Share:


Study of TEC variations using permanent stations GNSS data in relation with seismic events. Application on Samothrace earthquake of 24 May 2014

    Christos Pikridas Affiliation
    ; Stylianos Bitharis   Affiliation
    ; Symeon Katsougiannopoulos Affiliation
    ; Kyriaki Spanakaki Affiliation
    ; Ion-Anastasios Karolos Affiliation

Abstract

This study investigates the ionospheric total electron content (TEC) variations prior to the earthquake (MW = 6.9) of 24 May 2014 in Samothraki island of north Aegean Sea in Greece. TEC estimates were analyzed using data from GNSS (GPS+Glonass) permanent networks with the aim to detect possible ionospheric anomalies associate with the seismic event. The test period covers one week of data, 4 days before and two days after the event. Selected GNSS stations are scattered around seismic epicenter of distances from 16 up to 1375 km. TEC values estimated for every hour using PPP technique with Bernese GPS software. A comparison with global TEC estimates derived from CODE and JPL institute confirms the validation of results. It is found that a significant decrease 1-day prior to earthquake occurs at all of the selected stations. This result is not obvious when standard ionospheric model is performed for the estimation of TEC. Therefore, in such cases the use of dedicated GNSS processing data scenario is mandatory. A spatial analysis on TEC estimates with geometrical properties shows that the 1-day decrement is related with the EQ shock and may point the location area of the Earthquake. Finally, we conclude that the lithosphere-atmosphere-ionosphere coupling (LAIC) mechanism through acoustic or gravity waves has a key role for this phenomenology.

Keyword : GNSS data, total electron content, Earthquake shock

How to Cite
Pikridas, C., Bitharis, S., Katsougiannopoulos, S., Spanakaki, K., & Karolos, I.-A. (2019). Study of TEC variations using permanent stations GNSS data in relation with seismic events. Application on Samothrace earthquake of 24 May 2014. Geodesy and Cartography, 45(3), 137-146. https://doi.org/10.3846/gac.2019.10246
Published in Issue
Dec 23, 2019
Abstract Views
1875
PDF Downloads
547
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Astafyeva, E., & Heki, K. (2011). Vertical TEC over seismically active region during low solar activity. Journal of Atmospheric and Solar-Terrestrial Physics, 73(13), 1643-1652. https://doi.org/10.1016/j.jastp.2011.02.020

Bitharis, S., Fotiou, A., Pikridas, C., Rossikopoulos, D., Pavlides, S., & Chatzipetros, A. (2016). The Samothrace earthquake of May 2014 and the displacements estimations using permanent GPS stations data. Bulletin of the Geological Society of Greece, 50(3), 1545-1552. http://doi.org/10.12681/bgsg.11867

Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research, 111, B02406. https://doi.org/10.1029/2005JB003629

Calais, E., & Minster, J. B. (1998). GPS, earthquakes, the ionosphere, and the space shuttle. Physics of the Earth and Planetary Interiors, 105(3-4), 167-181. https://doi.org/10.1016/S0031-9201(97)00089-7

Caputo, R., Chatzipetros, A., Pavlides, S., & Sboras, S. (2013). The Greek Database of Seismogenic Sources (GreDaSS): state-of-the-art for northern Greece. Annals of Geophysics, 55(5), 859-894.

Contadakis, M. E., Arabelos, D., Asteriadis, G., Spatalas, S. D., & Pikridas, C. (2008). TEC variations over the Mediteranean during the seismic activity period of the last quarter of 2005 in the area of Greece. Natural Hazards and Earth System Sciences, 8, 1267-1276. https://doi.org/10.5194/nhess-8-1267-2008

Contadakis, M. E., Arabelos, D., Asteriadis, G., Pikridas, C., & Spatalas, S. D. (2012). Total electron content variations over southern Europe before and during the M 6.3 Abruzzo earthquake of April 6, 2009. Annals of Geophysics, 55(1), 83-93.

Dach, R., & Walser, P. (2015). Tutorial of Bernese GNSS software version 5.2. AIUB, Bern, Switzerland.

Dobrovolsky, I. R., Zubkov, S. I., & Myachkin,V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117(5), 1025-1044. https://doi.org/10.1007/BF00876083

Jakowski, N., Hoque, M. M., & Mayer, M. (2011). A new global TEC model for estimating transionospheric radio wave propagation errors. Journal of Geodesy, 85, 695-974. https://doi.org/10.1007/s00190-011-0455-1

Jolivet, L. (2011). A comparison of geodetic and finite strain in the Aegean, geodynamic implications. Earth Planetary Science Letters, 187, 95-104. https://doi.org/10.1016/S0012-821X(01)00277-1

Koperanov, V., Hayakawa, M., Yampolski, Y., & Lizunov, G. (2008). AGW as a seismo-ionospheric responsible agent. Physics and Chemistry of the Earth, Parts A/B/C, 34(6-7), 485-495. https://doi.org/10.1016/j.pce.2008.07.014

Klobuchar, J. (1987). Ionospheric time delay algorithm for single frequency GPS users. In IEEE Transactions on Aerospace and Electronic Systems, 23, 325-332. https://doi.org/10.1109/TAES.1987.310829

Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Chen, Y. I., Pulinets, S. A., & Yu, S. B. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Annals of Geophysics, 22, 1585-1593. https://doi.org/10.5194/angeo-22-1585-2004

Molchanov, O., Biagi, P. F., Hayakawa, M., Lutikov, A., Yunga, S., Iudin, D., Andreevsky, S., Rozhnol, A., Surkov, V., Chebrov, V., Gordeev, E., Schekotov, A., & Fedorov, E. (2004). Lithosphere-atmosphere-Ionsphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Natural Hazards and Earth System Science, 4(5/6), 757-767. https://doi.org/10.5194/nhess-4-757-2004

Molchanov, O., Schekotov, A., Solovieva, M., Fedorov, E., Gladyshev, V., Gordeev, E., Chebrov, V., Saltykov, D., Sinitsin, V. I., Hattori, K., & Hayakawa, M. (2005). Near seismic effects in ULF fields and seismo-acoustic emission: statistics and explanation. Natural Hazards and Earth System Science, 5, 1-10. https://doi.org/10.5194/nhess-5-1-2005

Ondoh, T. (2008). Investigation of precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes of M.6.5. Advances in Space Research, 43, 214-233. https://doi.org/10.1016/j.asr.2008.04.003

Papazachos, C., Kiratzi, A., & Kontopoulou, D. (1998). Active tectonics in Aegean and surrounding area. In Basic results of the seismologic in Greece in Honorem Prof. B .C. Papazachos (pp. 49-74). Thessaloniki: Ziti editions (in Greek).

Pavlides, S., Caputo, R., Sboras, S., Chatzipetros, A., Papathanasiou, G. & Valkaniotis, S. (2010). The Greek catalogue of active faults and database of seismogenic sources. Bulletin of the Geological Society of Greece, 43(1), 486-494. https://doi.org/10.12681/bgsg.11199

Pikridas, C., & Chatzinikos, M. (2007). TEC values estimation over a permanent GPS station. Coordinates, 3(4), 22-24.

Pulinets, S., & Legen’ka, A. (2002). Dynamics of the near-equatorial ionosphere prior to strong earthquakes. Geomagnetism and Aeronomy, 42, 239-244.

Pulinets, S., Legen, A. D., Gaivoronskaya, T. V., & Depuev, V. K. (2003). Main phenomenological features of ionospheric precursors of strong earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics, 65(16-18), 1337-1347. https://doi.org/10.1016/j.jastp.2003.07.011

Pulinets, S., & Boyarchuk, K. (2004). Ionospheric precursors of earthquakes. Berlin: Springer.

Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In S. W. Henriksen, A. Mancini, & B. H. Chovitz (Eds.), The use of artificial satellites for geodesy, geophysics monograph series (Vol. 15, pp. 247-251). AGU, Washington D.C. https://doi.org/10.1029/GM015p0247

Sboras, S., Chatzipetros, C., Pavlides, P., Pikridas, C., Fotiou, A., & Bitharis, S. (2015, April). The May 24, 2014 North Aegean Trough earthquake: stress change and displacement patterns. Paper presented at 6th International INQUA Meeting on Paleoseismology, Active Tectonics and Archaeoseismology, Pescina, Italy.

Schaer, S. (1999). Mapping and predicting the Earth’s ionosphere using the global positioning system (PhD thesis). University of Bern, Switzerland.

Sharma, K., Dabas, R. S., Sarkar, S. K., Das, R. M., Ravindran Sudha, Gwal, A. K. (2010). Anomalous enhancement of ionospheric F2 layer critical frequency and total electron content over low latitudes before three recent major earthquakes in China. Journal of Geophysical Reseach, 115, A11313. https://doi.org/10.1029/2009JA014842

Singh, O. P., Chauhan, V., Singh, V., & Singh, B. (2009). Anomalous variation in total electron content (TEC) associated with earthquakes in India during September 2006 – November 2007. Physics and Chemistry of the Earth, Parts A/B/C, 34(6-7), 479-484. https://doi.org/10.1016/j.pce.2008.07.012

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos, Transactions, American Geophysical Union, 94(45), 409410. https://doi.org/10.1002/2013EO450001

Wild, U. (1994). Ionosphere and geodetic satellite systems: Permanent GPS tracking data for modeling and monitoring. In Geodatisch-geophysikalische Arbeiten in der Schweiz (Vol. 48). Schweizerische Geodätische Kommission.

Yao, Y., Chen, P., Wu, H., Zhang S., & Peng, W. (2012). Analysis of ionospheric anomalies before the 2011 Mw 9.0 Japan earthquake. Chinese Science Bulletin, 57(5), 500. https://doi.org/10.1007/s11434-011-4851-y