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found that the TEC increased for a few days prior to 
the Haiti earthquake with a magnitude Mw = 7.0 on 
12 january 2010. A study by Akhoondzadeh and Sar-
adjian (2011) used the interquartile method, wavelet 
transformation, and Kalman filter method to identify 
the TEC anomaly (decreased TEC) that appeared at 
19:00 (LT) on 11 january before the Haiti earthquake. 
The research by Liu et al. (2011a) showed that a TEC 
anomaly with increased TEC appeared in relation to 
the Haiti earthquake specifically and persistently in a 
small region of the northern epicentre area. However, 
these previous studies suggested that both increased 
and decreased TEC could not be standard indica-
tors of ionospheric anomalies related to earthquakes. 
Some studies have discussed possible causes for TEC 
anomalies associated with the earthquakes. Pulinets 
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Abstract. This study employed two-dimensional principal component analysis (2DPCA) for the detection 
of anomalies in the two-dimensional ionospheric total electron content (TEC) associated with Japan three 
earthquakes and earthquake-induced tsunamis. From 04:40 to 04:50 (UTC) on February 15th, first TEC pre-
cursor was detected over the epicentre of the 16 February quake with the duration time of at least 10 min-
utes. A weak TEC anomaly associated with an earthquake-induced tsunami was also detected from 23:15 to 
23:20 (UTC) on 16 February with the duration time of at least 5 minutes. An additional earthquake (Mw = 
6.3) occurred in Miyako in the vicinity of the first earthquake. Second TEC precursor to the 20 February 
Miyako earthquake was recorded over the epicentre between 10:20 and 10:30 (UTC) on 19 February with 
the duration time of at least 10 minutes. A supplemental earthquake occurred (Mw = 6.1) as well in Miyako 
in the vicinity of the first earthquake. A TEC precursor to the 21 February Miyako earthquake was recorded 
over the epicentre between 04:15 and 04:25 (UTC) on 20 February with the duration time of at least 10 min-
utes. The three Miyako earthquakes presented similar anomalies and duration time in the TEC fluctuations, 
due largely to similarities in the magnitudes of the largest principal eigenvalues and the close proximity of 
the epicentres. Our results led to the reasonable confirmation that the very weak TEC anomaly following the 
Miyako earthquake on 16 February was associated with the earthquake-induced tsunami. 2DPCA is a useful 
mathematical tool for the monitoring of anomalous ionospheric fluctuations for use in the early warning of 
weak tsunamis.
Keywords: Two-Dimensional Principal Component Analysis (2DPCA), Total electron content (TEC), earth-
quake-induced tsunami, Miyako Earthquake, TEC precursor, early warning.

Introduction

Recently natural precursors (e.g. electric signals) to 
earthquakes have been studied widely (Kamogawa 
2006; Rishbeth 2006; Dautermann et al. 2007; yasu-
da et al. 2009; Astafyeva, Heki 2011). A few of these 
studies have researched the ionospheric total electron 
content (TEC) anomalies associated with large earth-
quakes. Liu et al. (2004) showed that the ionospheric 
TEC pronouncedly decreased in the afternoon period 
from 12:00–18:00 (LT) and especially during the even-
ing period from 18:00–22:00 (LT) within the five days 
prior to 20 M ≥ 6.0 earthquakes in Taiwan between 
September 1999 and December 2002. Liu et al. (2009) 
studied the TEC anomalies associated with 35 M ≥ 6.0 
earthquakes that occurred from 1 May 1998 to 30 
April 2008 in China. Pulinets and Tsybulyaa (2010) 
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and Boyarchuk (2004) suggested that radon emanat-
ing from active fault and crack before earthquakes 
ionize the atmosphere near the ground and produces 
large vertical electric fields. Molchanov and Hayakawa 
(1998) suggested gravity waves arising from small vi-
brations on the earth’s surface lead to gas release and 
result in lower atmospheric turbulence and eventu-
ally ionospheric perturbations. Such small vibrations 
could also be responsible for gravity waves that cause 
anomalies, and substantial post-earthquake research 
has been conducted in this area (Garcia et al. 2005). 
The VAN group (Varotsos, Lazaridou 1991; Varotsos 
et al. 1998) in Greece has explored the possibility of 
TEC anomalies caused by stressed rocks that produce 
electric fields. This area of research looks at pressure 
stimulated currents that create electric fields in non-
homogenous crustal rocks and produce seismic elec-
tric signals which the researchers attempt to recognize 
as earthquake precursors. Another area of study in-
volves p-holes. These charge carriers are defect elec-
trons in the O2– sub-lattice that are chemically equiv-
alent to O– in a matrix of O2– (Pulinets et  al. 2000; 
Freund 2003). They occur in stressed igneous and 
metamorphic rock. Pulinets and Boyarchuk (2004) 
suggested that lower atmospheric electric fields could 
travel into the ionosphere unimpeded along geomag-
netic lines and cause TEC anomalies. Occhipinti et al. 
(2011) described the tsunami following the Mw = 9.0 
Tohoku earthquake that occurred at 05:46 (UT) on 11 
March 2011. This earthquake produced internal grav-
ity waves into the neutral atmosphere and large dis-
turbances in the overlying ionospheric plasma while 
propagating through the Pacific Ocean. The effects 
of tsunamis that propagate from the epicentre to the 
ionosphere were demonstrated by Makela et al. (2011). 
Tsugawa et al. (2011) and Saito et al. (2011) investi-
gated the TEC maps of japan for the Tohoku Earth-
quake and showed that the TEC variation appeared 
approximately seven minutes after the earthquake 
occurrence. In this study, two-dimensional principal 
component analysis (2DPCA) is performed to detect 
TEC anomalies associated with three Miyako earth-
quakes occurred on 16, 20 and 21 February 2015 in 
japan and their associated earthquake-induced tsuna-
mis. The epicentres of the three earthquakes are very 
close. TEC data during the time period from 5 days 
before Miyako earthquake on February 16 to 06:00 on 
20 February 2015 were processed. During this exam-
ined time period, a Miyako earthquake occurred on 
20 February. TEC data after last two earthquakes were 
processed to detect earthquake-induced tsunami TEC 

anomalies because the epicentres locate in the sea near 
japan Trench (U.S. Geological Survey). The first Mi-
yako earthquake was the Mw = 6.7 Miyako earthquake 
that occurred in japan at 23:06:27 (UTC) on 16 Febru-
ary 2015. The epicentre was 39.830°N, 142.890°E and 
the depth was 23.0 km. The second Miyako earthquake 
was the Mw = 6.3 Miyako earthquake that occurred 
in japan at 04:25:24 (UTC) on 16 February 2015. The 
epicentre was 39.847°N, 143.569°E and the depth 
was 13.5  km. The third Miyako earthquake was the 
Mw = 6.1 Miyako earthquake that occurred in japan 
at 10:13:54 (UTC) on 21 February 2015. The epicentre 
was 39.863 °N, 143.425 °E and the depth was 10.0km 
(U.S. Geological Survey). Their epicentres have the 
close proximity. The TEC data of 5-day time period 
before the first Miyako earthquake were processed 
because TEC precursors have usually been identified 
during this period before large earthquakes (Liu et al. 
2006). 

1. TEC Data Source

The Global Differential GPS (GDGPS) system is 
a complete, highly accurate, and extremely robust 
real-time GPS monitoring and augmentation system. 
Employing a large ground network of real-time refer-
ence receivers, innovative network architecture, and 
award-winning real-time data processing software, 
the GDGPS system provides decimetre (10 cm)-scale 
positioning accuracy and subnanosecond-scale time 
transfer accuracy on ground, in air, and in space, in-
dependent of local infrastructure. A complete array of 
real-time GPS state information, environmental data, 
and ancillary products are available in support of the 
most demanding GPS augmentation operations – As-
sisted GPS (A-GPS) services, situational assessment, 
and environmental monitoring – globally, uniformly, 
accurately, and reliably. The global TEC data were 
real-time measured by the sensors (receivers) in the 
Global Differential GPS satellites, and then they were 
sent back to this network. The spatial resolution of 
the TEC data for GDGPS system is based on real-ti-
me dual frequency measurements from its vast global 
tracking network (real-time tracking network on the 
ground), and the GDGPS System produces two di-
mensional total electron content (TEC) values on a 
2°×2° global grid every 5 minutes (yoaz, Byron 2014). 
The estimated TEC data have been corrected for biases 
during measurements of dual-frequency delays of GPS 
signals e.g. carrier phase biases, satellite state  correc-
tions, ionospheric delay and troposphere, which need 
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to be removed using ground-based post-processing 
software (Raman, Garin 2005; Wu, Bar-Sever 2005).

2. Method 

2DPCA is a good method that can removed small 
sample signal size (SSS) problem (Lin 2013, 2014) 
when TEC data are two dimensional data. The PCA 
converts the measurements into one-dimensional TEC 
data before covariance matrix calculation. The covari-
ance matrix of PCA is based on an input matrix with 
the dimension of m × n, which is reshaped from one-
dimensional data (length of m multiplying n). Reshap-
ing data will cause computing error because PCA is a 
tool to deal with one-dimensional data. That proclaims 
the spatial structure and information can not be well 
preserved due to some original information loss when 
inverting to original dimension under the condition of 
the matrix being small sample size (SSS).

3. TEC Data Processing

We used 2DPCA to process TEC data associated with 
time periods that had previously been examined thor-
oughly. TEC anomalies associated with the two Miya-
ko earthquakes and the subsequent tsunamis could not 
be identified using the largest principal eigenvalues. 
However, TEC anomalies were detected using the larg-
est principal eigenvalues during the three time periods 
from 04:40:00 to 04:50:00 (UTC) on 15 February, from 
23:15 to 23:20 (UTC) on 16 February, and from 10:20 
to 10:30 (UTC) on 19 February 2015. The procedures 
used in the processing of TEC data in the three peri-
ods are presented in this study. Figure 1(a) presents the 
GIMs in these three time periods. With the exception 
of equatorial ionization anomalies (EIA), other TEC 
anomalies in the world could not be easily observed 
without the help of 2DPCA. The TEC data of the glob-
al region in Figure 1(a) are divided into 600 grids 12° 
and 9° in longitude and latitude, respectively. 

Thus, the size of each grid is 12° in longitude and 
9° in latitude. For convenience, the terminology grid 
is used instead of area in this study. Section Two re-
ferred to the contents regarding the spatial resolution 
of the TEC data for the GDGPS system. A grid with 6 
TEC data points associated with Longitude and 4 with 
the Latitude would include approximately 24 TEC data 
points. Using 2DPCA for the computation of 600 grids 
with 24 TEC data points would incur considerable 
computational resources. Our results, obtained using 
2DPCA with only 4 TEC data points in each grid, were 
nearly the same as those obtained using a grid of 600. 

This allows that when performing 2DPCA, the qual-
ity of TEC data processing was not distorted taking 4 
TEC data (low dimensional data) instead of 24 TEC 
data (high dimensional data) in each grid. Therefore, 
we opted for this configuration in this study. When 
performing a quantitative analysis by 2DPCA, 4 TEC 
data are used in each grid to form a matrix A, and this 
matrix is then input into Equation (1) with the dimen-
sions of 2 × 2. The matrix has a small sample signal size 
(SSS). Eqs (2)–(4) are performed and then the princi-
pal eigenvalue of G is estimated. The largest principal 
eigenvalue in the grid that includes the epicentre of the 
earthquakes was assigned to a TEC anomaly associated 
with an earthquake or earthquake-induced Tsunami. 
This allows the principal eigenvalues to be computed 
for each of the 600 grids in the world. Therefore, Fig-
ure 1(b) can be explained as a result in a principal ei-
genvalue in a grid which is indicated principal spatial 
characteristics, pattern and situation of the TEC data 
in this grid. However, for ease of presentation, each 
grid is filled uniformly with colour to indicate princi-
pal spatial characteristics, patterns, and the conditions 
associated with each grid.

This study has shown the largest principal eigen-
value for a grid incl. the epicentre of the Miyako eart-
hquake in Japan. A principal eigenvalues was assigned 
to the principal spatial characteristics of the TEC data 
in a grid. A largest principal eigenvalue in a grid incl. 
the epicentre of Miyako earthquake (February 16) du-
ring 04:40 to 04:50 (UTC) on 15 February 2015 was 
assigned to the principal spatial characteristics of the 
TEC data in this grid. The largest principal eigenvalue 
indicated the earthquake- associated TEC anomaly. 
During 23:15 to 23:20 (UTC) on 16 February 2015, a 
largest principal eigenvalue was assigned to the prin-
cipal spatial characteristics of the TEC data in a grid. 
This largest principal eigenvalue indicated the earthqu-
ake-induced tsunami TEC anomaly. A largest princi-
pal eigenvalue in a grid incl. the epicentre of Miyako 
earthquake (February 20) during 10:20 to 10:30 (UTC) 
on 19 February 2015 was assigned to the earthquake- 
associated TEC anomaly.

4. Results

This study has shown the largest principal eigenvalues 
in a grid that includes the epicentres of two earth-
quakes in three time periods. This asserted that other 
TEC anomalies (e.g. the equatorial ionization anomaly 
(EIA) and non-earthquake-associated TEC anomalies, 
and other earthquake-associated TEC anomalies in the 
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Note: The equatorial ionization anomaly (EIA) is within 
approximately ±30° of the magnetic equator. A trough occurred 
in the ionization in the F2 layer at the equator. All TEC 
anomalies in the world are not easily observed except for EIA 
when 2DPCA is not performed.

Fig. 1(a). GIMs during 04:40 to 04:50 (UTC) on 15 February 
2015, 23:15 to 23:20 (UTC) on 16 February 2015, 10:20 to 20:30 
(UTC) on 19 February 2015 and 04:15 to 04:25 (UTC) on 20 
February 2015 
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meantime and non-earthquake-induced tsunami TEC 
anomalies) were already suppressed resulting in small-
er principal eigenvalues during the entire examined 
time period with the exception of the previous three 
time periods, such that the largest principal eigenvalue 
of 2DPCA should match the pattern of TEC anoma-
lies associated with the earthquake or earthquake-in-
duced tsunami. Therefore, by performing 2DPCA, the 
earthquake-associated and the earthquake-induced 
Tsunami TEC anomalies could be distinguished from 
other TEC anomalies in the previous three time peri-
ods. This is an advantage of 2DPCA. The possibility 
of other factors such as solar flare and geomagnetic 
effects affecting the results are considered by examin-
ing Kp indices. February, 15, 16 and 19 and 20 were 
geomagnetic quiet days shown in Figure 2 (Kp < 4) 
(Bartels 1957; Elliott et al. 2013). The Kp index shown 
in Figure 2 is calculated as a weighted average of K-
indices from a network of geomagnetic observatories. 
The Kp index allows for disturbances in the horizontal 
component of earthХs magnetic field to be represent-
ed on a scale of 0–9, with 1 indicating calmness and 
5 or more indicating a geomagnetic storm. Therefore, 

February, 15, 16, 19 and 20 was a geomagnetic quiet 
day with Kp < 4.

5. Discussion

2DPCA was able to detect a TEC precursor of Miyako 
earthquake on 16 February during the time periods 
from 04:40 to 04:50 (UTC) on 15 February with the 
duration time of at least 10 minutes. The earthquake-
induced tsunami TEC anomaly was detectable dur-
ing the time period from 23:15 to 23:20 (UTC) on 
16 February with the duration of at least 5 minutes. 
Another TEC precursor of Miyako earthquake on 20 
February during the time period from 10:20 to 10:30 
(UTC) on 19 February was detectable with the dura-
tion time of at least 10 minutes. Additionally, TEC 
precursor of Miyako earthquake on 21 February dur-
ing the time period from 04:15 to 04:25 (UTC) on 20 
February was detectable with the duration time of at 
least 10 minutes. The three Miyako earthquakes pre-
sented similar anomalies in the TEC fluctuations, due 
largely to similarities in the magnitudes and duration 
time of the largest principal eigenvalues and the close 
proximity of the epicentres. 2DPCA may be a useful 

→

Fig. 1(b). A colour-coded scale of the magnitudes of 
principal eigenvalues corresponding to Figure 1(a). 
The colour within a grid denotes the magnitude 
of a principal eigenvalue corresponding to Figure 
1(a). Therefore, there are 600 principal eigenvalues 
assigned 

http://en.wikipedia.org/wiki/2009_Hsiaolin_mudslide
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Note: The Kp index is calculated as a weighted average of 
K-indices from a network of geomagnetic observatories.  
The Kp index allows for disturbances in the horizontal 
component of earthХs magnetic field to be represented  

on a scale of 0–9, with 1 indicating calmness and 5 or more 
indicating a geomagnetic storm.  

Therefore, February 15, 16, 19 and 20 were geomagnetic  
quiet days with Kp < 4.

Fig. 2. Kp indices from 00:00 (UT) on 18 to 18:00 (UT)  
on 17 in February 2015 (Space Weather Prediction Center) 

and reasonable tool to confirm that the earthquakes 
on 20 and 21 February were an aftershock of initial 
event by observing the characteristics of largest prin-
cipal eigenvalues. These events were not Earthquake 
swarms. The TEC anomaly associated with the Miya-
ko earthquake-induced tsunamis on 20 and 21 Febru-
ary were not detectable because the magnitude of this 
earthquake was negligible, as confirmed by informa-
tion broadcast from the National Tsunami Warning 
Center and Pacific Tsunami Warning Center. Ho-
wever, this is worthy of future investigation. Gravity 
waves causing the TEC precursors could not be possi-
ble because vibration in the Earth’s surface before this 
earthquake would be minimal when these vibrations 
are assumed as the precursors. Gravity waves caus-
ing the tsunami should be possible. However, the true 
mechanism that causes the TEC precursors from the 
earthquake is not easily determined. However, some 
reasons were introduced in Section one. This study 
has reasonably confirmed that a TEC anomaly asso-
ciated with the earthquake-induced tsunami during 
the time period from 23:15 to 23:20 (UTC) appeared 
on 16 February approximately 9 minutes after Mi-
yako earthquake on 16 February. This TEC anomaly 
should be a very weak earthquake-induced tsunami 
TEC anomaly although the National Tsunami Warn-
ing Center reported that there was no tsunami danger 
for the U.S. West Coast, British Columbia, or Alaska. 
Based on earthquake information and historic tsuna-
mi records, this earthquake was insufficient to gener-
ate a tsunami. As stated in Section one, Tsugawa et al. 
(2011) and Saito et al. (2011) showed that the TEC 
anomaly appeared approximately 7 minutes after the 
earthquake occurrence. Approximately 9 minutes af-
ter Miyako earthquake on 16 February should be a 
reasonable result because this earthquake induced a 
weak earthquake-induced tsunami TEC anomaly. The 
time period of the earthquake-induced tsunami TEC 
anomaly was very short. Results demonstrate that 
2DPCA should be sensitive enough to detect weak 
earthquake-induced tsunami TEC anomaly. 2DPCA 
is a useful mathematical tool for monitoring the 
propagation of ionospheric anomalous fluctuation 
because ionospheric anomalous fluctuation propaga-
tion speed is faster than earthquake-induced tsunami 
spreading speed. This tool can serve as detecting a 
weak tsunami. Therefore strong tsunamis could also 
be detectable. Thus early warning of tsunamis, such 
as the case study of the Tohoku Earthquake (Liu et al. 
2011b; Lin 2015), is possible using this tool.
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6. Conclusion

A TEC precursor was detected for the Miyako earth-
quake occurred at 23:06:27 (UTC) on 15 February 
2015 for a period of 10 minutes from 04:40 to 04:50 
(UTC) on 15 February 2015. The earthquake-induced 
weak tsunami TEC anomaly was detected during the 
time period from 23:15 to 23:20 (UTC) on 16 Febru-
ary 2015 with the duration time of at least 5 minutes. 
Another TEC between 10:20 and 10:30 (UTC) on 19 
February 2015 was identified as a precursor to the Mi-
yako earthquake on 20 February 2015. A TEC anom-
aly related to the earthquake on 21 February 2015 was 
identified as precursor between 04:15 and 04:15 (UTC) 
on 20 February 2015. The characteristics of their larg-
est principal eigenvalues have confirmed the high cor-
relations between these three earthquakes. However, 
these events were not Earthquake swarms. Detecting a 
TEC anomaly associated with the Miyako earthquake-
induced tsunami is unable for the earthquakes on 20 
and 21 February 2015, as confirmed in reports filed 
by the National Tsunami Warning Center and Pacific 
Tsunami Warning Center. 2DPCA is a useful math-
ematical tool for monitoring the propagation of iono-
spheric anomalous fluctuations and serve as an early 
warning of impending tsunami. Fluctuations in TEC 
anomalies associated with the two Miyako earthquakes 
should be similar, due to the fact that the magnitudes 
of their largest principal eigenvalues were nearly the 
same. Thus, it would be reasonable to assume that they 
should be highly correlated and present similar source 
mechanisms.
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