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The more general case of least squares adjustment 
assumes that the observations have varying degrees of 
precision, and thus varying weights. Then the weighted 
least squares principle reads:

 
2 2 2 2

1 1 2 2 ... minn nwv w v w v w v     .  (2)

For an observation il  with a residual iv , the ob-
servation equation reads:

 i i il v  ˆA x . (3)

The row vector iA  is a row in the design matrix 
A. The elements of iA  are the coefficients of the un-
known parameters in an observation equation. The 
least squares solution for the system of linear equations 
according to Equation (3) is given in a matrix form as:

 –1( )T T
ll llx̂ = A W A A W l . (4)

In Equation (4), the square matrix 2 1
0 ll

llW C  
is the weight matrix of the observations using their 
covariance matrix llC  (jäger et al. 2005). 

2
0  is the 
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Abstract. In Geomatics, the method of least squares is commonly used to solve the systems of observation 
equations for a given number of unknowns. This method is basically implemented in case of having number 
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tational time for solution would extremely increase with increasing number of unknowns and observations. 
The calculation of the inverse of the normal equation matrix will get more complex using the traditional 
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Introduction to least squares

In surveying and Geomatics, observations must often 
satisfy established numerical relationships known as 
geometric constraints. As examples in a closed polygon 
traverse, horizontal angle and distance measurements 
should conform to the geometric constraints, and in 
a differential leveling loop, the elevation differences 
should sum to a given quantity. However, because the 
geometric constraints meet perfectly rarely, if ever, the 
data are adjusted. The fundamental principle of a least 
squares adjustment is the most common method for 
adjusting the observations in the Geomatics branches 
like surveying, GNSS, Geodesy and Photogrammetry. 
The principle of least squares takes the advantage of 
the redundancies in observation for computing the un-
knowns. The basic principle of least squares method is 
to minimize the summation of the squared residuals in 
the observations (Ghilani, Wolf 2008).

 
2 2 2 2

1 2 ... minnv v v v     . (1)
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assumed reference variance of the solution before the 
adjustment. is the column vector of the observations. 
Using the solved unknowns in the vector matrix x of 
equation (4), the residuals vector v of the observations 
reads:
 ˆv = Ax– l . (5)

Using the calculated residuals, the calculated ref-
erence variance of the adjustment with r redundant 
observations reads:

 
2
0s

r


T
llv W vˆ . (6)

Using the laws of  error propagation, the cova-
riance matrix of the unknowns xxC  reads (Niemeir 
2002):

 1 12
0s ( )   T 2 2

xx ll 0 0 xxˆ ˆ ˆC A W A s N s Q . (7)

The covariance matrix ˆ̂llC of the adjusted obser-
vations is given by:

    
1 2 2

0 0
2
0s s s  T T -1 T

ˆ̂ ˆ̂llll ll
ˆ ˆ ˆC A(A W A) A AN A Q . (8)

1. Memory optimization

The solution of a least squares problem using a system 
of linear equations given in equation (4) can be written 
as (Ghilani, Wolf 2006):

 1 1T – T –
ll llx̂ = (A W A) A W l = N c . (9)

Here, N is the normal equations matrix, and c is 
the constants matrix. N and c read:

 T
llN = (A W A) ; (10)

  T
llc = A W l . (11)

In the case of a large number of observations and 
unknowns, significant memory would be required to 
store the matrices A, W, N and l. The Matrix N and 
the vector matrix c can be calculated directly using the 
observations and their weights (jäger et al. 2005). In 
this way, the size required to store the matrices A will 
be reduced to only one row of the matrix to be stored 
temporarily during the computations. As the normal 
matrix N is symmetric, only the upper or the lower 
part of the N matrix must be saved. The calculations 
for the elements of the upper part of N and the ele-
ments of the c vector using only one row of the design 
matrix A related to the i-th observation read (Niemei-
er 2002):

 , ,m n m n m n in n a a w   ; (12)

 m m m i ic c a w l  . (13)

In the case of a very large number of unknowns, 
memory limits may stop the calculations during the 
solution of Equation (10). To avoid this problem, the 
matrix N is divided into sub-matrices (blocks). Only 
one or a limited number of blocks are then loaded in 
the memory (Smith 2001). The other blocks are stored 
in the hard drive in ASCII or Binary files. Afterwards, 
they are loaded when required. The block matrix form 
of the normal equations matrix N reads (Okrah 2005):
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2. Cholesky decomposition

Cholesky decomposition is a useful method that can 
be used for efficient numerical solutions. It is basically 
used to solve a system of linear equations (Press et al. 
1992). It is commonly used for Geomatics applica-
tions for applying the least squares solutions. Other 
applications in the field of electronics were introduced 
by (Aquilante et al. 2011). Other application is the in 
the reconstruction of 3D scenes in photogrammetry 
using 2D images (Hartley et al. 1992). The Cholesky 
decomposition of the covariance matrices was used to 
decrease the computational times of a two-sample pro-
cedure for testing the equality of the generalized Fro-
benius means of two independent populations on the 
space of symmetric positive matrices (Osborne et al. 
2013).

The calculation time required to find the solution 
to a system of linear Equations (4) can be reduced by 
implementing the Cholesky decomposition, in which 
a positive symmetric definite matrix N can be repre-
sented by a lower triangle L matrix or an upper tri-
angle matrix U multiplied by its transpose (Rothberg, 
Gupta 1994).

 T TN = LL =U U ; (15a)
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The factorization of the lower triangle matrix L 
according to the Cholesky decomposition reads:

 

1
2

1

j

jj jj ji
i

l n l



  ; (16)
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

 
    

 . (17)

By having the factorized L matrix, the solution 
with respect to the unknowns can be obtained without 
the need to invert the normal equations matrix N. The 
matrix form of the linear system of equations accord-
ing to the Cholesky decomposition reads:

 TNx = LL x = c . (18)

Equation (18) can be rewritten as follows (Ghilani, 
Wolf 2006):
 Ly = c ; (19)

 TL y = x . (20)

This makes it easy to solve the system of equations 
without the need to invert the matrix L or TL . This is 
because L is a lower triangle matrix (Aledeld, Mayer 
1993). Solving the system of equations Ly = c with re-
spect to y is called forward substitution. The elements 
of the vector matrix y are (Press et al. 2002):

 

1

1

j

j j ji i jj
i

y c l y l




 
    

 . (21) 

The solution of the system of equations LTy = x 
with respect to the unknowns vector x is called back-
ward substitution. The values of the elements of the 
unknowns’ vector x are:

 1

n
j j ij i jj

i j
x y l x l

 

 
   
 

 . (22)

One concern with the Cholesky decomposition 
facrorizations in Equations (16) and (17), the square 
roots are using in the factorization of the Cholesky 
decomposition. The results are always position in 
the well-conditioned solutions. Where the matrices 
are positive definitive. In many applications the ma-
trices are ill-conditioned (positive semi-definitive 
matrix). The numbers under the square roots can 
get negative by the round off errors. Adding a diago-
nal correction to the matrices can solve the problem. 
But the accuracy of the solution will be less (Fang, 
O’Leary 2006). 

3. Cholesky block matrix decomposition

The implementation of the block matrix Cholesky de-
composition is applied similarly to the normal Cho-
lesky decomposition. Each block is handled as an ele-
ment of a matrix (Nool 1992). The factorization of the 
block lower triangle matrices reads (Schaefer 2003):
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In Equation (23), the term Decomp(A) is the ap-
plication of Cholesky factorization of Matrix A using 
Equations (16) and (17). The term Bforsub(A,B)  is 
calculated by using the forward substitution in Equa-
tion (21) of the matrix A and the columns of B in 
Equation (25). Having iB  as the i-th column of ma-
trix B, Bforsub(A,B)  reads:

1 2 3

( )
( ) ( ) ( )...).

Bforsub
Forsub Forsub Forsub

A,B
( A,B , A,B , A,B  (25)

The forward substitution to find the block ele-
ment jY  of the vector y using the block elements jC
of the vector c reads:
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The backward substitution to find the block ele-
ment jX  of the unknowns’ vector x using the block 
elements jY  of the vector y reads:

 1

k

i j
Backsub

 

 
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 

T T
j jj j ij iX L ,Y L X . (27)

The function  Backsub  is the implementation 
of backward substitution in Equation (22).

4. Parallel processing

In the modern computers, many processors are avail-
able (e.g. duo processor, quad processor, i3, i5, i7). 
Classical programming using the programming lan-
guages (e.g. VC++, VB, java ... etc.) use only one 
processor at a time. Most of these languages support 
the principle of threading. Here, the functions in 
the program are run multiple times in parallel. Each 
time, a function uses new input and output values. 
Implementing the principle of threading enables the 
use of all processors or a customized number of pro-
cessors (Schiebl 1999) (see Fig. 1). The principle of 
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calculating the normal matrix in a block matrix form 
directly from the observations enables application of 
threading principles (Breymann 2005). This means 
that many blocks can be calculated in simultaneously 
from the same observations. While each block re-
serving a single processor partially or totally (Nool 
2001). The use of the parallel processing principle 
enables the use of high performance computers that 
has multiple CPUs. In addition the calculations can 
be applied over servers and networks. This makes use 
of more computers to apply the calculations. In this 
case, the observations are stored on the server drive. 
Where all computers over the network can read them 
and use them to calculate specific parts of the normal 
equations matrix N. 

5. Results and analysis

The calculations were applied over different num-
bers of unknowns. First test was to solve a system of 
16,000 equations with 10,000 unknowns. The calcu-
lations of the unknowns using direct solution given 
in Equation (9) had a computations time of approxi-
mately 16 in single processing unit. The calculation 
required 320  KB of storage for the unknowns ma-
trix x in a binary format. While the matrices A, AT, 
N, l and Wdiagonal required approximately 154 MB, 
154 MB, 100 MB, 511 KB, and 511 KB. The total re-
quired RAM and storage memory was approximately 
420  MB. When memory optimization in Equations 
(12) to (14) was applied by dividing the matrix N for 
(10×10) blocks as given in Equation (14), only the 
upper part of the matrix N was stored using 92 MB 
and the c-matrix using 324 KB with approximately 
4 MB per block stored as a separate file. While only 
11 MB were need for the RAM to apply the solutions 
in approximately 11 hours. In the next step, the Cho-
lesky decomposition was applied to solve the problem 
in a single matrix form as shown in Equations (15) to 
(22) and in a block matrix using the principle given 
in Equations (23) to (27). The solution time has de-
creased dramatically to 4 and 2.5 hours, respectively. 
Finally, the solution was applied using block matrix 
Cholesky decomposition applying the principle of 
parallel processing over 4  CPUs. The calculations 
time was reduced to approximately 43 minutes.

A final test was applied to solve a system of linear 
equations to calculate the coefficients of a local poten-
tial/geoid model using the principle of Adjusted Spher-
ical Cap Harmonics (ASCH). Where the observation 
equation reads (younis 2015):

Fig. 1. Flowchart for calculating unknowns using  
parallel processing

 
 (28)

In equation (28), (cos )nmP   is the fully nor-
malized Legendre function of integer order k and 
degree m. ( , , )r  are the scaled spherical cap coor-
dinates (Franceschi, De Santis 1994). ( ' ',nm nmS C ) are 
the ASCH coefficients. Here, we have to consider that 
having a maximum degree and order n of the mod-
el will have 2( 1)n  coefficients ( ' ',nm nmS C ) (younis 
2013). The final solution was applied with a maximum 
degree and order of 300. The number of unknowns/
coefficients ( ' ',nm nmS C ) were 90,601. The observa-
tion were 105 height fitting points, 15,000 terrestrial 
gravity points and the ASCH coefficients of a locally 
transformed global model (younis et al. 2011). The to-
tal number of observations was 105 706. The normal 
equations matrix was divided to 1000×1000 blocks in 
total size for the upper triangular part of approximately 
320 GB. The observations were stored on server folder 
enabling 40 computers with quad processor over the 
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network to access the observations and solve for spe-
cific parts of the matrix N. A total time for the compu-
tations was around 36 hours. This method have been 
successfully implemented in the Digital Finite Ele-
ments Height Reference Surface – Software version 5.0 
(http://www.dfhbf.de/software.v5.php) for the compu-
tation of the height reference surface using combined 
observations (height fitting points, terrestrial gravity 
data, deflections of vertical, etc.) (younis 2013).

Conclusions

The principle of Cholesky decomposition could ef-
ficiently be implemented successfully to apply least 
squares solutions. The use of Cholesky decomposition 
has enabled faster solutions compared to traditional 
methods. One basic point that makes difference is that 
Cholesky decompositions solves for the unknowns 
without the need to apply the inverse of a matrix. Also 
it was possible to calculate the N and c matrices in 
Equation (11) directly from the observations without 
the need to store all matrices of the traditional method 
of the solution like A, AT and W in Equation (4). The 
principle of matrix partition as explained in Equations 
(12) to (14) has enabled the use personal or older com-
puter in solving large system equations. This enabled 
slow/normal computers with less RAM memory to 
load the matrices during the computations partially 
and not as a whole unit. This was necessary for many 
types of Geomatics problems. For example, the calcu-
lation of geoid model coefficients or the transforma-
tion parameters between coordinates systems.

The principle of threading enabled the use of mul-
tiple CPUs in parallel on a single computer. For exam-
ple, a computer with Quad-processors will implement 
the computations by using the methods of threading 
approximately 4 times faster the implementing the 
computations over a single CPU. Here, we get used of 
the advantages of matrix partition to apply the Cho-
lesky block matrix decomposition over more CPU. This 
principle was successfully applied over networks. The 
project observations were stored over a server drive. 
Each computer over the networks runs for a specific 
part of the normal equations matrix N and stores that 
element as a single file in network project folder. This 
method was effective to solve the large least squares 
problems with the need for High performance com-
puting unit (e.g. HP XC3000 in Karlsruhe Institute of 
Technology-KIT http://www.scc.kit.edu/dienste/hc3.
php). While the computer labors are mostly available 
in most of research institutes and universities. 
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