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Abstract. In coordinate transformation, the main purpose is to provide a mathematical relationship between coordinates 
related to different geodetic reference frames. This gives the geospatial professionals the opportunity to link different da-
tums together. Review of previous studies indicates that empirical and soft computing models have been proposed in recent 
times for coordinate transformation. The main aim of this study is to present the applicability and performance of Least 
Squares Support Vector Machine (LS-SVM) which is an extension of the Support Vector Machine (SVM) for coordinate 
transformation. For comparison purpose, the SVM and the widely used Backpropagation Neural Network (BPNN), Radial 
Basis Function Neural Network (RBFNN), 2D conformal and affine methods were also employed. To assess how well the 
transformation results fit the observed data, the root mean square of the residual horizontal distances and standard de-
viation were used. From the results obtained, the LS-SVM and RBFNN had comparable results and were better than the 
other methods. The overall statistical findings produced by LS-SVM met the accuracy requirement for cadastral surveying 
applications in Ghana. To this end, the proposed LS-SVM is known to possess promising predictive capabilities and could 
efficiently be used as a supplementary technique for coordinate transformation.

Keywords: coordinate transformation, Support vector machine, Least squares support vector machine, 2D conformal 
model, 2D affine model.

Introduction

Over the years, the means to facilitate the usage of Global 
Navigation Satellite System (GNSS) acquired data in coun-
tries utilising astro-geodetic datums has been a major re-
search focus in the geodetic community. Reliable estima-
tion of transformed coordinates between global and local 
datums is one of the fundamental problems in geodetic 
sciences. Several authors have attributed such problems 
to the (i) data collection procedures employed when es-
tablishing the local geodetic datum; (ii) computational ad-
justment techniques applied to adjust and unify the local 
geodetic reference networks; (iii) the quality of the data 
set collected in the local geodetic reference network; and 
(iv) lack of ellipsoidal height for the local geodetic datum 

(Tierra, Dalazoana, & De Freitas, 2008; Yang, 2009; Varga, 
Grgić, & Bašić, 2015). These challenges have therefore con-
tributed to the heterogeneity in data relating to the local 
geodetic networks. Countries that are yet to establish and 
migrate onto the geocentric datum are confronted with 
the above-mentioned concerns. To circumvent the situ-
ation, conventional transformation techniques which are 
parametric and thus require a fixed functional form to the 
co-located point coordinates have been extensively used 
for two and three-dimensional coordinate transformation 
in different geodetic reference networks across the globe 
(see e.g. Varga et al., 2015 and references therein). The 
conventional transformation methods could be catego-
rised into conformal (e.g. Bursa-Wolf, Molodensky-Bade-
kas, Abridged Molodensky, Veis, 2D conformal), affine 
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(e.g. 2D affine, 8-parameter, 9-parameter, 12-parameter) 
and projective (e.g. 2D and 3D projective).

In the past few years, several computational intel-
ligent techniques have been developed and applied to 
solve different problems in geodesy and geosciences. Ar-
tificial Neural Network (ANN) is one of the most attrac-
tive methods of computational intelligence to cope with 
non-linearity and time varying geodetic data due to its 
ability to learn and adapt to new dynamic environments. 
Numerous studies have shown successful implementation 
of ANN in the geodetic disciplines including but are not 
limited to deformation studies (Li & Kong, 2014; Huang, 
Wu, & Ziggah, 2016), meteorological studies (Moham-
madi et al., 2015; Durmaz & Karslioglu, 2011), hydrologi-
cal studies (Tiwari, J. Adamowski, & K. Adamowski, 2016; 
Deo & Şahin, 2016; Deo, Tiwari, Adamowski, & Quilty, 
2017), tidal estimation (Okwuashi & Ndehedehe, 2017), 
change detection (Pal, 2009; Chang, Han, Yao, Chen, & 
Xu, 2010), geoid determination (Kavzoglu & Saka, 2005; 
Sorkhabi, 2015), and gravity field modelling (Turgut, 
2016). Additionally, extensive studies on the suitability of 
ANN for coordinate transformation in both 2D and 3D 
have also been duly investigated by several authors (Tierra 
et al., 2008; Zaletnyik, 2004; Lin & Wang, 2006; Tierra, 
De Freitas, & Guevara, 2009; Tierra & Romero, 2014; 
Gullu, 2010; Gullu et al., 2011; Turgut, 2010; Mihalache, 
2012; Yilmaz & Gullu, 2012; Konakoğlu, Cakir, & Gökalp, 
2016; Konakoğlu & Gökalp, 2016; Ziggah, Youjian, Tierra, 
Konate, & Hui, 2016; Kumi-Boateng & Ziggah, 2017). A 
thorough review of these coordinate transformation stud-
ies indicates that the ANN of radial basis function and 
backpropagation have been the most commonly used 
techniques. The main objective noted from the review 
was about testing the applicability of ANN in coordinate 
transformation. It was noticed that, the ANN can produce 
improved transformation results when compared with the 
conventional transformation methods. The main advan-
tage of the ANN has been attributed to its non-parametric 
characteristics. That is, the ANN is capable of approxi-
mating dataset without prior knowledge of the functional 
relationship and data distribution between the co-located 
points. This has further confirmed the proofs made by 
Hornik, Stinchcombe, and White (1989) and Park and 
Sandberg (1991) that, ANN could be regarded as a uni-
versal function approximator. Another significance of the 
ANN lies in its ability to not rely on transformation pa-
rameters due to its adaptive computational scheme. That 
is, once the optimum trained model has been developed, 
prediction can be made when unseen dataset is intro-
duced into the network. 

In addition to the proficiencies of ANN, recent re-
search works have led to finding and testing new alter-
native computational intelligent methods. In recent years, 
Least Squares Support Vector Machine (LS-SVM) which 
is an extension of Support Vector Machine (SVM) has 
been one of the most significant computational intelligent 
theories introduced for classification and function estima-
tion tasks. LS-SVM has been shown in various studies to 

exhibit the major advantages of global optimum realisa-
tion, higher generalisation performance and good com-
putational efficiency. In addition, the LS-SVM technique 
only learns on fewer training data to produce the opti-
mum trained model. Hence, it can be used to fit a model 
in scarcity of data situation. These derived computational 
merits from LS-SVM can be confirmed in a number of 
studies found in the geodetic sciences domain (see e.g. 
Li & Kong, 2014; Mohammadi et al., 2015; Durmaz & 
Karslioglu, 2011; Okwuashi & Ndehedehe, 2015, 2017 and 
references therein). 

Despite the fact that LS-SVM has been applied in 
several disciplines and to solve some geodetic problems, 
its application in coordinate transformation is still very 
rare in literature. In view of that, the present study seeks 
to ascertain the extent of applicability and performance 
of LS-SVM in coordinate transformation. A comparison 
with SVM and the widely used Backpropagation Neural 
Network (BPNN), Radial Basis Function Neural Network 
(RBFNN) and two conventional transformation tech-
niques namely, 2D conformal and 2D affine model was 
carried out accordingly. The numerical case study ap-
plication is Ghana located in the Western part of Africa. 
In Ghana two horizontal geodetic datums (Accra and 
Leigon) are being utilised for its mapping and surveying 
purposes. Due to data incompatibility between the two lo-
cal geodetic datums, transformation of coordinates is nec-
essary. The authors believe that it will be an excellent op-
portunity to gain insight into the viability of LS-SVM for 
coordinate transformation. The entire present study forms 
part of a larger effort by the Ghana Survey and Mapping 
Division of Lands Commission towards the adoption and 
implementation of computational intelligent procedures 
to transform coordinates in Ghana. The study will help 
Land surveyors and other built environment practitioners 
in Ghana to know the efficiency of using such intelligent 
tools and applying them accordingly.

The paper is organized as follows. Sections 1 and 2 pre-
sent the study area and the data set used. Section 3 briefly 
presents the theoretical concept of the vector machine 
methods introduced. Section 4 gives the model adequacy 
assessments for the various methods, while Section 5 dis-
cusses the results. The study ends with conclusions.

1. Study area

Ghana geodetic reference network (Figure 1) is the focus 
of this study. Ghana is a country located in the Western 
part of Africa that shares border with Ivory Coast in the 
West, Togo to the East, Burkina Faso to the North and 
Gulf of Guinea to the South. Ghana has a land area of 
238, 540 km2 (Fosu, Poku-Gyamfi, & Hein, 2006) and lies 
between latitudes 40 30′ N and 110 N, and between lon-
gitudes 30 W and 10 E (Mugnier, 2000). In Ghana, two 
local geodetic datums are defined for surveying and map-
ping purposes: the Accra 1929 and Leigon 1977 (Ayer & 
Fosu, 2008; Poku-Gyamfi, 2009; Ayer, 2008; Kotzev, 2013). 
The Accra 1929 datum is the local realisation of the War 
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Office 1926 ellipsoid, while the Leigon datum is the re-
alisation of the Clark 1880 (modified) ellipsoid (Ayer & 
Fosu, 2008; Ayer, 2008). The War Office 1926 ellipsoid has 
a semi-major axis (a) = 6 378 299.99899832 m, semi-mi-
nor axis (b) = 6 356 751.68824042 m and flattening (f)0= 
1/296. The Clark 1880 (modified) has the following ellip-
soid properties: semi-major axis (a) = 6 378 249.145 m, 
semi-minor axis (b) = 6 356 514.870 m and flattening f = 
1/293.465006079115.

The coordinate system approved for geospatial works 
in Ghana is the projected grid coordinates based on the 
Transverse Mercator 1° NW. The origin of the Transverse 
Mercator is longitude 1° 00′ W (central meridian) and lati-
tude 04° 40′ N with 274319.736 m as the false Easting add-
ed to all Y coordinates to avoid negative coordinates and 
the false Northing set to zero. A scale factor of 0.99975 is 
used at the central meridian so that the scale distortion 
exceeds the projection values only at the extreme ends of 
the country (Mugnier, 2000). 

2. Data source

In this study, 2D coordinate transformation was con-
ducted using planimetric data of 46 co-located reference 
stations (Figure 1). These stations are in projected grid 
coordinate system (Eastings and Northings) based on the 

Transverse Mercator for the Accra 1929 and Leigon 1977 
obtained from the Ghana Survey and Mapping Division of 
Lands Commission. These datasets belong to the Ghana 
National Triangulation Network of points (Figure 1).

3. Methods

The main focus here is to present a brief account on the 
SVM and LS-SVM introduced in this study. The BPNN, 
RBFNN, 2D conformal and 2D affine mathematical back-
grounds and theories will not be repeated here. These have 
been successfully and frequently applied in coordinate 
transformation. Therefore, a more comprehensive detail 
on them can be found in (Bishop, 1995; Haykin, 1990; 
Ghilani, 2010).

3.1. Support Vector Machine

SVM can be applied to solve pattern recognition (Vapnik, 
1998) and function estimation (Drucker, Burges, Kaufman, 
Smola, & Vapnik, 1997) problems with the latter being the 
main focus of this study. In the SVM function estimation, 
given a training data set of input vectors X = {xn} with 
related target values Y = {yn}, n = 1…N, the objective is to 
define a functional model y(x) that can predicts satisfacto-
ry y values given x. Here, the N-dimensional input vector 

Figure 1. Study area: distribution of data points
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X is mapped from a low-dimensional space into a higher 
dimensional feature space using the nonlinear function

( )xϕ  (Equation (1)). A linear model (Ao & Palade, 2011; 
Smola & Schölkopf, 2004) expressed in Equation (1) is 
then built in this high-dimensional feature space.

( ) ( )T
iy x w x b= ϕ + ,  (1)

where 1 2( , , , )Mw w w w=   is the weight vector, 
1( ) ( ( ), , ( ))ix x xφ = φ … ϕ  is the basis function vector denot-

ing a set of nonlinear transformations, and b the bias term. 
It is accepted that the objective of SVM is to determine the 
optimal separating hyperplane that maximizes the margin 
of the training data. In order to find the optimal hyper-
plane, a quadratic programming optimization problem will 
have to be solved. In lieu of that, the SVM fit a function to 
the training data by solving the optimization problem with 
constraints. The SVM constrained quadratic programming 
(Xiang-Yang, Jing-Wei, & Hong-Ying, 2011) can be repre-
sented by Equation (2) subject to Equation (3) as
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where the constant C which varies in the interval 0 < C < ∞ 
is a pre-defined penalty value that regulates the error, while 

, i
∗ξ ξ  are the non-negative slack variables that give the de-

gree of variation of training datasets outside ε -insensitive 
zone. ε  (Equation (3)) is the error parameter which limits 
the deviation between the fitted function model from the 
desired (target) values. Equation (2) subject to the con-
straints in Equation (3) could be solved using Lagrang-
ian function and Lagrange multipliers (Xiang-Yang et al., 
2011) as defined by Equation (4).
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where L is the Lagrangian and * *, , ,i iγ γ α α  are the La-
grange multipliers. The solution of Equation (4) must sat-
isfy the Karush–Kuhn–Tucker (KKT) conditions (Farag & 
Mohamed, 2004). Hence, Equation (2) is reduced into a 
dual optimization problem expressed in Equation (5) as
maximize  
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with the constraints (Equation (6))

*( ) 0
n

i i
i
α −α =∑  and *, [0, ]i i Cα α ∈ ,  (6)

where ( , ) ( ) ( )T
ij i j i jM K x x x x= = φ φ is the kernel trick 

(Mercer theorem). It is important to note that the dual 
variables in Equation (4) satisfy the positivity constraints 
that is * *, , , 0i iγ γ α α ≥ . The iα  and *

iα  are then com-
puted and the optimum weight vector ( )w  of the function 
estimation model hyperplane is given by Equation (7) as

*

1
( ) ( )
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i

w x
=
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Therefore, the SVM function estimation model applied 
in this study for the coordinate transformation can be ex-
pressed in the form of Equation (8).

*

1
( ) ( ) ( , )

n

i i i
i

y x K x x b
=

= α −α +∑ .  (8)

Here, ( , )iK x x is the kernel function. In this study, the 
Gaussian kernel, polynomial kernel, sigmoid kernel and 
linear kernel were applied on the dataset with the objec-
tive of selecting the kernel function that maps the train-
ing data patterns more effectively. After several trials, the 
polynomial kernel function fitted the pattern of the data 
accurately than the other kernel methods. Therefore, the 
polynomial kernel function (Güraksin, Hakli, & Harun, 
2014) adopted in this study is given by Equation (9).

( , ) (1 )T q
i j i jK x x x x= + .  (9)

3.2. Least Squares Support Vector Machine

LS-SVM proposed by Suykens, Van Gestel, De Braban-
ter, De Moor, and Vandewalle (2002) is the least squares 
formulation of SVM and is applied to solve classification 
and function estimation related problems. In this study, 
the LS-SVM was formulated as a function estimation 
technique to carry out the coordinate transformation. 
Given a set of training data { }( , ) 1, 2, ,m mD x y m n= = …  
with input data n

mx R∈  and corresponding target 
my r∈ , where nR  is the n-dimensional vector space and 

r the one-dimensional vector space. The objective is to fit 
a functional model y(x) on the training data sets such that 
this function could be used later on to infer the target y 
for a new input data point x. The LS-SVM model can be 
expressed in the form of Equation (10) as

( ) ( )Ty x w x b= φ + ,  (10)

where w is the adjustable weight vector, T is the transpose, 
( )xφ is the nonlinear transformation that maps the input 

data into a higher dimensional space and b is the scalar 
threshold. 

In line with the structural risk minimization rule (Kec-
man, 2001), the risk bound is minimized by devising the 
following optimization problem (Suykens & Vandewalle, 
1999) expressed in Equation (11) with the equality con-
straints given in Equation (12).
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minimize 2
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Here, γ  is the regularization parameter that deter-
mines the tradeoff between the fitting function error mini-
mization and flatness, em is the error variable and m  = 
1,…, n.

In order to solve Equation (11) subject to Equation 
(12), Lagrange function (L) defined in Equation (13) is 
used.
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Here, mα values are the Lagrange multipliers which 
could be positive or negative due to the equality con-
straints. The optimality condition of Equation (13) was 
met by finding the partial derivative of L with respect to 
each variable as provided in Equation (14).
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where TD D  and the kernel trick (Mercer’s theorem) 
(Vapnik, 1998) was applied within the Ω  matrix repre-
sented in Equation (16) as
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 (16)

Here, K(xm, xl) is the kernel function. Among the ker-
nel functions available, the radial basis function produced 
the best results. Therefore, the present study applied the 
radial basis function (Gencoglu & Uyar, 2009) expressed 
in Equation (17) as

2
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( , ) exp
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m l m l
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k x x
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σ  
,  (17)

where σ  is the width of the radial basis function. The re-
sulting LS-SVM function estimation model for conducting 

the coordinate transformation is defined in Equation (18).
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4. Model quality evaluation

The differences between the observed and transformed 
coordinates were used to evaluate the methods applied 
performance. To do that, horizontal error (HE), mini-
mum horizontal error, maximum horizontal error, average 
horizontal error (AHE), standard deviation (SD) and root 
mean square of the horizontal residual distances (RMSHE) 
were utilised. Equations (19) to (23) present their math-
ematical notations.
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2( )i
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N
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Here, n is the total number of observations and HE  
is the mean of the horizontal error. (EO, NO) are the ob-
served coordinates and (EP, NP) are the transformed co-
ordinates from the various procedures.

5. Application

5.1. Model formulation

In order to implement the various methods (LS-SVM, 
SVM, BPNN, RBFNN, 2D affine and 2D conformal), 
the 46 co-located reference control points found in the 
two horizontal geodetic datums (Accra and Leigon) in 
Ghana were used. Here, the objective is to transform 
coordinates from the Leigon 1977 to the official Accra 
1929 datum. Plane projected grid coordinates of Easting 
(E) and Northing (N) related to the Leigon 1977 da-
tum were used as the input data. The Accra 1929 datum 
coordinates were used as the target data in the model 
formulation process. The input data in this study was 
denoted as (Eclark, Nclark) while the target (output) was 
represented as (Ewar, Nwar), respectively. The study data 
set was first divided into training and testing. The train-
ing data was used to build the coordinate transforma-
tion models derived from the various methods applied. 
The testing data was introduced into the selected opti-
mum trained models for performance evaluation. In this 
study, 67% of the entire data representing 31 co-located 
points constituted the training set while the other 33% 
making 15 co-located points formed the testing set. The 



Geodesy and Cartography, 2019, 45(1): 17–27 21

training data was carefully selected to capture the area 
of interest as shown in Figure 2.
The idea behind these training points selection was to 
develop a model that could be applied in any of the re-
gions covered by the entire study data set. This will help 
provide a better idea on the data adaptation strength for 
each method when performing 2D coordinate transfor-
mation in the study area. Correspondingly, an evenly 
distributed points is also selected to constitute the test 
data. In doing so, the extent of application and accu-
racy level for each developed transformation model 
within the five regions of study (Figure 2) will be clearly 
known. Figure 2 shows a spatial map of the geographical 
distributions of the selected training and testing points. 

Due to different physical realisations among the in-
put data sets, data normalisation was carried out. The 
normalisation process create uniformity among the 
input data sets thereby contributing to the successful 
implementation of the computational intelligent algo-
rithms. In effect, large values will not have much in-
fluence on the smaller values. Therefore, for the model 
training, the study data set was normalised between –1 
and 1 using Equation (24). 

max min min
min

max min

( ) ( )
( )

i
i

t t b b
t t

b b
− × −

= +
−

,  (24)

where ti represents the normalised data, bi is the observed 
coordinates, while bmin and bmax represents the minimum 

Figure 2. Training and testing data distribution

Table 1. 2D affine model transformation parameters from 
Leigon 1977 to Accra 1929 datum

Parameters Values (m) SD (m)

A 1.00001260 2.38E-06

B 1.36E-05 1.36E-06

C 0.5414654 0.6367

D –5.39E-06 2.38E-06

E 1.00001 1.36E-06

F –2.3336951 0.6367

Table 2. 2D conformal model transformation parameters from 
Leigon 1977 to Accra 1929 datum

Parameters Values (m) SD (m)

a 1.00001 1.13E-06

b –0.00001 1.13E-06

c 1.56449 0.37599

d –1.10457 0.37599

and maximum value of the observed coordinates with tmax 
and tmin values set at 1 and –1. 

The performance of the optimum LS-SVM, SVM, 
BPNN and RBFNN models was ascertained using the root 
mean square error (RMSE) criterion. The RMSE value was 
estimated using Equation (25). 
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2

1

1 ( )
n

i i
i

RMSE O P
n =

= −∑ , (25)

where O and P are the observed and transformed coordi-
nates. Here, the RMSE values for each training and testing 
phase were monitored for the LS-SVM, SVM, BPNN and 
RBFNN. Here, the trained model that furnished the lowest 
RMSE value closer to zero in the testing stage was selected 
as the optimum. These obtained RMSE results describe 
the ability of the applied methods to appropriately capture 
the input-output mapping relationship between the train-
ing inputs and target data sets. 

In the course of the SVM training, different combina-
tions of ε  (Equation (3)), C (Equation (2)) and kernel 
functions were tried to get the best coordinate transforma-
tion results. For the target (Ewar, Nwar) prediction, the op-
timum design values for ε and C was 0.00000001 and 50. 
The polynomial kernel (Equation (9)) of order one was the 
best kernel in this regard. For the LS-SVM trained model, 
the optimum design values of γ (Equation (11)) and 2σ

(Equation (17)) that produced the best transformed Ewar 
values are 6761965743036.15 and 1092.552454. In the case 
of Nwar, the optimum design values for γ  and 2σ  was 
1625293587807.38 and 1514173.748, respectively. In the 
ANNs (BPNN and RBFNN) model building, the same 
data set used in the SVM and LS-SVM was applied. The 
optimum RBFNN model consisted of two inputs (Eclark, 
Nclark), a single hidden layer with 18 neurons and two out-
puts (Ewar, Nwar) that is, [2-18-2]. The BPNN had [2-8-1] 
for transforming Ewar and [2-11-1] for the Nwar output 
vector. This means that, the BPNN model for predicting 
the output Ewar comprises of two inputs with eight hidden 
neurons and the Nwar consisted of eleven hidden neurons 
with two inputs. 

With regards to the 2D affine and conformal models, 
the training data set was used to derive the transformation 
parameters based on the least squares estimation principle. 
The obtained results are shown in Tables 1 and 2. The cal-
culated SD values in Tables 1 and 2 offer indication on the 
precision extent of the derived transformation parameters.

Figures 3 and 4 show a diagrammatic representation of 
the RMSE training and testing results obtained for the best 

Figure 3. RMSE results of the methods based on the training data for (a) Easting and (b) Northing coordinates
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trained models. A visual observation of Figures 3 and 4 
revealed marginal RMSE deviation when comparing each 
method training RMSE results against their correspond-
ing testing results. This therefore suggests that none of the 
methods applied exhibited overfitting condition. Compar-
atively, the LS-SVM, RBFNN and, BPNN performed better 
than the SVM, 2D affine and conformal model (Figures 3 
and 4). The interpretation that could be made here is that 
the LS-SVM, RBFNN and BPNN in training have demon-
strated greater calibration power and in testing were able 
to give good generalisation performance. The assertion is 
in line with the rule of thumb that, the closer the RMSE 
is to zero the better the model predictions in consonance 
with the observed data.

5.2. Test results

Mathematically, the test results produced will provide the 
model developer and the user a better idea of all possible 
disparities in the transformed coordinates. Consequently, 

an indication on the generalisation strength and predic-
tive potential of the techniques employed shall be known 
for the study area. Table 3 shows how much the predicted 
horizontal test coordinates produced by the various meth-
ods deviated from the observed coordinates. The obtained 
horizontal positional error (HE) which was estimated us-
ing Equation (19) shows the prediction limitations of the 
methods and thus signify the extent at which their results 
are in conformance with the observed coordinates. 

When the test results presented in Table 3 are ana-
lysed, it can be noticed that the LS-SVM, BPNN and RB-
FNN were able to produce horizontal coordinate residu-
als below 1 m as compared with the SVM, 2D affine and 
conformal models having values above 1 m. This can ad-
ditionally be confirmed in Figure 5. 

Therefore, the obtained results suggest that the pro-
posed LS-SVM as well as the RBFNN and BPNN trans-
formed the test coordinates with a significantly better ac-
curacy than the other models. The inability of the SVM 
to produce better generalisation performance could be 

Figure 4. RMSE results of the methods based on the testing data for (a) Easting and (b) Northing coordinates
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attributed to the heavily reliance on several parameters 
( ε , C, and kernel function parameter) which needed to 
be optimised by the modeller (Monien & Decker, 2005). 
Hence, optimal combination of these parameters is some-
times a difficult task to carry out. These phenomena 
were observed during the SVM training where only the 
polynomial kernel of order 1 was able to perform better 
among the candidate kernel functions tested in this study. 
In relation to the conventional methods, the lack of com-
putational adaptive strategy makes them rigid and thus 
could only produce better results based on the extent the 
formula could approximate the relationship between the 
input-output data to the underlying true function.

Summary statistics of the total horizontal coordinate 

residuals produced based on the test data is presented in 
Table 4.

In Table 4, the inference made with regards to the 
maximum error (Equation (20)) indicates the size of the 
residual distance that was achieved when the methods 
were applied within the study area. From Table 4, it is 
known that the LS-SVM, BPNN and RBFNN achieved the 
best maximum error among the candidate models. The 
AHE (Equation (21)) results in Table 4 quantify the aver-
age amount of horizontal positional dispersion. In Table 
4, it can be seen that the RBFNN furnished the least AHE 
value of 0.287 m, followed by LS-SVM which had 0.315 m. 
The BPNN, SVM, 2D affine and 2D conformal gave 0.354, 
0.779 and 0.831 m respectively.

Table 3. Horizontal coordinate residuals from the various methods (unit: meters)

Test Point ID 2D Affine 2D Conformal SVM BPNN RBFNN LS-SVM

R1 1.618 1.519 1.618 0.306 0.285 0.416

R2 1.040 1.319 1.040 0.522 0.163 0.352

R3 0.614 0.665 0.614 0.052 0.143 0.114

R4 0.535 0.698 0.535 0.303 0.255 0.348

R5 0.276 0.244 0.276 0.414 0.222 0.126

R6 0.338 0.027 0.338 0.531 0.493 0.628

R7 0.972 1.301 0.972 0.143 0.184 0.352

R8 1.024 1.112 1.024 0.995 0.591 0.694

R9 0.605 0.603 0.605 0.215 0.217 0.117

R10 0.425 0.823 0.425 0.416 0.095 0.393

R11 1.056 0.982 1.056 0.155 0.325 0.388

R12 0.677 0.752 0.677 0.194 0.463 0.130

R13 0.809 0.976 0.810 0.210 0.324 0.453

R14 0.848 0.597 0.847 0.395 0.199 0.132

R15 1.146 0.845 1.146 0.464 0.353 0.081

Figure 5. The horizontal positional error for the test data
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In relation to the SD (Equation (22)) results in Table 4, 
the RBFNN achieved the best precision of 0.14 m followed 
by the LS-SVM which had 0.194 m. The BPNN produced 
0.230 m whereas the 2D affine and SVM gave identical pre-
cision of 0.357 m. The 2D conformal model had a trans-
formation precision of 0.397 m. This implies that most of 
the LS-SVM and RBFNN transformation results are spread 
out and they are much closer to the mean value than the 
other methods. To further assess how well the transformed 
coordinates fit the observed data, the RMSHE (Eq. ((23)) 
was estimated. Quantitative evidence based on the RMSHE 
results (Table 4) have demonstrated that there is minimal 
local geodetic network distortion effect on the final trans-
formed coordinates given by LS-SVM, RBFNN and BPNN. 

The box and whisker plot (Figure 6) clearly demon-
strates the statistical distributional characteristics of the 
horizontal positional errors produced by the various 
methods. It can be observed that the box plot for the LS-
SVM, RBFNN and BPNN is comparatively shorter than 
the SVM, 2D affine and conformal models. This suggests 
that the overall estimated horizontal residuals produced 
by the LS-SVM, RBFNN and BPNN has a high level of 
agreement with each other. The SVM, 2D affine and 2D 
conformal box plots (Figure 6) suggest the existence of 
higher variability in the horizontal residual distribution 
as compared with the other methods. This can be seen 
from Figure 6 where the interquartile range is smaller for 
the LS-SVM, RBFNN and BPNN. From a practical point 

of view, the testing results produced by the proposed LS-
SVM and the widely used BPNN and RBFNN are satisfac-
tory for cadastral surveying applications in Ghana. This 
statement is buttressed by the ±0.914 m tolerance residual 
distance set by the Ghana Survey and Mapping Division 
of Lands Commission for its cadastral surveying works 
(Yakubu & Kumi-Boateng, 2015; Ziggah, Youjian, Laari, & 
Hui, 2017). Therefore, the quantitative results presented in 
Table 4 affirm that assertion.

Conclusions 

In this paper, the coordinate transformation strength of 
LS-SVM has been examined for the first time. The method 
was applied and tested in the Ghana geodetic reference 
network and the results compared with SVM and the 
widely used BPNN, RBFNN, 2D affine, and 2D confor-
mal techniques. The transformation results of this study 
showed that the LS-SVM could perform creditably well 
to the RBFNN but outperformed all the other methods. 
Additionally, the LS-SVM results in this research suggest it 
usefulness for cadastral surveying applications in Ghana. 
That is, the LS-SVM achieved a tolerance residual distance 
below the ±0.914 m set by the Ghana Survey and Map-
ping Division of Lands Commission. Therefore, it can be 
proposed that the LS-SVM model could be useful means 
for coordinate transformation in any of the area of inter-
est considered in this study. To conclude, the results ob-
tained show that the proposed LS-SVM has demonstrated 

Table 4. Statistics of the total horizontal residuals across the testing data

Performance Index 2D affine 2D conformal SVM BPNN RBFNN LS-SVM

Max Error 1.618 1.519 1.618 0.995 0.591 0.694
AHE 0.799 0.831 0.799 0.354 0.287 0.315
SD 0.357 0.397 0.357 0.23 0.14 0.194
RMSHE 0.87 0.915 0.87 0.418 0.318 0.366

Figure 6. Horizontal positional error variation based on the testing data
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promising indication of calibration power and good gen-
eralisation performance in the coordinate transformation. 
Hence, the proposed LS-SVM model has provided enough 
convincing evidence to confidently be used for future re-
search works in coordinate transformation.
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