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of points. The difficulty in the displacements measure-
ment is to find a 3D measurement method that satis-
fies numerous properties, such as reliability, precision, 
low cost and time consuming. 

Several methods are available for accomplishing 
some of the above mentioned requirements, but it is 
difficult to find a method to meet all of them. Some of 
these methods are described as following (González-
Aguilera et al. 2008):

− Topographic methods based on measuring an-
gles, height variation and distances are com-
monly used in the surveying field. The ins-
trument used consists of the different types of 
levels, theodolites, EDMs or total stations. For 
inaccessible points, indirect methods are used, 
for example: precise leveling traversing, single 
or multiple intersections (Ghilani, Wolf 2006), 
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Abstract. Dynamic monitoring of structures is an important task in civil engineering that aims to determine 
the stability and safety of a structure by using information about its deformations. This paper describes the 
development of a method for the determination of structures deformations. The proposed method is de-
veloped to add a new solution to traditional methods of angle intersection and trigonometric leveling. It is 
designed to provide a simultaneous solution to all observations in one step using least squares solution to 
improve the expected accuracy and to generate the necessary data for statistical analysis. A practical experi-
ment was made, where the observations of 7 deformation points on a simply supported steel beam with 
concentrated load were measured using the proposed method, total station and linear variable displacement 
transducers (LVDTs). Deflections measured directly from LVDTs were used as a reference for assessment of 
the serviceability of the beam. The results show that for the maximum deflection at mid-span of the beam, 
the differences between the measured deflections from LVDTs and proposed method are less than 0.87 mm 
corresponding to an error of 4.3%, while they are less than 1.32 mm causing an error of 12.5% for the case 
of total station measurements. Based on root mean square error values, the accuracy of point displacements 
determination using the proposed method is much better than total station measurements. The proposed 
method is suitable for the accurate determination of horizontal and vertical displacements and provides a 
realistic solution for monitoring structures at both entire structure and member levels. 
Keywords:  angle intersection, deformation, monitoring, total station, theodolite.

Introduction

Dynamic structures monitoring is an important 
field of research that has great interest from govern-
ment agencies for maintaining the safety of tunnels, 
buildings, dams and civil infrastructures. 

Dynamic monitoring or deformation of an ele-
ment can be defined as the variation of its position, 
size and shape with respect to its designed shape. 
The aim of measuring deformations is not only the 
determination of the exact locations of the observed 
element but also the variation of these positions with 
time. This is done to prevent the failure of large engi-
neering structures.

Different surveying methods have been used in 
order to support the monitoring of the structures. 
However, the main purpose for the developed meth-
ods was to measure the displacements for a number 
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etc. Additionally, contact sensors can be used for 
these measurements (González-Aguilera et al. 
2008; Lahamy et al. 2016), such as: an inclino-
meter, a pendulum, dials gauges or extensome-
ters. However, this contact nature prevents them 
from use at the final stages of destructive load 
testing and they can only be used for acquiring 
observations in one dimension.

− The Global Positioning System (GPS) is used in 
structures monitoring with considerable range 
of displacements, as well as combined with ot-
her sensors (Breuer et al. 2002). GPS has two 
main limitations. Firstly, it cannot be used in-
doors or through above obstacles. Secondly, its 
current precision is limited to +/– 1 cm horizon-
tally and +/– 2 cm vertically.

− Digital close-range photogrammetry is used to 
provide high accuracy (Detchev et al. 2016). It 
also offers a fast, remote, and spatial data acqui-
sition with images that offer a permanent visu-
al recording of the test. Using targets may not 
be suitable in some cases, especially when the 
access to the object cannot be reached or risky 
to operators. Measurements using additional 
equipments such as reflectorless total stations 
are necessary to determine the scale definition 
in the photogrammetric process.

− Terrestrial Laser Scanning (TLS) is a new met-
hod to the structures monitoring using novel-
ty approaches and computation methods. The 
approaches noted above provide an accurate  
modeling  strategy and have demonstrated their 
reliability for structural monitoring but they 
are not tested over complex structures such as 
bridges and high constructions. The reported 
analysis concentrates on two main problems: the 
first one is the accuracy and the stability of ge-
oreferencing, which is the base of making com-
parisons between different scans; the second 

one is the deformation computation based on 
the point-clouds. Generally, a comparison is 
performed using different surfaces types, such 
as: resample point cloud, mesh and polynomial 
surface (Herban 2009; El-Tokhey et al. 2013).

The aims of the present research are (1) develop-
ing a proposed method depending on a mathematical 
model for computing the spatial coordinates from the 
measurements of separate monitoring points, (2) ad-
justing redundant measurements whose precision can 
be evaluated by a least squares adjustment, (3) employ-
ing the proposed method for the deformation moni-
toring of an I-shaped steel beam under different stages 
of loading, and (4) comparing the results of the pro-
posed method to the results of total station technique.

1. Derivation of the mathematical model

Figure 1 illustrates the geometry for the determination 
of the unknown ground coordinates ( CX , CY , CZ ) of 
point C. In the figure, A is the instrument station and 
B is back sight station with known ground coordinates 
( AX , AY , AZ ) and ( BX , BY , BZ ) respectively. 

As shown in the Figure 1, a horizontal angle ob-
servation equation can be written as the difference be-
tween two azimuth observations, and thus for clock-
wise angles (Ghilani, Wolf 2006):

 AB ACθ = α − α ;

 

1 1 C AB A

B A C A

X XX X
v Tan Tan

Y Y Y Y
− −

θ
−−

θ + = −
− −

,   (1)

where θ  is the observed clockwise horizontal angle, 
vθ  is the residual in the observed horizontal angle, 

ABα  is the azimuth of line AB and ACα  is the azi-
muth of line AC.

Equation (1) is a nonlinear function of XC , YC  
and ZC only because control points coordinates are 
held fixed during the adjustment. Thus, Equation (1) 
can be rewritten as:

 ( , )C CF X Y vθ= θ + , (2)

where 1 1( , ) C AB A
C C

B A C A

X XX X
F X Y Tan Tan

Y Y Y Y
− − −−

= −
− −

.

The linearised first-order Taylor series expansion 
of Equation (2) can be expressed as:

  
( , ) ( , )   C C C C o C C
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F FF X Y F X Y X Y
X Y
∂ ∂

= + D + D
∂ ∂

, (3)

in which 
C

F
X
∂

∂
and 

C

F
Y
∂

∂
are the partial derivatives of F 

with respect to CX  and CY , respectively.
Fig 1. Observations to point C
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Evaluating partial derivatives of the function F 
and substituting into Equation (3), then substituting 
into Equation (2), results in the following equation:
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Y Y X X

v X Y
AC ACθ

− −   
+ D + D =   

   
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Tan Tan
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,  (4)

where 2 2 2( ) ( )C A C AAC X X Y Y= − + −  and terms are 
evaluated at the approximate values for the unknowns.

The coordinate CZ can be obtained as following:

 tanC A IZ Z h AC= + + × β  or
2 2( ) ( ) tanC A I C A C AZ Z h X X Y Y= + + − + − × β , (5)

in which Ih  is the instrument height, and β  is the 
measured vertical angle (positive value for angle of 
elevation and negative value for angle of depression).

Equation (5) can be rewritten as:

 

1
2 2( ) ( )

C A I

C A C A

Z Z h
v Tan

X X Y Y
−

β
− −

β + =
− + −

. (6)

The observation equation for Equation (6) after 
linearization is:
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, (7)

in which C A Ig Z Z h= − −  and terms are evaluated at 
the approximate values for the unknowns.

In order to obtain the ground coordinates of point 
C, three measurements should be available for solving 
three observation equations. More than three mea-
surements would enable a least squares solution.

The observation Equations (4) and (7) can be 
written for least squares method solution as (Mikhail 
1976):
 ·V B+ D = e , (8)

where: D is the correction vector to the current values 
set for the unknowns (the object space coordinates of 
the deformation points) in the iterative solution; B is 
the matrix of the partial derivatives of Equations (4, 7) 

with respect to the unknowns; V is the residual vector, 
i.e., the correction vector to the observations; and e is 
the discrepancy vector.

The principle of the least squares method needs 
the minimizing of the quadratic form · ·tV W V , where 
W is the weight matrix whose elements are the weights 
associated with each of the observations. The least 
squares solution of an equation similar to Equation (8) 
can be given as (Mikhail 1976; Ghilani, Wolf 2006):

 1N C−D = ,  (9)

where

 

· ·

· ·

t

t

N B W B

C B W

= 


= e 
. (10)

Variance of unit weight can be computed as:

 
2ˆ · · / ( )t
o V W V N Uσ = − , (11)

where 2
0σ̂  is the variance of unit weight;  N is the num-

ber of observations; U is the number of unknowns and 
equals to 3n in which n is the number of deformation 
points; ( )N U− = Degree of freedom.

2. Experimental work

The derived mathematical model for deformations 
measurement is general and can be applied to any kind 
of building or bridge structure or structural members. 
In this paper, it was applied for the structural monitor-
ing of I-shaped steel beam. The beam dimensions are 
100mm depth, 100mm flange width, 6 mm web thick-
ness, and 8 mm flange thickness. 

The beam was simply supported with a span 
length of L = 4 m shown in Figure 2. The beam was 
loaded with a concentrated load at the mid span. Three 
values of the load 0.5, 1.0 and 1.5 ton were used in this 
experiment. 

Seven deflection points were chosen at L/8, L/4, 
3L/8, L/2, 5L/8, 3L/4 and 7L/8 locations. Seven paper 
prisms (Fig. 2) and seven LVDTs were installed on the 
deflection points.

Two observation points (control points) were 
chosen on the floor 5m apart from the beam. From the 
several techniques for determining the level differences 
in the field, the well known and widely accepted one 

Fig. 2. The beam, loading, and locations of the deflection points
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was chosen. Level differences can be measured with 
one level and readings performed on the invar rod us-
ing two different instrument horizons. This procedure 
is strongly related to the need to ensure the proper ac-
curacy required to measure the level differences in the 
field (Nistor, G., Nistor, I. 2007). The level difference 
between the two observation points was achieved with 
the precise leveling using a GPLE3 geodetic invar staff 
with 10 mm graduations and Leica NA2 automatic 
level with a Leica (10 mm) GPM3 parallel plate mi-
crometer attachment. To measure the horizontal dis-
tance between the two observation points, a Topcon 
GTS710 total station was used. A total of six horizontal 
distances (3 direct and 3 reverse) were observed. The 
final horizontal distance was taken as the mean of all 
measured values. By knowing the horizontal distance 
and the height difference between the two observation 
points, the coordinates of the two control points were 
assigned to a local coordinates system.

The observations of the deflection points were 
taken before loading the I-beam and after each stage 
of loading. The deflection points were observed using 
Wild (Lieca) T2 with 1” least count. The horizontal 

angles to the deflection points were observed by direc-
tion and closing the horizon methods and reading the 
horizontal circle in both the left and right faces. Mul-
tiple observations of the angle are made, with the circle 
being advanced prior to each reading to compensate 
for the systematic errors. Each angle was determined 
for each observations set and the final horizontal angle 
value was taken as the average of all measured values. 
The vertical angle of each deflection point was deter-
mined from the vertical circle readings in both left and 
right faces and taking the mean value.

To compare the results of the proposed method 
with the total station results, the coordinates of the de-
flection points were measured directly using Topcon 
GTS710 total station.   

The surveying instruments used were technically 
checked before the execution of the measurements and 
found that they are in good condition. 

3. Results

Vertical deflections of the simply supported beam sub-
jected to the action of concentrated loading stages are 

Table 1. Values of vertical deflections and discrepancies (in mm)
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used as serviceability assessment criterion. For each 
loading stage, direct measurements of vertical deflec-
tions from LVDTs at L/8, L/4, 3L/8, L/2, 5L/8, 3L/4, 
and 7L/8 positions of the steel beam were used as the 
reference for the comparison. 

The measured deflections at the deflection points 
for each one of the three loading stages, 0.5, 1.0 and 1.5 
ton, using LVDTs are compared with obtained values 
using the proposed method and total station as shown 
in Table 1. 

Furthermore, Figure 3 shows the deformed shapes 
of the beam generated from the measured vertical dis-
placements using the different methods and loads. 

From Table 1 and Figure 3, the following conclu-
sions can be drawn:

− The vertical displacements obtained from the 
proposed method are in good agreement with 
the directly measured displacements from 
LVDTs.

− For the maximum deflection at mid-span of 
the beam, the discrepancies are in the range of 
0.34–0.87 mm corresponding to an error of less 
than 4.3% for the proposed method results, whi-
le they are in the range of 0.86–1.32 mm causing 
an error of up to 12.5% for the case of total sta-
tion measurements.

− The maximum values of discrepancies are 0.89 
mm and 2.62 mm for the proposed and total 
station methods respectively. This leads to con-
clude that the results of the proposed method 
are comparable to the results of LVDTs.

− Values of Root Mean Square Error (RMSE) 
show that the accuracy of point deformation de-
termination using the proposed method is much 
better than using total station.

Conclusions

The proposed method is developed to add a new so-
lution to traditional methods of angle intersection 
and trigonometric leveling. It is designed to provide 
a simultaneous solution to all observations in one step 
using least squares solution to improve the expected 
accuracy and to generate the necessary data for statisti-
cal analysis. 

Measurements of deflection in steel beam subject-
ed to a concentrated load using LVDTs, the proposed 
method and total station have been successfully dem-
onstrated.

Deflections measured directly from LVDTs can 
be used as an accurate measure for computing the 

discrepancies of deformations of the proposed and to-
tal station methods results. 

The results show that for the maximum deflection 
at mid-span of the beam, the discrepancies are in the 
range of 0.34–0.87 mm corresponding to an error of 
less than 4.3% for the proposed method results, while 
they are in the range of 0.86–1.32 mm causing an er-
ror of up to 12.5% for the case of total station mea-
surements, for the maximum deflection at mid-span 
of the beam. Based on RMSE values, the accuracy of 
point displacements determination using the proposed 
method is much better than total station measure-
ments.

a)

b)

c)

Fig. 3. Plots of the beam deflections for a) 0.5 ton load,  
b) 1.0 ton load and c) 1.5 ton load
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The maximum values of discrepancies are 0.89 
mm and 2.62 mm for the proposed and total station 
methods respectively. This leads to conclude that the 
results of the proposed method are comparable to the 
results of LVDTs.

Therefore, according to the improvement in the 
measurement accuracy of the developed method 
presented in this paper and comparing the methods 
of GPS and close range photogrammetry, the pre-
sented method can be used as an effective approach 
for structural monitoring with the following advan-
tages: (1) suitable for indoor and outdoor applications, 
(2) using simple surveying instruments (theodolite), 
(3) no need for expensive GPS receiver antennas 
or metric or non-metric cameras, (4) no in situ in-
strumentation of sensors, (5) no difficulties to reach 
structures or structural members, (6) simple in its 
performing by surveyors not by specialists or photo-
grammetrists, and (7) no wiring cost.
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