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Abstract. We compile a new geoid model at the computation area of New Zealand and its continental shelf using 
the method developed at the Royal Institute of Technology (KTH) in Stockholm. This method utilizes the least-
squares modification of the Stokes integral for the biased, unbiased, and optimum stochastic solutions. The modi-
fied Bruns-Stokes integral combines the regional terrestrial gravity data with a global geopotential model (GGM). 
Four additive corrections are calculated and applied to the approximate geoid heights in order to obtain the gra-
vimetric geoid. These four additive corrections account for the combined direct and indirect effects of topography 
and atmosphere, the contribution of the downward continuation reduction, and the formulation of the Stokes pro-
blem in the spherical approximation. The gravimetric geoid model is computed using two heterogonous gravity 
data sets: the altimetry-derived gravity anomalies from the DNSC08 marine gravity database (offshore) and the 
ground gravity measurements from the GNS Science gravity database (onshore). The GGM coefficients are taken 
from EIGEN-GRACE02S complete to degree 65 of spherical harmonics. The topographic heights are generated 
from the 1×1 arc-sec detailed digital terrain model (DTM) of New Zealand and from the 30×30 arc-sec global 
elevation data of SRTM30_PLUS V5.0. The least-squares analysis is applied to combine the gravity and GPS-level-
ling data using a 7-parameter model. The fit of the KTH geoid model with GPS-levelling data in New Zealand is 
7 cm in terms of the standard deviation (STD) of differences. This STD fit is the same as the STD fit of the NZGe-
oid2009, which is the currently adopted official quasigeoid model for New Zealand. 

Keywords: corrections, geoid, gravity, least-squares analysis, Stokes integral.

1. Introduction 

The geodetic vertical reference system in the South and 
North Islands of New Zealand was realized by 12 major 
local vertical datums (LVDs) relative to the mean sea lev-
el (MSL) observed at 11 different tide-gauge stations (cf., 
Amos and Featherstone 2003; Amos and Featherstone 
2009). The LVD Dunedin-Bluff 1960 was defined by fix-
ing the heights of two levelling benchmarks from the 
LVDs Dunedin 1958 and BLUFF 1955 instead of using 
the tide-gauge station as the origin. Moreover, additional 
vertical datums were established for surveying purposes 
throughout the country. Since gravity was not observed 
along the precise levelling lines, LVDs are defined in the 
system of the approximate normal-orthometric heights. 
The cumulative normal-orthometric correction to the 
levelled height differences was defined based on the 
GRS67 normal gravity formula and computed approxi-
mately using a truncated form of Rapp’s equation (Rapp 
1961) for the mean normal gravity along the normal 
plumbline. Amos and Featherstone (2009) applied the  

iterative gravimetric approach to unify the LVDs in New 
Zealand using a regional gravimetric quasigeoid model 
and GPS-levelling data on each LVD. The principle of 
this method is based on an iterative quasigeoid model-
ling where the LVD offsets computed from earlier model 
are used to apply additional gravity reductions from each 
LVD to that model. The result of this procedure was the 
first detailed regional gravimetric quasigeoid model of 
New Zealand NZGeoid05. NZGeoid05 was computed 
jointly by the Land Information New Zealand (LINZ) 
and the Western Australian Centre for Geodesy – Cur-
tin University of Technology (Amos 2007). NZGeoid05 
was calculated from different heterogeneous ground, 
seaborne and altimetry-derived gravity data sets using a 
deterministic modification of the Stokes kernel (Feath-
erstone et al. 1998). NZGeoid05 was complied on a 2×2 
arc-min geographical grid at the computational area of 
New Zealand and its continental shelf (bounded by the 
parallels of 25 and 60 arc-deg southern geodetic lati-
tude and the meridians of 160 and 190 arc-deg western  
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longitude). The estimated LVD offsets relative to the re-
gional quasigeoid model NZGeoid05 are from 26 cm 
(One Tree Point 1964; Nelson 1955, and Dunedin-Bluff 
1960 LVDs) up to 59 cm (Gisborne 1926 LVD). The 
quasigeoid model NZGeoid2009 is the currently adopt-
ed official height reference surface for New Zealand. 
NZGeoid2009 was computed using a similar approach 
as NZGeoid05 (cf. Claessens et al. 2009). The substantial 
improvement of NZGeoid2009 comes from using a more 
recent global geopotential model (GGM); NZGeoid05 
was computed using EGM96 (Lemoine et al. 1998), while 
EGM2008 (Pavlis et al. 2008) was used for the computa-
tion of NZGeoid2009. NZGeoid2009 model is provided 
to users on a 1×1 arc-min geographical grid over the 
same area as NZGeoid05. GPS-levelling data were used 
to determine LVD offsets. The estimated LVD offsets 
relative to NZGeoid09 are within 6 cm (One Tree Point 
1964 LVD) and 49 cm (Dunedin 1958 LVD).

In this study we apply the method developed at 
the Royal Institute of Technology (KTH) in Stockholm 
to compute the geoid model at the computation area of 
New Zealand and its continental shelf. The KTH method 
utilizes the least-squares modification of the Stokes in-
tegral for the biased, unbiased and optimum stochastic 
solutions. The principle of this modification is to match 
the errors within terrestrial gravity data and the GGM 
omission and commission errors by means of the least 
squares. The GGM contribution is estimated using the 
satellite-only GGM. The reasons of using the satellite-on-
ly GGM in geoid modelling are discussed, for instance, 
by Vaníček and Sjöberg (1991). Various least-squares 
stochastic solutions are applied to estimate the maxi-
mum spherical distance of the near-zone surface integra-
tion area and the maximum degree of the GGM coeffi-
cients based on empirical models for the harmonic and 
terrestrial gravity anomaly degree variances. The modi-
fied Bruns-Stokes formula combines the observed grav-
ity anomalies and GGM. The gravimetric geoid heights 
are obtained after applying four additive corrections to 
the approximate geoid heights. These additive correc-
tions account for the gravitational effects of topography 
and atmosphere, the downward continuation reduction, 
and the ellipsoidal approximation of the Earth’s shape. 
The least-squares analysis is finally applied to combine 
the gravity and GPS-levelling data using a 7-parameter 
model formed for the observation equations of differenc-
es between the geometric and gravimetric geoid heights 
(cf. Kotsakis and Sideris 1999).

The principal difference between the KTH method 
and conventionally used approaches for the gravimetric 
geoid determination comes from a different treatment 
of the gravity corrections and consequently different 
types of gravity anomaly data used in the Stokes inte-
gral convolution. In conventional Stokesian approaches, 
the observed gravity anomalies are first corrected for the 
topographic and atmospheric gravitational effects and 
subsequently reduced to the geoid surface. The integral 
convolution of the (modified) Bruns-Stokes kernel with 
the corrected and reduced gravity anomalies provides the 
final gravimetric geoid after subtracting the primary indi-
rect topographic effect on the geoid. In the KTH method, 
the Stokes integration is applied directly to the observed 

gravity anomaly data at the Earth’s surface. The integral 
convolution of the (modified) Bruns-Stokes kernel with 
the observed gravity anomalies provides the approxi-
mate geoid heights. The complete contribution of the 
direct and secondary indirect effects of topography and 
atmosphere on the gravity anomalies and consequently 
the primary indirect effects of topography and atmos-
phere on the geoid heights are treated as the combined 
topographic and atmospheric corrections applied to the 
approximate geoid heights (Sjöberg 2003c). Similarly, the 
contribution of the downward continuation of the grav-
ity anomalies from the Earth’s surface onto the geoid sur-
face is treated as the downward continuation correction 
to the approximate geoid heights. The formulation of the 
modified Bruns-Stokes formula in the spherical approxi-
mation yields the correction for the ellipsoidal approxi-
mation of the Earth’s shape. The theoretical and numeri-
cal aspects of the KTH method are described in Sjöberg 
(1984, 1991, 2003b, 2003c, 2003d). The practical numeri-
cal aspects of the KTH method are explained in Ågren 
et al. (2009). This method was successfully applied for a 
gravimetric geoid determination in several countries. For 
results of the regional geoid modelling using the KTH 
method we refer readers to Nahavandchi (1998), Ågren 
(2004), Ellmann (2001, 2004), Nsombo (1996), Huneg-
naw (2001), Kiamehr (2006b), Daras (2000), Abdalla 
(2009), Ulotu (2009), and Ågren et al. (2009). 

The KTH method is briefly reviewed in Section 2. 
This method is applied to determine the first experimental 
geoid model at the computation area of New Zealand and 
its continental shelf. The input data description and the 
numerical results are provided in Section 3. The combi-
nation of the gravimetric solution with the GPS-levelling 
data is done in Section 4. The validation of the KTH-geoid 
model using GPS-levelling data in New Zealand and its 
comparison with the regional and global quasigeoid mod-
els NZGeoid2009 and EGM2008 is done in Section 5. The 
summary and conclusions are given in Section 6. 

2. The geoid determination using the KTH method
According to the KTH method, the gravimetric geoid 
height N  is computed as a sum of the following compo-
nents (Sjöberg 2003b):

,T A DWC ellN N N N N N= + δ + δ + δ + δ  (1)

where N  is the approximate geoid height, TNδ  the 
combined topographic correction, ANδ  the combined 
atmospheric correction, DWCNδ  the downward contin-
uation correction, and ellNδ  the ellipsoidal correction 
for the formulation of the Bruns-Stokes formula in the 
spherical approximation to the problem. The approxi-
mate geoid height N   in Eq (1) is computed using the 
modified Bruns-Stokes formula in the following form 
(Sjöberg 2003d)
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The first constituent on the right-hand side of Eq (2) 
represents the terrestrial gravity anomaly contribution to 
the approximate geoid heights. This contribution is com-
puted by the integral convolution of the observed gravity 
anomalies g∆  at the Earth’s surface with the modified 
Stokes kernel ( )nS ψ  which is defined as (ibid.)  

n
2

2 1( ) ( ) P (cos ),
2

n
n

n
n

nS S b
=

+
ψ = ψ − ψ∑  (3)

where ( )S ψ  is the (original) Stokes kernel, nP (cos )ψ  are 
the Legendre polynomials of degree n for the argument 
of cosine of the spherical distance .ψ  The surface inte-
gration element sind d dσ = ψ α ψ  is defined in the polar 
spherical coordinates ( , )α ψ  with the spherical azimuth 
α  and the spherical distance .ψ  The near-zone surface 

integration domain 
02

0 0

sin d d
ψπ

α= ψ=

ψ α ψ∫ ∫  is limited by the 

spherical distance 0 .ψ  The Earth’s mean radius in Eq (2) 
is denoted as R,  and 0γ  is the normal gravity evaluated 
at the surface of the reference ellipsoid GRS80 (Moritz 
1980). The second constituent on the right-hand side of 
Eq (2) represents the GGM contribution to the approxi-
mate geoid heights. This contribution is computed from 
the GGM coefficients up to a maximum degree n  of 
spherical harmonics and from a set of the least-squares 
modification parameters { : 2, 3, ..., }.nb n n=  The Lapla-
ce spherical harmonics GGM

ng∆  for the gravity anoma-
lies of degree n  in Eq (2) are defined as (e.g., Heiskanen 
and Moritz 1967: 89)

2
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where GM  is the geocentric gravitational constant, a  
the major semi-axis of the reference ellipsoid, r  the ge-
ocentric radius of the computation point, n,mcT  are the 
GGM coefficients of the disturbing potential T , and 

n,mY  the surface spherical harmonics (e.g., Heiskanen 
and Moritz 1967).

The least-squares modification parameters nb  are 
defined by the following linear system of observation 
equations (cf. Sjöberg 2003d)
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The coefficients { : 2 ,3, ..., }kh k n=  of the observa-
tion vector are given by 
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The parameters ,kΩ  n,kE ,  ,k rδ  and kC  in Eqs (6) 
and (7) read 
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where 2
nσ  are the terrestrial gravity anomaly error de-

gree variances, and GGM
kc  and GGM

kdc  are the GGM 
gravity anomaly degree variances and their error degree 
variances. Molodensky’s truncation coefficients nQ  and 
the functions n,ke  are defined in Eqs (19) and (20). The 
GGM gravity anomaly degree variances GGM

nc  are com-
puted from the GGM coefficients T

n,mC  and T
n,mS  of the 

disturbing potential as follows

2
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In practice, the infinite series in Eqs (6) and (7) are 
truncated at a chosen upper limit of the expansion. In 
this study, we used the maximum degree of max 2000.n =  
The GGM gravity anomaly degree variances GGM

nc  of 
degree maxn n n< ≤  are generated synthetically using 
the analytical model developed by Tscherning and Rapp 
(1974), see also Ågren (2004) and Ellmann (2005a). It 
reads 

4
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where 425.28α =  mGal2, R 6371= ×103 m, and BR R 1225 m.= − 
BR R 1225 m.= −  The GGM gravity anomaly error degree 

variances GGM
ndc  are calculated from the standard errors 

n,mdC  and n,mdS  of the GGM coefficients as follows (cf. 
Rapp and Pavlis 1990)
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The GGM gravity anomaly error degree variances 
GGM
ndc  of degree n n<  are usually neglected. The ter-

restrial gravity anomaly error degree variances 2
nσ  are 

calculated according to the procedure described in Ågren 
(2004) and Ågren et al. (2009).
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The system of observation equations in Eq (5) is 
formed for the biased least-squares solution. The cor-
responding system of normal equations is then solved 
directly, for instance, by applying the Gauss elimination 
method. Alternative methods of solving the system of 
normal equations for finding the modification parame-
ters nb  are discussed in Sjöberg (1984). When forming 
the system of observation equations for either the opti-
mum or unbiased least-squares solutions, the system of 
normal equations becomes ill-conditioned (cf. Sjöberg 
1991, 2003d). The regularization techniques are applied. 
The determination of the unbiased and optimum least-
squares modification parameters and the regularization 
techniques are discussed in Ågren (2004) and Ellmann 
(2005a).

The combined topographic correction TNδ  in Eq 
(1) is computed approximately using the following sim-
ple expression (cf. Sjöberg 2001)

δ π
γ

ρN HT ≈ − 2 2

0
G T ,  (15)

where –11G 6.673 10= ×  m3 s–2 kg–1 is Newton’s gravita-
tional constant, T 2670ρ =  kg m–3 the adopted value of 
the average topographic density (cf. Hinze 2003), and H  
the height of the computation point above sea level. 

The combined atmospheric correction ANδ  in Eq 
(1) is defined as (cf. Sjöberg and Nahavandchi 2000)
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where 0
Aρ  is the adopted nominal value of the atmos-

pheric density at sea level, i.e., 0 1.230Aρ =  kg m–3 (cf. 
Sjöberg 2001). The surface (topographic) height func-
tions nH  of degree n in Eq (16) read 

H H Yn n,m n,m
m n

n
=

=−
∑ ,
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where n,mH  are the numerical coefficients of the global 
elevation model (GEM) of degree n and order m. The 
modified Molodensky’s truncation coefficients n

nQ
 

are 
given by (cf. Sjöberg and Nahavandchi 2000)
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where the Molodensky’s truncation coefficients nQ  read 
(Molodensky et al. 1960)
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Molodensky’s truncation coefficients nQ  are com-
puted recurrently according to formulae derived by Hag-
iwara (1975). Alternatively, they can be computed using 
Paul’s (1973) algorithm. The functions n,ke  of the spheri-
cal distance ψ0 are defined in the following integral form 
(cf. Sjöberg and Nahavandchi 2000)
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The downward continuation correction DWCNδ  in 
Eq (1) consists of three terms which are computed indi-
vidually (cf. Ågren 2004)

,1 1, , 2.DWC DWC L Far DWC LN N N Nδ = δ + δ + δ  (21)

The first term ,1DWCNδ  in Eq (21) is defined as 
(Sjöberg 2003a)
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where ς  denotes the approximate value of the height 
anomaly at the computation point. Due to the diminu-
tive value of ,1 1DWCNδ =  mm that corresponds to an er-
ror of about 1 m for the height of the computation point 
of 2000H = m, it is convenient to compute ς  in Eq (22) 
using the following simplified formula (Sjöberg 2003a) 
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The linear vertical gravity anomaly gradient /g r∂∆ ∂  
at the computation point is calculated according to the 
expression for the analytical continuation given in He-
iskanen and Moritz (1967: 115). It reads 
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where g∆  and ( , )g∆ α ψ  are the values of the surface 
gravity anomaly at the positions of the computation and 
running integration points, respectively. The Euclidean 
spatial distance 0 ( )ψ  in Eq (24) reads  

0 ( ) 2Rsin .
2
ψ

ψ =

 (25)

The downward continuation correction terms 
1,L FarNδ

 
 and , 2DWC LNδ  in Eq (21) are computed using 

the following expressions 



Geodesy and Cartography, 2011, 37(1): 5–14 9

0

2
1, n GGM

n n
2

R R( Q ) 1 g ,
2

nn
L Far

n
n

N b
r

+

=

   δ = + − ∆ γ    
∑  (26)

and 

δ
πγ

ψ

α ψ ψ

ψ

α

π
N S g

r

H H

DWC L n

r H

,

( , ) sin

2

00

2

4
= ∂∆

∂
×

− 
= +==

∫∫
R ( )

R¨

0

0

dd dα ψ,  (27)

where H  and ( , )H α ψ  are the topographical heights at 
the positions of the computation and running integra-
tion points, respectively.

The ellipsoidal correction ellNδ  in Eq (1) is com-
puted approximately as (cf. Sjöberg 2004a)

2 2
0[(0.12 0.38sin j) 0.17 cos j],ellN g Nδ ≈ ψ − ∆ +   (28)

where ellNδ  is given in millimeters, g∆  in mGal, and 
N  in meters. j  is the geocentric spherical latitude of the 
computation point. 

3. Numerical realization 

The 2×2 arc-min gravity anomalies at the Earth’s surface 
over the data area bounded by the parallels of 25 and 
60 arc-deg southern geodetic latitude and the meridians 
of 160 and 190 arc-deg western longitude were used to 
determine the gravimetric geoid heights. The 2×2 arc-min 
gravity anomalies were reconstructed from the gravity 
measurements provided by the GNS Science gravity da-
tabase (onshore) according to the procedure described in 
janák and Vaníček (2005) and extracted from the DNSC08  
marine gravity database (offshore). The DNSC08 ma-
rine gravity database is provided by the Danish National 
Space Centre (Andersen et al. 2008). The 2×2 arc-min 
gravity anomalies over the data area of New Zealand and 
its continental shelf are shown in Figure 1. The values of 
gravity anomalies vary from 252.6 to 310.7 mGal with 
the mean of 2.0 mGal, and the standard deviation (STD) 
is 35.1 mGal. The EIGEN-GRACE02S (cf. Reigber et al. 
2004) was used to model the GGM contribution. The 
topographic heights were generated from the 1×1 arc-
sec detailed digital terrain model (DTM) of New Zea-
land and from the 30×30 arc-sec global elevation data of 
SRTM30_PLUS V5.0 (Becker et al. 2009).

Various least-squares stochastic solutions are ap-
plied in the KTH method to estimate the maximum 
spherical distance ψ0 of the near-zone surface integra-
tion area and the maximum degree n  of the GGM coef-
ficients based on empirical models for the harmonic and 
terrestrial gravity anomaly degree variances. 

The GGM gravity anomaly degree variances GGM
kc  

and their error degree variances GGM
kdc  were computed 

from the EIGEN-GRACE02S coefficients according to 
Eqs (12) and (14). The inaccuracy of modelling the GGM 
contribution increases proportionally with increasing de-
gree of the GGM coefficients. Abdalla (2009) shown that 
the GGM error degree variances of EIGEN-GRACE02S 
significantly increases above the degree 77 of spherical 
harmonics. 

Since the accuracy of marine and terrestrial gravity 
data used in this study is unknown, we assessed the ac-
curacy of input gravity data according to the approach 
described in detail in Tenzer (2008). This approach uti-
lizes the variance component estimation (VCE) tech-
nique (see Förstner 1979; Koch and Kusche 2002; Kusche 
2003) for observation groups weighting. The gravity data 
were separated into two data sets consisting of the ter-
restrial and marine gravity data from the GNS Science 
and DNSC08 databases. The parameterization of grav-
ity field was done in terms of the spherical radial ba-
sis functions. The representative value of the variance 

(0) 2.1C =  mGal2 of the entire input gravity data was ob-
tained as the weighted mean of the corresponding val-
ues estimated for these two observation groups. We note 
here, that this value is more likely unrealistic, especially 
in mountainous regions where the accuracy of the grav-
ity anomalies is much lower due to the errors in deter-
mined heights of the observation points.   

The selection of the parameters 0 3ψ =  arc-deg 
and 65n = was done empirically. As demonstrated in 
Figure 2, the modified Stokes kernel ( )nS ψ  converges 
to zero for 3ψ→  arc-deg and thus minimize the trun-
cation bias for the chosen parameter 0 3ψ =  arc-deg. 
For more details we refer readers to study by Ellmann 
(2005a). The example of truncation bias of the origi-
nal Stokes function ( )S ψ  is also illustrated in Figure 2. 
For comparison, the parameters 0 1.5ψ =  arc-deg and 

40n =  were adopted in computing the regional quasige-
oid model NZGeoid05 (cf. Amos 2007). Claessens et al. 
(2009) used 0 2.5ψ =  arc-deg and 40n =  in computing 
NZGeoid2009. We note that Amos (2007) and Claessens 
et al. (2009) used the deterministic modification of the 
Bruns-Stokes formula.

 

Fig. 1. The gravity anomalies compiled on a 2×2 arc-min  
grid at the Earth’s surface
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Fig. 2. The comparison of the modified Stokes function 
( )nS ψ  computed for the parameters 0 3ψ = ≠  arc-deg and 
65n =  and the original Stokes function ( )S ψ  at the interval 

of  0 3≤ ψ ≤  arc-deg

The 2×2 arc-min surface gravity anomaly data up 
to 0 3ψ =  arc-deg of the spherical distance around the 
computation point and the EIGEN-GRACE02S coeffi-
cients up to degree 65n =  of spherical harmonics were 
used to calculate the approximate geoid heights N  ac-
cording to Eq (2). The spherical harmonics of the nor-
mal gravity field were computed for the parameters of 
the GRS80 reference ellipsoid. The discrete values of the 
combined topographic correction TNδ  were computed 
according to Eq (15) on a 1×1 arc-sec geographical grid 

using the 1×1 arc-sec detailed DTM of New Zealand and 
adopting the average topographical density of kg m–3  
(cf. Hinze 2003). The 2×2 arc-min mean values of the 
combined topographic correction were then comput-
ed by a spatial averaging of the corresponding 1×1 arc-
sec discrete values. The 2×2 arc-min mean values of the 
combined topographical correction vary from –69.0 
to 0.0 cm with the mean of –0.2 cm, and the standard 
deviation is 2.1 cm (see Fig. 3a). The 30×30 arc-sec glo-
bal elevation data of SRTM30_PLUS V5.0 were used to 
generate the GEM coefficients n,mH . These coefficients 
complete to degree and order 2160 were used to com-
pute the combined atmospheric correction ANδ  at the 
2×2 arc-min geographical grid according to Eq (16). The 
combined atmospheric correction is shown in Fig. 3b. It 
varies from 0.0 to 1.2 cm with the mean of 0.6 cm, and 
the standard deviation is 0.3 cm. The 2×2 gravity anom-
alies and the mean topographical heights averaged for  
2×2 arc-min geographical grid cells were used to com-
pute the near-zone contribution to the downward con-
tinuation correction DWCNδ  according to Eqs (21–27). 
The corresponding long-wavelength contribution was 
computed using the EIGEN-GRACE02S coefficients 
complete do degree 65 of spherical harmonics. The 
downward continuation correction is shown in Fig. 3c. It 
varies from –3.7 to 58.7 cm with the mean of 2.5 cm, and 
the standard deviation is 3.2 cm. The ellipsoidal correc-
tion ellNδ  was computed using Eq (28). Over the study 
area of New Zealand this correction is negligible; the 
maxima of this correction are less than 1 mm. 

The gravimetric geoid model compiled on a 2×2 arc-
min geographical grid at the computation area of New 
Zealand and its continental shelf bounded by the paral-
lels of 28 and 57 arc-deg southern geodetic latitude and 

    

a) b)
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c)

  

Fig. 3. The additive corrections to the approximate geoid heights computed on a 2×2 arc-min geographical grid:  
a) the combined topographic correction, b) the combined atmospheric correction, and c) the downward  

continuation correction

the meridians of 163 and 187 arc-deg eastern longitude 
is shown in Fig. 4. The geoid heights vary from –39.69 to 
49.58 m with the mean of 8.03 m, and the standard de-
viation is 24.57 m.

Fig. 4. The KTH gravimetric geoid model compiled on  
a 2×2 arc-min geographical grid at the computation  

area of New Zealand and its continental shelf

4. Combination of the gravimetric solution  
with GPS-levelling data 

The GPS-levelling testing network in New Zealand 
consists of 2320 points from the LINZ geodetic data-
base. The ellipsoidal heights above the GRS80 geocen-
tric reference ellipsoid are defined in the New Zealand 
Geodetic Datum 2000 (NZGD2000). The NZGD2000 is 
aligned to the International Terrestrial Reference Frame 
1996 (ITRF1996) at the reference epoch of january 1st, 
2000 (Blick et al. 2005). Since the normal-orthometric 
heights at the points of GPS-levelling testing network in 
New Zealand are aligned to 18 different LVDs, we uti-
lized the geopotential value approach (cf. Burša et al. 
1999, 2001, 2002) to estimate the average offsets of LVDs 
relative to the World Height System (WHS). WHS is de-
fined by the adopted value of the geoidal geopotential 
W0 = 62636856 m2s–2. The estimated average offsets of 
18 LVDs in New Zealand relative to WHS are summa-
rized in Table 1. The LVDs within the South and North 
Islands of New Zealand are positive and range from 1 cm 
(Wellington 1953 LVD) to 37 cm (One Tree Point 1964 
LVD). 

The gravimetric geoid solution was further com-
bined with the GPS-levelling data corrected for the av-
erage LVD offsets in order to reduce additional system-
atic distortions between the geometric and gravimetric 
geoid heights. The systematic distortions were modelled 
by a 7-parameter model (see Kotsakis and Sideris 1999) 
formed for the observation equations of differences be-
tween the geometric and gravimetric geoid heights 
at GPS-levelling points and solved applying the least-
squares analysis.  
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Table 1. The offsets of 18 LVDs in New Zealand relative to 
WHS

LVD LVD offset [m]
One Tree Point 1964 0.37
Auckland 1946 0.12
Moturiki 1953 0.19
Gisborne 1926 0.10
Napier 1962 0.24
Taranaki 1970 0.12
Wellington 1953 0.01
Nelson 1955 0.20
Lyttelton 1937 0.13
Dunedin 1958 0.07
Dunedin-Bluff 1960 0.23
Bluff 1955 0.17
MSL 0.15
Deep Cove 1960 0.30
Port 1954 0.32
Tarakohe 1982 0.23
Tararu 0.21
Unahi 0.19

5. Geoid validation  

The KTH-geoid was validated at the GPS-levelling testing 
network in New Zealand. The geometric geoid heights 
were calculated from the NZGD2000 ellipsoidal heights 
by subtracting the normal-orthometric heights corrected 
for the average LVD offsets relative to WHS (see Table 1). 
The same validation was done for the NZGeoid2009 and 
EGM2008 quasigeoid models. The average LVD offsets 
relative to WHS (see Table 1) were applied for a valida-
tion of EGM2008. The average offsets of 12 major LVDs 
relative to NZGeoid2009 (adopted from Claessens et al. 
2009) were applied to the geometric geoid heights for a 
validation of NZGeoid2009. Statistics of the differences 
between the geometric and gravimetric geoid/quasigeoid 
heights at the GPS-levelling testing network are given in 
Table 2. The differences between normal, normal-ortho-
metric and orthometric heights were not taken into con-
sideration. We note that the accuracy estimation of the 
geometric geoid heights at GPS-levelling points in New 
Zealand is problematic due to several reasons, mainly 
due to unknown errors in leveling data and large vertical 
tectonic deformations throughout the country. 

Table 2. Statistics of the differences between the geometric and 
gravimetric geoid/quasigeoid heights calculated for the NZGe-
oid2009 and EGM2008 quasigeoid models and the KTH-geoid 
model  

Geoid/Quasigeoid
Model

Differences at GPS-levelling points
Min. [m] Max [m] Mean [m] STD [m]

NZGeoid2009 –0.42 0.38 –0.01 0.07
EGM2008 –0.42 0.40   0.00 0.08
KTH-geoid –0.49 0.42   0.00 0.07

6.Summary and conclusions 

We have applied the KTH method to determine the ge-
oid model at the computation area of New Zealand and 
its continental shelf bounded by the parallels of 28 and 
57 arc-deg southern geodetic latitude and the merid-
ians of 163 and 187 arc-deg eastern longitude. The KTH-
geoid model was compiled in two principal numerical 
steps. First, the approximate geoid heights were com-
puted using the modified Bruns-Stokes integral. It com-
bines the regional terrestrial gravity data with the GGM 
coefficients. The gravimetric geoid heights were obtained 
after applying four additive corrections. These additive 
corrections to the approximate geoid heights account 
for the effects of the topography, atmosphere, downward 
continuation reduction, and spherical approximation. 
The final KTH-geoid model was obtained after combin-
ing the gravimetric geoid with GPS-levelling data using 
a 7-parameter model. The KTH-geoid model was vali-
dated at the GPS-levelling testing network in New Zea-
land and compared with the regional and global quasige-
oid models NZGeoid2009 and EGM2008. The analysis of 
the accuracy revealed that the STD fit of the KTH-geoid 
model with GPS-levelling data is 7 cm (cf. Table 2). The 
same STD fit was found for NZGeoid2009. The STD fit 
of EGM2008 in New Zealand is 8 cm. 

The KTH-geoid model has the same accuracy (by 
means of the STD fit with GPS-levelling data) as the 
NZGeoid2009 quasigeoid model computed using the 
iterative gravimetric approach (Amos and Featherstone 
2009, Claessens et al. 2009). 
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