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Abstract. The article describes a method for deriving the precision of a predicted land uplift value at an arbitrary 
terrain point which is assumed connected in height to a levelling benchmark using GNSS and a precise geoid mo-
del. We derive a statistical model for predicting the uplift rate from the existing point rates along with its empirical 
signal covariance function. One of our aims is a study on how a land uplift rate model and its empirical covariance 
function can be determined and then used for calculating changes in height over the time interval between precise 
levellings or GNSS heightings. 
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1. Introduction

In the future, National Height Systems will likely be 
maintained by GNSS (Global Navigation Satellite Sys-
tem) technology. This kind of a height system together 
with a precise geoid model and a precise land uplift 
model will serve as the basis for future National Height 
Systems. Precise levellings will most probably not be 
carried out to the same extent as in the past. Long me-
asurement time to perform complete precise levelling 
for one country and thus poor temporal resolution as 
well as high cost are the main reasons. Also, today we 
have permanent station networks of GNSS operating for 
more than 15 years.

This motivates us to study precision that can be ob-
tained determining the postglacial land uplift rate at an 
arbitrary point within the Fennoscandian area, because 
we will want to use the already known uplift rates to 
project geodetic heights forward in time. In the future 
dynamic height system, our knowledge of land uplift will 
be derived from a set of stations repeatedly positioned 
applying precise geodetic GNSS. 

If we assume uplift values obtained from GNSS to 
be precise enough, the question of how precise will be 
the uplift value predicted an arbitrary point at some dis-
tance from these known points arises. In order to find 
this out, one firstly should know the functional behaviour 
of the land uplift model. Additionally, one should know 
the general stochastic behaviour of local uplift deviations 
from this functional uplift model. These deviations can 

be characterized by a signal covariance function; the esti-
mation technique to be used is least squares collocation. 
The signal covariance function is to be estimated empiri-
cally using a set of real-life uplift values for point pairs at 
a wide range of inter-point distances.

2. Post-Glacial Land uplift

Land uplift, also called post-glacial rebound (PGR) or 
glacial isostatic adjustment (GIA), is caused by changes 
in continental ice sheet loading in high-latitude areas. 
It causes many significant changes in the landscape, es-
pecially near coastlines. Globally, post-glacial rebound 
tends to make the Earth more spherical by reducing dy-
namic flattening 2J  (related to the Earth’s moments of 
inertia) over time. Nowadays, post-glacial rebound is 
most noticable in Fennoscandia and Canada. The maxi-
mum land uplift rate is about 1 cm per year (Ekmann 
2009).

Recent land uplift in Fennoscandia has been stud-
ied for a long time. A systematic collection of measure-
ments started by the end of the 19th century: first, mare-
ograph records and geodetic levellings have remained as 
conventional tools to study land uplift. Second, the GPS 
technique has been widely used in land uplift determi-
nation from 1990. Relative gravity measurements have 
been used for many decades for determining land uplift, 
cf., e.g. (Mäkinen et al. 1985). Also, terrestrial absolute 
gravimetry is a further, recently becoming popular, tech-
nique for studying land uplift. 
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Fig. 1. BIFROST land uplift model (2001)  
(johansson et al. 2002)

Several land uplift models have been obtained over 
the last decades; one of those we mention is designed by 
Ekmann (1996), Lambeck et al. (1998) and Vestøl (2006). 
These models are based on the following data types: sea-
level records, lake level records, repeated high-precision 
levellings and time series from continuous GPS sta-
tions (for the Vestøl model). In 1992, the project called 
BIFROST (Baseline Inferences for Fennoscandian Re-
bound Observations, Sea-level and Tectonics) was cre-
ated (Fig. 1). It combines networks of continuously oper-
ating GNSS receivers in Fennoscandia and nearby areas 
to measure ongoing crustal deformation due to glacial 
isostatic adjustment (johansson et al. 2002). 

While different modelling techniques were used in 
these models, they all agree that the maximum uplift rate 
for Fennoscandia is about 10 mm/year (Ekmann 1996; 
Staudt et al. 2004; Lambeck et al. 1998; Vestøl 2006; 
Müller et al. 2005).

3. Modelling Method Outline and Theory

For our analysis, both GNSS-based data (Fennoscandia) 
and precise levelling data (Finland) were used. The used 
GNSS data was an existing dataset (45 points) from the 
BIFROST project (johansson et al. 2002), cf. Fig. 2. 
The levelling data we used was a dataset (461 points) 
from the last Finnish precise levelling, jointly adjusted 
with the previous levelling campaigns (V. Saaranen,  
Finnish Geodetic Institute, personal comm.), cf. Fig. 2.  

Fig. 2. Land uplift data points used in this study. BIFROST 
points are painted red, Finnish precise  

levelling points are blue

We assumed that the geoid uplift, being at most 0.4 mm/a, 
may be modelled precisely enough so that its uncertainty 
can be neglected.

To test our hypothesis, we have built a statistical 
model for predicting the uplift rate at an arbitrary point 
in the terrain from the following given point rates:

least-squares collocation, using 2D elliptical ap- –
proximation fitted to the uplift values in the Fen-
noscandian area treating residuals as “signal”;
deriving an empirical covariance function for the- –
se residual uplift rates;
using as input for collocation computation, the  –
uplift rates from BIFROST and from Finnish pre-
cise levellings (Fig. 2).

This analysis yields the precision of the uplift rate 
of a predicted point anywhere in the terrain, which is 
height-connected to levelling benchmarks using GNSS 
and a precise geoid model.

3.1. Model Parametrization
We start model derivation with parametrization. First, 
we conjecture a simple functional model based on a bi-
linear function of two-dimensional location within the 
land uplift area:

( ).dH f Q
dt

=  (1)

For function f, we take a dual exponential or Gaus-
sian model:

( ) .Q cQf Q ae be− −= −  (2)
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This choice allows us modelling both the central up-
lift and the larger-area downlift, which are both known 
to exist.

Quadratic form Q  is defined as ( M  being a sym-
metric matrix):

,TQ M= x x  (3)

where [ ]Tx y=x  is the vector of map projection plane 
co-ordinates centered at the maximum land uplift loca-
tion. The matrix is written as:

11 21

12 22
.

m m
M

m m
 

=  
 

 (4)

Applying this model, eight unknowns to be estimat-
ed are: the elements of ,M  i.e., 11,m  22 ,m  12 21;m m=  
coefficients ,a  ,b  c ; and land uplift centre location 0 ,ϕ  

0 .λ  This is a non-linear least-squares problem.
As an alternative, “Hirvonen-style” functional mod-

el can be chosen:

( ) .
1 1

a bf Q
Q cQ

= −
+ +

 (5)

Fig. 3 gives a graphical representation of the above 
discussed models. 

Fig. 3. The cross-section shapes of the Gaussian (exponential 
2xe− ) and Hirvonen-like 

2
1

1 x
 
 + 

 model functions. Gaussian 

is blue, dotted, Hirvonen-like is red, drawn. Here it is assumed 
that 2Q x= , i.e., ,M I=  and 1a =  and 0.b =  The third curve 

is composite exponential 2 20.25( 0.5 ),x xe e− −−  where 1,a =  
0.5b =  and 0.25c =  illustrating our attempt at modelling 

both uplift and remote-zone subsidence

3.2. Map Projection Coordinates
In the definition of Q  (cf. Expression (4)), it has been 
assumed that we have a pair of plane co-ordinates 

[ ]Tx y=x  which have the maximum land uplift loca-
tion 0 0( , )ϕ λ  as their origin. Such coordinates are ob-
tained by map projection, yielding for each point the fol-
lowing co-ordinate pair:

Nx R R

R

0

2
0 0

sin( )

12 cos sin sin ( ) ,
2

r e= ⋅ = ϕ−ϕ +

 ϕ ϕ λ −λ 
 

 

0cos sin( ).Ey R R= ⋅ = ϕ λ −λr e  (6)

One sees that these values are scaled to the size of 
the Earth by multiplying with 6378.137 km.R =

3.3. Constructing Vectors and Matrices
Obtaining the design matrix for the computation of our 
unknowns requires the derivation of all partial deriva-
tives of our “observed” quantities, i.e., uplift values, with 
respect to each of the unknowns.

We have the following unknowns assembled in a 
vector of unknowns:

11 12 22 0 0[ ] ,TX m m m a b c= ϕ λ   (7)

units: ijm  in 2km ,−  ,a b  in mm 1a ,−  c  dimensionless 
and 0 0,ϕ λ   in degrees.

Consequently, as design matrix A  we have the fol-
lowing (for one observation ( ):dH f Q

dt
= ):

11 12 22 0 0
.f f f f f f f fA

m m m a b c
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

=  ∂ ∂ ∂ ∂ ∂ ∂ ∂ϕ ∂λ 
 

 (8)

This matrix describes a nonlinear adjustment prob-
lem: the elements of A  will contain some of the un-
knowns explicitly, and these should be replaced by ap-
proximate values, solving the system iteratively and 
re-evaluating the elements of matrix A  in every step.

3.4. Linearization and Regularization
The observation equations above are highly nonlinear; it 
can be seen that the elements of matrix A  depend upon 
the very unknowns we are trying to estimate. In all these 
expressions, values for .a  ,b  ,c  11,m  12 ,m  22 ,m  0ϕ

  
and 0λ

  must be taken as approximate values and itera-
tively improved.

The linearized set of observation equations is:

0 0 0( ) ( ) ( ),f Q f Q A X X− ≈ −  (9)

which is valid within a certain neighbourhood of 0 ,X  
i.e., 0 .X X≈

From this set of equations we solve:
1

0 0 0 0 0( ( ) ( )),T TX X A A A f Q f Q
−

 = + −   (10)

where 0 0( )A A X=  and 0 0( )Q Q X=  are the values eval-
uated for the “current best” approximate unknowns 0 .X  
Good initial values would be:

2

2

1

0 1

(1000 km)
0

(1000 km)
(10 mm a)

.
(1 mm a)

0.25
65
24

X

−

−

−

−

 
 
 
 
 
 

=  
 
 
 
 
 
  




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In reality, due to the high nonlinearity of the func-
tional model, we use attenuation factor µ  slowing down 
but stabilizing the iteration process and regularization 
matrix :R

1
0 0 0 0 0[ ] ( ( ) ( )).T TX X A A R A f Q f Q−= +µ + −  (11)

4. The Functional Model Fit Computations

The BIFROST project (johansson et al. 2002) provides 

us with geocentric land uplift , ,d h
dt

 ϕ λ 
 

 values. In the 

dataset from the Finnish precise levellings, on the other 
hand, the quantity studied is land uplift relative to mean 

sea level, i.e., .d H
dt

 It provides locally higher point den-
sity.

We estimated the parameters of the above uplift 
model in order to subtract the estimated model quanti-
ties from the observed uplifts. In this case, our purpose 

is to obtain residual uplifts d h
dt

δ  so that we can derive 

an empirical covariance function from these residuals. 
When using Finnish uplift values, we would thus obtain 

an empirical covariance function of d H
dt

δ  instead.

The aim of the study was to determine uplift at a 
point of which the position coordinates are given. We 
worked with three scenarios, (cf. Fig. 4):

1. BIFROST uplift values for the whole area;
2. BIFROST uplift values for the central area only;
3. Uplift values from the Finnish precise levelling 

campaigns.

Fig. 4. The best-fit ellipses found for various modelling 
scenarios. Red triangle: the whole BIFROST area; green 
inverted triangle: BIFROST central area; blue circle: the 

Finnish precise levelling. Note significant difference  
between BIFROST on the one hand and the Finnish  

levelling on the other, suggesting that the land  
uplift geometry is in reality asymmetric

For computations, we used Octave (Eaton 2002), a 
Matlab TM  compatible rapid prototyping language. For 
graphics generation, Octave, Gnuplot (http://www.gnu-
plot.info) and GMT (Geographic Mapping Tools (Wessel, 
Smith 1998)) software packages were used.

4.1. Test Computation Results
We start our computations by choosing good initial val-
ues for our unknowns. First, we fixed for the exponential 
model is parameter c  at 0.25 (meaning the radius of the 
downlift area to be 2×  that of the uplift area) and varied 

0 .Q  The obtained results are presented in Table 1.

Table 1. Test computation results, c = 0.25. The Root-Mean-
Square error of fit and the number of rejected outliers according 
to 3σ test criterion are listed

Exponential Hirvonen

0Q RMS No. rej. RMS No. rej.
∞ 3.616 0 3.915 0
9 3.590 1 3.875 1

6.25 1.685 2 3.875 1
4.5 – – 1.940 3
4 1.431 6 – –

2.25 – – – –
1 0.696 18 – –

Next, we fixed b  to zero, essentially reducing the 
model to:

( ) or ( ) .
1

Q af Q ae f Q
Q

−= =
+

 (12)

Results for this strategy are listed in Table 2.

Table 2. Test computation results, b = 0

Exponential Hirvonen

0Q RMS No. rej. RMS No. rej.
4 1.729 8 2.017 9

2.25 1.453 9 1.265 13
1.5 1.419 11 – –
1.4 – – – –
1.3 0.852 13 0.776 19
1.2 0.830 14 0.776 19
1.1 0.774 15 0.743 20
1 0.696 18 – –

4.2. Modelling the whole Area
From the above, one can see that when solving a func-
tion that should describe the whole land uplift area in-
cluding the surrounding downlift area, a good choice is 

0 6.25Q =  for a two-term exponential expression, i.e., 
0.25c =  (cf. Table 1). The RMS of residuals in this case is 

11.685 mm a .−±  When fitting this function, two points, 
Madrid and Ny Ålesund, were excluded as they both are 
situated outside the Fennoscandian area. We summarize 
this solution below:

6 22.1725 0.8706
10 km ,

0.8706 2.2786
M − −

− 
= ⋅ − 
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114.265 mm a ,a −=

12.879 mm a ,b −=

0.25,c =

0 64 .340,ϕ = 

0 21 .500.λ = 

The ellipse describing the uplift area has semi-axes 
of 859.62 and 568.17 km aimed at an azimuth of 43°.26. 
The maximum uplift is 11.386a b− =  mm/a.

4.3. Modelling the Central Area
For the central area, we derive an empirical signal cov-
ariance function of the uplift for using local uplift data. 
Thus, we can use a function that fits the data more pre-
cisely (RMS 10.852 mm a )−±  but over a smaller area. 
Such a function is the one-term exponential solution 
(i.e., 0)b =  for 0 1.3Q =  (cf. Table 2). The summary for 
this solution is:

6 22.6975 1.2605
10 km ,

1.2605 2.7738
M − −

− 
= ⋅ − 

111.341 mm a ,a −=

0,b =

irrelevant,c =

0 64 .459,ϕ = 

0 21 .866.λ = 

The ellipse describing the uplift area has semi-axes 
of 823.87 and 500.28 km aimed at an azimuth of 44°.10.

4.4. Modelling the Finnish Precise Levelling Based 
uplift Values
We also derive an empirical signal covariance function 
for the Finnish precise levelling based uplift values, ob-
taining the following exponential solution for 0 1.3 :Q =

6 23.7321 1.2630
10 km ,

1.2630 3.2075
M − −

− 
= ⋅ − 

19.586 mm a ,a −=

0,b =

irrelevant,c =

0 64 .091,ϕ = 

0 18 .7649.λ = 

The RMS of the residuals of being fit was 
0.314±  mm/a, which compares well to the known preci-

sion of 0.4±  mm/a of the Finnish precise levelling uplift 
values (Mäkinen et al. 2003), but which may be contrast-
ed with the corresponding, much larger values derived 

above from BIFROST data. This suggests that the chosen 
functional models are not well able to precisely model 
the land uplift over so large area.

The ellipse describing the uplift area for the Finn-
ish solution has semi-axes of 677.30 and 458.36 km re-
spectively, with the long axis pointing at the azimuth of 
50°.866. 

Compared to BIFROST solution, some differences 
can be noticed. The land uplift maximum is 9.586 mm/a, 
which is clearly less than BIFROST value, by an amount 
(1.755 mm/a for the central area solution) fully explain-
able by rise in the mean sea level in the Baltic Sea relative 
to the geocentre.

5. Empirical Covariance Function Estimation

After estimating a functional model for the land uplift, as 
done above, one can then derive, using least-squares col-
location, uncertainty over the Fennoscandian area. For 
this purpose, one can use the land uplift values estimated 
from the values known at a number of discrete points, 
i.e. EUREF stations, for which the precise GNSS-derived 
land uplift is known. To this end, we first must derive an 
empirical covariance function for residuals relative to the 
functional model.

Once we have obtained, for each of land uplift data 

points , ,d h
dt

 ϕ λ 
 

 used in the computation, residuals 
d h
dt

δ  relative to the functional model, we can estimate 

the empirical covariance function as follows:
1. For each pair of uplift points P  an ,Q  determine 

product .P Q
d dh h
dt dt

δ ⋅δ

2. Determine the distance between P  and ,Q  and 
choose for the above product an appropriate dis-
tance range (e.g. range 1 is 0 100 km,d≤ < range 
2 is 100 km 200 km,d≤ <  etc.).

3. For every range, estimate empirical covariance 
for this distance range ( ).C d

4. Plot graphically covariance function C(d) against d.
The procedure described assumes isotropy, i.e. the 

covariance function will only depend on inter-point dis-
tance, not direction, and homogeneity, i.e. we derive a 
function that applies unchanged to the whole area.

The described algorithm was implemented in Oc-
tave; the received results are shown in Figures 5 and 6.

Precision of Covariance Functions
As seen from Fig. 5, the covariance function for Finnish 
levelling (Fig. 5, right) is smooth, and the part close to 
the origin resembles the ideal of a bell-shaped curve. For 
BIFROST model (Fig. 5, left), one can see that the cov-
ariance function does not look quite as nice: the curve 
lies everywhere inside its 3σ uncertainty bounds, which 
are very wide.

Fig. 6 presents standard deviation figures for BI-
FROST data (left) and the Finnish levelling data (right). 
On the horizontal axis, we have distance in kilometres, 
and on the vertical axis, the standard deviation (estima-
tion uncertainty) value in millimetres for uplift per year. 
In Table 3, signal standard deviation values at the origin, 

0 ,C  for two tested models (BIFROST and Finnish lev-
elling) are presented.
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Fig. 5. Signal covariance functions (red, drawn) for tested data sets. Units: 2(mm/a) .  
3σ bounds for standard deviation (cf. Fig. 6) are drawn in dashed blue

Fig. 6. Standard deviation functions for the covariance estimator functions of the tested data sets. These functions represent 
statistical uncertainty using which empirical covariance values presented in Fig. 5 were obtained. Units: 2(mm/a)

Table 3. Signal standard deviation values 0C  for tested data 
sets

Signal variance Std. deviation

Data set C0 (mm/a)2
0C  (mm/a)2

BIFROST 0.558 0.75
Finnish levelling 0.099 0.31

We first discuss the BIFROST model. Standard de-
viation (Fig. 6) first decreases from more than 0.2 mm/a 
down to 0.07 mm/a for a range of about 100 km. This is 
understandable, because BIFROST dataset contains only 
long and very long distances between model points - 
there are not any short distances that could serve to de-
fine the curve close to the origin. For distances larger 
than 100 km, the standard deviation value remains small, 
zigzagging within the range of 0.05...0.1 mm. 

Table 3 shows that the standard deviation value at the 
origin, 0C  for the BIFROST model is about 0.75 mm/a.  
Signal covariance 0 ,C  however, is 0.558 2(mm/a) ,   
which, compared to its own estimated standard deviation 
of 0.23 2(mm/a)  (Fig. 6, left) amounts to only 2.4σ. The 
value thus differs from zero, but not in high confidence.

For the Finnish precise levelling model, the situa-
tion looks rather different. For this case, shorter distances  

are more common. We can see that the scale range of 
the standard deviation is below 0.01 mm/a for the ver-
tical axis. For longer distances, the standard deviation 
of the covariance estimate drops below 0.001 mm/a, 
and then increases again, but not exceeding the value of 
0.0025 mm/a. 

Signal standard deviation at the origin 0C  is about 
0.31 mm/a (Table 3); this value is the result of the known 
high precision of levelling and relatively short distances 
between the measured points. The signal variance 0C  
of 0.099 2(mm/a) ,  compared to its own standard devia-
tion estimation of 0.0083 2(mm/a)  (Fig. 6, right), corre-
sponds to no less than 12 sigmas.

To conclude this discussion, one can notice that 
Fig. 5 and Fig. 6 are very different in nature. This is un-
derstandable, because considering BIFROST data, long-
er distances are common within a small amount of data 
points, while in the Finnish levelling, the situation is dif-
ferent.

For BIFROST dataset, the points of the covariance 
curve passest the first zero crossing are statistically insig-
nificant. For the Finnish precise levelling dataset, hovew-
er, the points containing negative values pastses the first 
zero crossing 120 km appear significant, and in fact, the 
whole curve does.
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6. using a Semi-Empirical Gauß-Markov  
Covariance Function

As noted above, the derived covariance function curves 
(Fig. 5) are suffering from considerable uncertainty (Fig. 
6), especially for larger distances between point pairs. For 
this reason, it is probably justified to assume that a true 
covariance function will be close to a simple “bell curve”. 
This results from Gauß-Markov process characterized 
by only two parameters: variance in origin 0C and cor-
relation length 0 .d  From a visual inspection of levelling 
results presented in Fig. 5, correlation length, defined as 
half-height inter-point distance where 0 0

1( ) ,
2

C d C=  of 
some 70 km appears reasonable. Unfortunately, a visual 
inspection of BIFROST results gives no clear value but is 
compatible with the value of 70 km. Therefore, we define 
a semi-empirical covariance function as follows, choos-
ing a second order Gauß-Markov process:

2 2
0 0( ) exp( / ).C d C d d= −  (13)

Using this function, we may predict uplift values 
using the least-squares collocation starting from a set of 
points with the known uplift values: if estimated quan-
tity is the deviation of the uplift rate from the functional 
model, we then have:

1 .jP
Pi ij

dhdh
C C

dt dt
−δ = δ  (14)

As this is homogeneous prediction, i.e. we are pre-
dicting the same type of quantity and uplift rate as that 
we are using as data, in practice, it is only data points 
near the prediction point that affect the result. Data 
points that are “behind” a closer-by data point in the 
same direction receive zero weight in the solution. This 
makes it fully justified to shortcut computation by using, 
e.g. only the nearest data point in each of the four quad-
rants surrounding the prediction point. As a practical 
side benefit, one also avoids having to model the, quite 
possibly significant, part of the signal covariance func-
tion passet the first zero crossing.

For choosing a data point set for computing the un-
derlying functional model, it can be seen from the above 
that using a point set from a smaller area will lead to a 
more precise fit and a smaller value of 0 .C  This again 
will result in smaller residuals overall, and better qual-
ity land uplift predictions. Ideally, the residuals should 
represent actual uncertainty in the determination of the 
land uplift values in the data points; however, if the area 
chosen for fit is too large and the function is too simple, 
they will instead represent insufficiency for the fit func-
tion, which is not desirable.

7. Conclusions

Our analysis illustrates the possibilities of uplift mod-
elling using the least squares collocation (LSC) meth-
od that was applied by (Vestol, 2006) and the results of 
which are considered a standard for uplift modelling 
within the Nordic community. 

In our research, we derived, relative to simple func-
tional models, the estimates of the signal covariance 
functions of land uplift residuals as well as standard de-
viation functions describing their estimation precision 
for each of two input datasets. 

From our model computations we obtained an 
RMS value for the residuals of fit of 0.314±  mm/a for 
the Finnish precise levelling model. For BIFROST, we 
obtained an RMS of the residuals of fit of about 0.852±  

1mm a−  for the central area and 1.685±  1mm a−  for 
the whole area model. This difference may indicate that 
the chosen relatively simple functional model may not 
be sufficient to model the land uplift when using BI-
FROST data, especially when extending the model over 
the whole area.

We have shown that our analysis may be used in 
principle to project the land uplift rate forwarded in time. 
The proposed model is relatively simple and can be used 
for the future height systems in order to predict land up-
lift values in GIA regions. 
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