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field, but the researchers did not get into details about 
them (Tao, Hu 2002). The rational functions were ex-
tremely used with the launch of first high-resolution 
imagery satellites. Thus, using this model on three-di-
mensional (3D) modelling software became a common 
approach (Madani 1999), although the geoscientists 
still did not achieve a complete model and informa-
tion. According to this, the initial studies to assess the 
possibility of using rational functions instead of the 
physical functions and comprehensive study of them 
were done from aerial imagery and photogrammetry 
view (Dowman, Dolloff 2000; Li et al. 2009). This ine-
vitably opened a new interesting field for further stu-
dies and experiments. Although, Tao and Hu (2001) 
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abstract. Terrain-independent Rational Polynomial Coefficients (RPCs) are considered as most important 
part of the optical satellite and aerial imagery data processing especially those ones with high resolution 
since the proposed RPCs by the aerospace companies have some limitations in particular for using directly 
by the geoscientists in environmental studies and other Earth observation applications. While the inverse 
RPCs have more advantageous rather than direct ones, in this study, a new approach is presented in order 
to provide the inverse RPCs from direct ones and also to satisfy satellite imagery products users. In order 
to do this, first a spatial 3D-cubic is going to be fitted to the study area approximately including necessary 
altimetry layers numbers. Next, a range of virtual control points are being created in those altimetry layers 
randomly and then these points are going to be shifted to the image space by means of given direct RPCs. 
Hence, the inverse RPCs computes from the direct ones by space resection technique. Finally, the ground co-
ordinates for the corresponding points have derived from different space intersection methodologies, direct 
RPCs and also inverse ones. Moreover, comparative tests have been developed to assess the effects of differ-
ent altimetry layers numbers and also the number of virtual control points on the quality of derived inverse 
RPCs. It is demonstrated here that the precision of derived RPCs are increasing as much as the number of 
altimetry layers and control points increase. The proposed methodology, computations, data processing and 
results evaluation are discussed in details.
Keywords: Forward/Inverse RPCs, Rational function, Digital terrain model, Ortho-photo, High-resolution 
optical image.

Introduction 
Prior to the use of rational functions in military ap-
plications and facilities, the physical equations and 
models such as coplinearity equation were using to 
transfer from object space coordinates to image space 
ones (Sohn et al. 2005; Lin, Yuan 2008; Najibi, Abedini 
2010). It is needless to say that Earth surface studies are 
very critical in these days (e.g. Sarabandi et al. 2008; 
Najibi, Jin 2013; Najibi, Arabsheibani 2013; Najibi et al. 
2013), however, this demand asks for more sophistica-
ted Earth observations sensors and other useful ima-
gery applications especially for environment studies to 
create new advanced method (Tao et al. 2004; Najibi, 
Abedini 2013) and also open up the rational functions 
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studied rational functions in independent case and de-
pendent on ground state, but this study was done mos-
tly based on numerical tests rather than quality appro-
aches and also focused mostly on forward and inverse 
rational functions for 3D modelling comprehensively. 
This study also improved the spatial intersection with 
inverse rational functions. The evaluation of IKONOS 
imagery is done from aspect of both radiometric and 
geometric by Baltsavias et al. (2001). Moreover, Gro-
dechi and Dial (2003) studied the block adjustment 
of high-resolution images using rational functions. 
Besides, Samadzadegan et al. (2005) mentioned a new 
method to optimize the rational functions coefficients. 
Additionally, Chen et al. (2006) evaluated geometric 
performance of rational functions in order to be repla-
ced by Rigor’s models. The geometric assessments of 
satellite imagery (e.g. QuickBird) are being discussed 
in details by Aguilar et al. (2007 and 2008). Further-
more, Habib et al. (2007) compared geometric accura-
cy of rational functions with general and Rigors mo-
dels for satellite and aerial images. Zhang et al. (2011) 
studied the possibility of using rational functions ins-
tead of Rigors in Synthetic Aperture Radar (SAR) ima-
ges. Recently Wang et al. (2014) studied the geometric 
accuracy validation for ZY-3 satellite imagery in order 
to investigate the principle of on-orbit calibration and 
production processes of its sensor-corrected products.

Terrain-independent Rational Polynomial Coef-
ficients (RPCs) are considered as essential segments 
of the high-resolution optical satellite images due to 
the fact that they are generated by the aerospace or-
ganizations through fitting Rational Function Models 
(RFMs) to the physical model. The generated terrain 
coordinates by RPCs can be reached a reasonable le-
vel of geometric accuracy with just a single ground 
control point which means that the direct georefe-
rencing is almost feasible with the supplied RPCs. 
However, the aerospace organizations and compa-
nies conventionally use the forward RFM to genera-
te RPCs, but the RPCs can also be generated by the 
inverse RFM. Now, the question arises as to which of 
the above cases (direct coefficients or inverse ones) 
are computationally more efficient for various appli-
cations? This question has not been answered so far 
properly. Therefore, the main objective of this pa-
per is to analyse the computational efficiency of the 
forward and inverse RFMs and also to introduce op-
timized models associated with different applications 
of these functions. The optimum choice of the inver-
se or forward RFMs plays an important role for tho-
se applications that require real-time aerial imagery 

processing products. The main applications of terrain-
independent rational functions can be summarized in 
the following three categories as:

1) Digital elevation data generation,
2) Ortho-rectification,
3) Transformation of pixels to 3D object space 

(mono-plotting).
Although the pixel coordinates in forward RFM 

are expressed as a function of their corresponding 
ground coordinates, whereas the ground coordinates 
with the inverse RFM are the functions of their pixel 
coordinates. Thus, for those applications in which the 
transformation takes place from the image space to 
the object space (e.g. mono-plotting), the solution of 
the forward RFM (using Newton–Raphson approach) 
requires the linearization of all three components of 
the ground coordinates (X, Y, Z) and consequently 
the initial approximations for all three components 
are required. Moreover, the loop structure also beco-
mes complicated. However, the inverse RFM for the 
solution of the same problem requires only lineari-
zation with respect to the Z component with a simple 
loop structure. Therefore, for applications in which 
the transformation is performed from the image spa-
ce to the object space, inverse rational equations will 
be computationally more efficient with a larger radius 
of convergence. Conversely, for those applications 
in which the transformation is performed from the 
object space to the image space (e.g. ortho-rectifi-
cation), the inverse RFM is not an optimum solu-
tion since linearization is carried out with respect to 
the pixel coordinates x, y and their corresponding Z 
component. In this case, solving the problem by using 
forward function would be more efficient.

In this paper, the forward and inverse RFM al-
gorithms are implemented and a numerical analysis 
is conducted for different applications using stereo 
Cartosat-1 satellite images over a highly mountainous 
terrain. Since the aerospace organizations customa-
rily generate forward RPCs, The application-orien-
ted optimum solution requires an algorithm for the 
conversion of the forward RPCs to the inverse RPCs. 
This paper also proposes a forward model to inverse 
RPC conversion algorithm. The numerical evaluation 
conducted in this paper indicates that with the im-
plemented algorithm no significant loss of precision 
is occurred during the conversion process and as far 
as the precision of the generated object coordinates is 
concerned, the converted inverse RPCs are practically 
equivalent to the forward RPCs. Based on this; Figu-
res 1 and 2 present step-by-step the instructions and 
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also the flowchart of the proposed method respective-
ly. In Figures 1 and 2, the mentioned steps including 
the creating of the control points, data processing and 
results evaluation can be seen which in are going to 
describe as the following sections:

 – The first step; creating the control points: in first 
stage, the imagery area’s altitude and planime-
tric range is approximately determined. Then, 
the cube is fitted to this imagery area by using 
a specified range. Next, the classified planime-
tric area is girding and also a specified altimetry 
range is divided into given number of layers. 
At each layer, the specified number of virtual 
control point is created randomly.

 – The second step; the data processing: at first sta-
ge, virtual control points are transferred from 
object space to image space by use of forward 
rational functions (those coefficients which have 
been received from aerospace organizations). 
Moreover, the pixel coordinates of each point 
on the image surface is obtained. Then, the spa-
ce resection is calculated using the inverse ra-
tional functions. This process is done for both 
backward and forward images. Since the inverse 
rational coefficients of each image and pixel co-
ordinates of each virtual control points are avai-
lable, it is possible to do the space intersection for 
quality control of the inverse rational function 
coefficients. Furthermore, it is straightforwardly 
to be done the direct comparisons between the 
intersection with forward rational functions and 
also inverse rational function, as well as the inter-
section with forward rational function.

 – The third step; the results evaluation: Those fac-
tors which are affecting the quality of the pro-
duced inverse rational coefficients from forward 
rational coefficients such as number of virtual 
control points and altimetry layers are being 
tested. Moreover, the relationship between the 
space intersection initialized values and conver-
gence speed and error rates are being assessed.

In the following sections, first a brief introduction 
to the rational functions is given besides they are as-
sessed based on terrain dependent and also indepen-
dent. Then, the direct rational functions and inverse 
ones as well as space resection and intersection by 
using inverse rational functions are described in de-
tails and eventually the quality of derived inverse ra-
tional functions coefficients from direct rational ones 
as well as the precision of concluded 3D coordinates 
are discussed and expatiated completely.

1. Materials and methods

The Rational Function Model (RFM) are mathematical 
functions which are very similar to the projective equ-
ations (Madani 1999). Rational functions are employ-
ed to communicate between the two-dimensional (2D) 
image coordinates (r, c) and 3D ground coordinates 
(X, Y, Z) and vice versa. The functions of the coordina-
tes (X, Y) as a ratio of polynomials (r, c, Z) which can 
be as total of 78 parameters, to establish the relations-
hip between image space and ground space rational 
equations are presented as follows (Tao, Hu 2001):

 

3( , , )
4( , , )

P r c ZY
P r c Z

= , (1)

 

1( , , )
2( , , )

P r c ZX
P r c Z

= . (2)

The rational function coefficients are going to be 
solved using one of the terrain dependent or indepen-
dent methods which are related to existing or lack of 
satellite physical parameters respectively at imagery 
time.

Fig. 1.Step-by-step instructions of proposed method for 
conversion of forward RPCs to the inverse ones

Fig. 2. The flowchart of proposed method for conversion of 
forward RPCs to the inverse ones
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However, the terrain independent method will be 
employed when the satellite physical parameters are 
available and or there is not any ground control in-
formation. In this case, by designing a 3D terrestrial 
network and corresponding image network, the co-
efficients of the model equations are obtained direct-
ly. This is common method for obtaining the ratio-
nal coefficients because it does not require to define 
the ground control points. Based on this, the rational 
function coefficients which are going to be obtained 
using this method will be greatly affected by accuracy 
of the satellite physical parameters and that assumed 
terrestrial network precision (Tao, Hu 2001).

Conversely, the terrain dependent method will be 
applied when the satellite physical parameters are not 
available. In this case, there is a requirement to have 
the ground control points. Hence, the ground control 
points for this method can be achieved by using the 
present conventional methods. Although in this sce-
nario, the accuracy of ground control points will play 
a key role and thus the rational functions is highly de-
pendent on the accuracy of these control points.

Those rational functions that transfer the points 
coordinates from ground space to the image one can 
be split into two equations:

 – Forward equations;
 – Inverse equations.

Each one of these equations would lead to anot-
her one which is dependent on the type of used inqui-
ry. In the following sections, they will be discussed in 
details.

Basically the forward models are being used to 
transfer from ground space to image one. The rational 
functions are discussed as a function of the ground 
points coordinates as:
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In order to reduce the computational error, the 
ground and image coordinates are normalized in the 
range between (–1, 1) (Cox 2010). Accordingly, rn and 
cn are the normalized coordinate values in the form of 
rows and columns pixels in the image space and also 

Xn, Yn and Zn are normalized values of ground spa-
ce coordinates. Moreover, aijk, bijk, cijk and dijk are the 
polynomial coefficients that are discussed as RPCs.m1, 
m2 and m3 are maximum powers of ground coordi-
nates and are typically 3. It is good to note that the 
total power of each polynomial term is determined to 
be at maximum 3. The numerator and denominator of 
rational functions that are 3-degree polynomial equ-
ations consist of 20 sentences as given:
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To normalize the ground and pixel coordinates, 
the following equations are used as:
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In above equations, r0 and c0 are image coordina-
tes displacement values and rs and cs are scale numbers 
of the image coordinates. Similarly, X0, Y0 and Z0 are 
ground coordinates displacement values and also Xs, Ys 
and Zs are scale numbers for ground coordinates.

The inverse model of equations is described as 
the reverse of forward equation which will be used to 
transfer from the image space to ground one directly. 
The rational functions are discussed as follows:
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where the existing parameters and constants within 
above equations are being introduced and defined ear-
lier in above sections.

The purpose of solving space resection using 
inverse rational functions is to obtain coefficient of 
these functions. The space resection using rational 
functions can be solved by direct methods and itera-
tive method.

First, equation (11) and (12) can be rewritten as 
follows:
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By considering n control points with defined 
ground and image coordinate, the matrix equation 
(15) is created as follows:
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Then, it can be shown by simplicity as:

 X X XV W MJ W R= − . (22)

Moreover, the used normal equation has the form 
as follows:

 
2 2– 0T T
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In direct solution, the weight matrix is conside-
red to be a unit matrix. According to this, the equ-
ation (15) can be solved as follows:
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Although equation (16) can be solved based on 
equation (15), but these two equations can be even 
solved simultaneously since there is no dependency 
between them and also they do not have any influence 
on each other. Based on this, the following equations 
can be derived as:
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The normal equation is defined to be evaluated as 
follow:

 2 2 0T TT W TI T W G− = . (27)

If those available control and tie points are not 
distributed homogenously over entire evaluated area, 
it is necessary to apply the normal equation regulari-
zation. Since the mentioned reason makes the T-ma-
trix as a rank deficient matrix which will result in lack 
of convergence in iterative solution. In order to sol-
ve the mentioned normal equation (27), the regulari-
zation technique is used here. Accordingly, the equ-
ation (27) can be written as follows (Tao, Hu 2001):

 
2 2 2( ) 0T TT W T h E I T W G+ − = , (28)

where E is the unit matrix. Generally the regularization 
parameter determination is difficult and a very com-
plicated procedure; but here this value is set to 0.004 
(Tao, Hu 2001). In order to solve it, the Tikhonov met-
hod is used as follows (Neumaier 1998):
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The coefficients of rational functions for two 
images are calculated by using space resection as 
mentioned above. In next step, by the existing of 
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corresponding image coordinates in two images for 
points and the coefficients of the rational equations, 
the ground points coordinates can be calculated using 
the iterative space intersection of rational functions. 
For this case, three methods are described as follows:

In first method of solution, rational equations 
of direct X and Y can be extended to Z using Taylor’s 
method. In first approximation, the following equ-
ation is obtained as (Tao, Hu 2002):
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By removing X and Y, the error equations are ob-
tained as follows:
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Then by using least squares solution for above 
equation, it will be given as:
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WX and WY are weight values of X and Y.
In second method of solution, in a similar fashion 

to the above process, only that part of final equation 
to get ΔZ, the function mentioned in Yang (2000) is 
being substituted as:
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. (45)

But in third method of solution, the linearized 
equation (37) and (39) are employed and put them 
equal to each other which will be led to equation (46) 
as follows:

 
ˆ ˆlr

X l r
XX Zv X XZ Z

∂∂   = − ∆ − −     ∂ ∂ 
. (46)

From equation 46, the ΔZ is eventually going to 
be obtained using least square solution method.

2. Results and discussion

Generally many various factors would affect the re-
liability and precision of inverse coefficients genera-
ted from forward coefficients such as the number of 
virtual control points and or the number of altimetry 
levels. Moreover, after providing the inverse rational 
coefficients, in the case of 3D coordinate’s extraction 
for the tie points, we face three space intersection met-
hods which the methods used for space intersection 
influence the final accuracy and the convergent speed 
of processing since various tests were conducted and 
followed. In these tests, the backward and forward sa-
tellite Cartosat-1 imagery for a very mountainous re-
gion was used.

The corresponding pair images are taken on 
August 13, 2007 for Rood-e-Hen (Iran) region. The 
terrestrial altitude difference is between 1300–3200 
m and thus this area is considered as mountainous 
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topology (Fig. 3). Although the initial rational coef-
ficients are provided with aerospace organization, in 
order to investigate those factors which are affecting 
the accuracy of inverse rational coefficients generated 
from forward rational coefficients, the virtual control 
points were used. The virtual control points and 148 
ground points are obtained using forward equations 
to check the accuracy of extracted 3D coordinates on 
the effects of initial values as well as the speed of the 
solution convergence (e.g. Fig. 3).

In order to assess the influence of altimetry layers 
on inverse rational functions coefficients quality, firs-
tly, the imagery area’s range should be specified. The 
cube fitted to the region and then it will be gridded 
with suitable interval. Next, 400 virtual control points 
for altimetry layers between 1 and 20 were created. 
The errors values were determined after processing 
which their rates decrease by increasing the number 
of altimetry layers. It is seen that quality of generated 
inverse rational coefficients in forward rational coeffi-
cients computation are improving while the number 
of altimetry layers are increasing (e.g. Figs 4–6).

Moreover, to analyze the influence of virtual 
control points numbers on inverse rational functions 
coefficients quality, the fitted cube is divided into 5 al-
timetry layers and gridded by the mentioned suitable 
interval. Then, for the virtual control points between 
100 to 900, the inverse rational coefficient generation 
process is done and the derived results were evaluated. 
It is seen that error is decreasing with increasing the 
number of virtual control points (e.g. Figs 7–9).

Furthermore, to investigate the influence of initi-
al values on the space intersection precision, after ob-
taining the inverse rational coefficients and having the 
pixel coordinates of points in forward and backward 
images, we can calculate the 3D coordinates of the vir-
tual control points by space intersection using inverse 
rational function (first method). In order to do this, 

Fig. 3. The study area imaged by Cartosat-1 satellite imagery Fig. 4. RMSE (Longitude) changing rate  
by increasing altimetry layers

Fig. 5. RMSE (Latitude) changing rate by increasing  
altimetry layers

Fig. 6. RMSE (Height) changing rate by increasing  
altimetry layers

Fig. 7. RMSE (Longitude) changing rate by increasing  
control points
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we need initial value of Z for space intersection which 
is used in inverse rational functions. In this test, by 
differentiating the distance of the initial Z value from 
real Z one, the errors in points were calculated and 
evaluated. As it was expected, if the magnitude of the 
initial value is close to the actual one, the error rate is 
going to be reduced. Moreover, the error rate increa-
ses while the distance is increasing. Besides, the pre-
cision of result is acceptable by putting initial value 
of Z equal to the average height of imagery area (e.g. 
Figs 10–12).

However, in order to assess the influence of ite-
ration termination criterion on the space intersection 
precision, the inverse rational functions coefficients 
for forward and backward images were determined. 
The inverse space intersection (mentioned 3 methods) 
for virtual control points (400) with different iteration 
termination criterion processed by defining initial va-
lue of Z equal to average height of imagery area and 
also the different termination criterion (dZ ≥ 10-a) for 
iteration defined (a, 0–7) are considered. As it can be 
seen (e.g. Figs 13–16), the precision is not going to be 

Fig. 8. RMSE (Latitude) changing rate by increasing  
control points

Fig. 9. RMSE (Height) changing rate by increasing  
control points

Fig.10. RMSE (Longitude) changing by increasing distance of 
initial value of point’s height from real value of point’s height

Fig. 11. RMSE (Latitude) changing by increasing distance of 
initial value of point’s height from real value of point’s height

Fig. 12. RMSE (Height) changing by increasing distance of 
initial value of point’s height from real value of point’s height

Fig. 13. Influence of iteration termination criterion  
on speed of convergence
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changed; conversely if a ≥ 4, it reduces the speed of 
running the program.

Regarding the precision of forward intersection 
to inverse intersection, in this case, the space inter-
section (forward and inverse) is processed for those 
virtual control points (400) which had been created. 
The initial value for these points defined as the avera-
ge height of imagery area with termination criterion 
defined (dZ ≤ 10–7). It is demonstrated that the speed 
of program in forward intersection is faster but its 
precision in inverse intersection is better as it can be 
seen in Table 1 and also Figure 17.

Table 1.RMSE for different methods of intersection.

X-RMSE
(radian)

Y-RMSE
(radian)

Z-RMSE
(m) Time (s)

Fo
r w
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r s
ec

 tio
n

0.000000403 0.000000117 0.4902 0.5069

In
 ve

rs
e 

in
te

r s
ec

 tio
n

0.0000000152 0.0000000038 0.01511 203.0704

(F
irs

t  
m

e t
ho

d)

0.0000000139 0.0000000041 0.01494 69.729

In
 ve

rs
e 

in
te

r s
ec

 tio
n

0.0000000139 0.00000000423 0.01495 2082.490

Conclusions

As mentioned in the introduction, the aim of this 
study is to provide a mechanism for conversion of 
forward rational coefficients to the inverse ones. Re-
garding to this, the proposed methodology is based on 
the creation of virtual control points and ground ones 
independently. The first step will be to fit a cubic to the 
imagery area. Then, the virtual control points must be 
created in a cube. Also, the coordinates of the control 
points in image space should be calculated using ra-
tional coefficients. The inverse space resection is going 
to be applied for each of the employed satellite images. 
Finally, the inverse space intersection should be per-
formed and thus the 3D model of imagery area will 
be created.

In this study, the practical statistical tests de-
monstrated that the proposed method can be handled 
when the inverse coefficients are available rather than 
forward coefficients. However, in order to maintain 

Fig. 14.RMSE (Longitude) changing by increasing  
termination criterion (a)

Fig. 15.RMSE (Latitude) changing by increasing  
termination criterion (a)

Fig. 16. RMSE (Height) changing by increasing t 
ermination criterion (a)

Fig. 17. Result of proposed method
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the desirable accuracy in conversion from forward co-
efficient to inverse ones, firstly it is better to divide the 
fitted cube into more altimetry layers since it increases 
the precision and DEM resolution quality. Secondly, 
by increasing the number of virtual control points, 
the error rate would decrease significantly. Further-
more, the running tests made in the area of the spa-
ce intersection one using rational coefficients showed 
that while the initial value is going to be greater than 
the actual value, the accuracy and speed of convergen-
ce will be decreased. Although a reasonable accuracy 
can be achieved by placing an initial value equal to the 
average height of imagery area. Moreover, although 
the stopping criterion is very effective and would de-
crease the error rate, but it does not significantly affect 
when a ≥ 4. Besides, it is presented by the compari-
sons of space intersection, inverse and direct RPCs 
that the inverse RPCs are more practical since they do 
not require any precise initial values and also holding 
less RMSE rather than direct ones, although their data 
processing speed are less than the direct ones.

Here, it is being considered to automatically deter-
mine the optimum number of altimetry layers and the 
number of virtual controllers’ points. As the use of high 
resolution 3D model of a specific Earth region is incre-
asing day by day especially by the geoscientists to stu-
dy the necessary environmental components and urban 
purposes, this can open up a new opportunity to ana-
lyze and improve the previous studies related to RPCs.
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