017). Analysis of the use of GNSS systems in road construction. In 2017 Baltic Geodetic Congress (BGC Geomatics) (pp. 72–76). IEEE.

Lichti, D. D. (2017). Ray-tracing method for deriving terrestrial laser scanner systematic errors. Journal of Surveying Engineering, 143(2).

O’Banion, M. S., & Olsen, M. J. (2019). Efficient planning and acquisition of terrestrial laser scanning-derived digital elevation models: Proof of concept study. Journal of Surveying Engineering, 145(1).

Owens, J. C. (1967). Optical refractive index of air: Dependence on pressure, temperature and composition. Applied Optics, 6(1), 51–59.

Štroner, M. (2012). K přesnosti volného stanoviska [To the precision of the free station]. ČVUT Praha.

Štroner, M., & Hampacher, M. (2011). Zpracování a analýza měření v inženýrské geodézii [Processing and analysis of measurements in engineering surveying]. České vysoké učení technické v Praze.

Štroner, M., & Křemen, T. (2017). Poznámka k vyjadřování přesnosti moderních měřicích technologií [A note on expressing the accuracy of modern measurement technologies]. Geodetický a kartografický obzor, 63(8), 161–169.