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Abstract. This research involved training two deep learning prediction models: Long Short-Term Memory
(LSTM) and Dipper Throated Optimizations Fitness Grey Wolf-LSTM (DTOFGW-LSTM), utilizing data obtained
from remote sensing to reconstruct and predict the Terrestrial Water Storage Changes (TWSC) over Nile

River Basin (NRB). We evaluated factors including Terrestrial Water Storage Changes (TWSC) and Groundwa-
ter Storage Changes (GWSC), identified through the Gravity Recovery and Climate Experiment (GRACE) and
GRACE-Follow-On (GRACE-FO), alongside precipitation data collected by the Global Precipitation Climate
Change Program (GPCP) to analyze the patterns of change within the research area. We utilized the LSTM
and DTOFGW-LSTM algorithms to rebuild the TWSC and GWSC from 2018 to 2024. We utilized the precise
model to forecast the GRACE gap from 2017 to 2018 and the TWSC from 2024 to 2030. The findings dem-
onstrated the superiority of the suggested model (DTOFGW-LSTM) with a root mean square error (RMSE)
of 0.51, a coefficient of determination (R?) of 0.99, and a mean absolute percentage error (MAPE) of 0.21.
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1. Introduction

Recent data gathering techniques and algorithmic solu-
tions provided by platforms such as GRACE (Gravity Re-
covery and Climate Experiment) and GRACE-FO (Follow-
On) satellite data have started to yield further insights
into the dynamics of water resources in the NRB (Awange
et al., 2014; Hasan & Tarhule, 2020). The GRACE mission
comprises two low-Earth orbiting satellites situated in the
same orbital plane at an altitude of 450 km and an in-
clination of 89.5 degrees. The distance between the two
satellites is accurately estimated using a K-band ranging
device, while the position of each satellite is established by
GPS receivers onboard the spacecraft (Tapley et al., 2004).

The GRACE satellite offers novel gravity data that en-
ables the monitoring of changes in Terrestrial Water Stor-
age (TWSC). TWSC is categorized into five components:
groundwater, soil moisture, surface water, snow/ice wa-
ter, and biological water storage (Strassberg et al., 2009).
The Earth’s climate system is significantly influenced by
the vast range of spatio-temporal scale changes in TWS.
TWS, or Total Water Storage, is a crucial strategic asset for
any country. It serves as the foundation for agricultural

irrigation, industrial output, urban water supply, and the
upkeep of the ecological environment. Hence, the precise
forecasting of TWSC holds immense importance for water
resource management, drought and disaster risk assess-
ment, and the advancement of coordinated development
of the ecological environment (Duan et al.,, 2024).

Multiple studies have been carried out to reconstruct
the Total Water Storage (TWS) utilizing various datasets
and methodologies, encompassing both grid and basin
scales. The TWSgrace reconstruction has utilized hydrocli-
matic or gravimetric datasets, both measured and mod-
eled (Gyawali et al., 2022). The hydroclimate variables were
utilized to reconstruct TWS by establishing a correlation
between the spatial and temporal variations in these vari-
ables and the spatial and temporal variations in TWS.
Some examples of climatic variables are temperature, rain-
fall, sea surface temperature, and climate indices (Ahmed
et al,, 2019). Hydrological factors including soil moisture,
runoff, water level, and evapotranspiration (Llovel et al.,
2010; Long et al., 2014; Pan et al,, 2012).

In order to anticipate the effects of future changes in
the earth system on (TWSC) and (GWSC), it is important
to measure the relationship between changes in climate,
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surface water extent, hydrological components, and veg-
etation in order to understand how groundwater responds
to these changes (Sahoo et al., 2017).

Recently, advanced deep learning models, including
the Long Short-Term Memory (LSTM) model, a type of
Recurrent Neural Network (RNN), and the Convolutional
Neural Network (CNN) model, have been created to ad-
dress complex and nonlinear prediction tasks with long-
term dependencies. These models have demonstrated
impressive performance (Wang et al., 2021).

This study utilized two deep learning models in con-
junction with remote sensing data to accurately predict
spatiotemporal changes in Terrestrial Water Storage
(TWSC) and Groundwater Storage (GWSC). The remote
sensing data provided continuous and geographical in-
formation, enhancing the accuracy of the predictions. This
study aimed to construct LSTM and DTOFGW-LSTM deep
learning models to predict GWSC and TWSC from multi-
satellite data and photos, considering the potential effec-
tiveness of combining deep learning models with remote
sensing image data.

2. Materials and methods

2.1. Study area

The Nile River basin (NRB; approximately 3.18 million km?)
constitutes a complicated transboundary hydrological sys-
tem (Shahin, 1985). The Nile is the longest river in the
world, flowing for 6,850 kilometers. It is also the second
largest river by watershed area, behind only the Amazon.
The confluence of the White and Blue Nile rivers causes
the Nile to flow northward from southward, making it
unique among African rivers. The entire runoff at Aswan
High Damin, Egypt, is projected to be over 88.5 billion
cubic meters per year, according to the typical natural
water flow in the Nile. There are four primary sub-basins
that make up the Nile basin: the White Nile Basin (WNB),
the BNB, the Atbara River Basin, and the main or trunk
stem Nile Basin. The NRB is inhabited by around 320 mil-
lion individuals from 11 African states, according to 2018
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Figure 1. Location of the study area (was generated by
ArcMap 10.8.2 sofware)

B. Fawzi et al. Prediction of terrestrial water storage changes by using GRACE data over Nile river basin

population estimates, constituting approximately 24% of
Africa’s overall population (Hasan et al., 2021). Figure 1
shows the location of NRB throughout Africa continent.

2.2. Data used
2.2.1. GRACE Mascon data

Earth’s gravitational field models are commonly distribut-
ed in two types of products: spherical harmonic coefficient
products and Mascon products (Loomis et al., 2021). Prior
to their utilization in research, conventional spherical har-
monic coefficient products necessitate additional process-
ing steps, including the substitution and supplementing of
low-order terms, the elimination of stripes, and the correc-
tion for Glacial Isostatic Adjustment (GIA). The Gravity field
Mascon products address the limitations of the ball har-
monic coefficient products by effectively addressing the
north-south strip error noise, correcting leakage error, and
providing GIA correction without the need for post-pro-
cessing. Users can directly utilize these goods. Mascon is
able to accurately determine changes in mass at increased
levels of spatial and temporal resolution. This capability
has resulted in a diverse variety of applications for Mascon
in areas such as polar ice caps, alpine glaciers, hydrology,
and seas. Zhang and Sun (2021) highlighted that the Mas-
con product is specifically designed to eliminate the need
for post-processing and address the leakage errors that
arise from filtering traditional spherical harmonic coeffi-
cients. It is particularly well-suited for accurately estimating
mass changes in various layers of the Earth system.

Scanlon et al. (2018) conducted a comprehensive
evaluation of the results of CSR’s and JPL's Mascon prod-
ucts for estimating terrestrial water storage in 176 basins
worldwide. They found that the Mascon products were
more accurate in recovering hydrologic-gravity signals
compared to traditional spherical harmonic coefficient
products. Currently, there are three worldwide organiza-
tions, namely JPL, CSR, and GSFC, that are publishing mas-
con products.

This research utilizes the GRACE RLO6 v02 mascon
product, which was published by the Center for Space Re-
search (CSR) at the University of Texas, USA. The CSR mas-
con product has a spatial resolution of 0.25. This research
extracted a total of 163 months of TWSC time series from
April 2002 to June 2017 as an input data, excluding any
missing months as indicated by the CSR RLO6 Mascon
product, this data as shown in Figure 2 represents samples
of TWSC over NRB which have been extracted from Netcdf
format of the time series data of the GRACE mission and
Figure 3 shows the value of TWSC over NRB during the
period from 2002 to 2017 which have been generated
using ArcMap 10.5 program. The GRACE & GRACE-FO
data is available at the web site as shown in Table 1. The
GRACE data is not available during the period from July
2017 to June 2018 (Gap period) as shown in Figure 4. The
GRACE time series data for GWSC over NRB as shown in
Figure 5 during the study period (2002-2017).



Geodesy and Cartography, 2026, 52(1), 1-10

20°00°E AN°00E 2000E 20°0°0°E 30°00°E 40°00°E
N N
- A Loo-aon 30°00°N A Favoon
200001 2000 20700 i f2oso0n
10° 00N [1ocoon 10700 plooen
o0 . I'- Legend Lovoor [ Foooe
-.rJ 16-08-2002.tif Legend
Value 14-02-2007 tif
_ High : 26.9319 Value
1 o High 213241
0 210420 840 1,260 1,680 B Low :-5.6674 0 215430 860 1290 1,720 —
™' | Kilometers p—  Kilometers Low :-9.67407 | s
PR Fooos - - i
2doE w00E wdoe 20°00°E 0°0VE 20°00E
20°00°E 30°00E 40°00°E 20°00°E 25°00E 30700 3500 40°00E 45°00E
N N
000 A oom 000N A 000N
2000 2000 000N 20°00°N
10°00N 000N
10°00°N 10°00"N
]
Legend
eg . - * Legend 0
13-09-2012.tif .’ 14-09-2015.if
Value
o High © 42 5492) Value
0208410 820 1,230 1,640 1 — 1ot £ 46307
E . B ow - 976118 0 145290 580 870 1,160 { L 543342
0°00°S Kilometers 10°00°S " 1 Miles o
200007 30°0'0°E 40°00°E
20°00°E 25°0'0E 30°00°E 35°0'0°E 40°0'0E 45°0'0E
20°0'0°E 25°0'0°E 30°00°E 35°00°E AFO0E 45°0'0°E 20°00°E 45'00°E
N N
00N A 00N - A 30°00N
2000 2000 J— J—
100N 10°00N 100N PP,
oo Legend 00 000 Legend 000
16-01-2019.tif 15.02-2022 tif
Value Value
o High - 48759 o Hich :74.642
0190380 760 1,140 1,520 [ 0 150300 600 900 1200 k(. gga0rs
o ™ | il o et TS = IMiles
20°00°E 25°00°E 30°00°E 35°00°E 40°00E 45°00°E 20008 2500 30°00E 3500 40°00E 45°00E

Figure 2. Samples of time series Geotiff data
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Figure 3. TWSC during the period (2002-2017)
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Figure 4. Gap period of GRACE data (2017-2018)
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Figure 5. GWSC during the period (2002-2017)

2.2.2. Precipitation and temperature data

We employed long-term precipitation data from 1901 to
2020 sourced from the GPCC (Global Precipitation Clima-
tology Centre) gridded gauge-analysis precipitation prod-
ucts. The statistics were sourced from the Deutscher Wet-
terdienst (DWD), the German Meteorological Service. The
GPCC offers global monthly gauge-corrected precipitation
products at a 0.5 x 0.5 grid size. The long-term monthly
records of precipitation, temperature, and potential evapo-

2010 2m 2012 2013 2014 2015 2016 2017

transpiration (PET) were sourced from time-series datasets
provided by the Climate Research Unit (CRU) at the Uni-
versity of East Anglia, UK. The CRU data were computed
at a resolution of 0.5 by 0.5, utilizing over 4000 meteoro-
logical stations globally (Belda et al., 2015). The data of
precipitation and temperature are available as shown in
Table 1. The average precipitation over the study area
(NRB) of the input data during the period (2002-2017) as
shown in Figure 6.
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Table 1. Websites of the data used

Data Types Data Websites

GRACE &
GRACE-FO
(TWSQC)
GRACE &
GRACE-FO
(G3P)

Precipitation

CSR (RLO6) | http://www2.csr.utexas.edu/grace

GFZ (RLO6) | http://gravis.gfz-potsdam.de/gws

GPCP http://gpcc.dwd.de/

https://climatedataguide.ucar.
edu/climate-data/global-
temperature-data-sets-overview-
comparison-table

Temperature | CRU

2.3. Models used

This Section describes the models used in the reconstruct-
ing and predicting the TWSC over the study area during
the period 2018 to 2030 using two deep learning LSTM
and DTOFGW-LSTM models.

2.3.1. LSTM

LSTM is a prevalent deep learning technique utilized for
regression, particularly in time-series forecasting, and it
addresses the vanishing gradient issue in long-term pre-
dictions. LSTM is marginally more intricate than the con-

ventional RNN in computing hidden states and incorpo-
rates cell memory. In the LSTM cell memory, three types
of gates (input gates, forget gates, and output gates)
eliminate superfluous memories and ascertain what the
network shouldretain. LSTM possesses a conveyor-belt-
like architecture comprising cell states, with each cell state
featuring a learner for state updates (Zhang et al.,, 2018).
The building of LSTM model according to Lu et al. (2024)
as shown in Figure 7.

2.3.2. DTOFGW-LSTM

The proposed model is a synthesis of two methodologies:
Dipper Throated Optimizations (DTO) and Fitness of Grey
Wolf Optimizations (GWO), aimed at selecting the most
effective parameters for this study. The parameters of the
proposed model (DTOFGW) are detailed in Table 2. Ac-
cording to Pan et al. (2020) the optimization strategy, the
number of training iterations, and other model variables
and hyperparameter settings are enhanced through the
DTO algorithm. The cross-validation process employs a
dictionary containing predefined parameters with speci-
fied value ranges to perform a randomized search, with
the objective of identifying the most suitable parameters
for LSTM.

2.4. Performance measures
2.4.1. Root means square error

The Root-Mean-Square-Error (RMSE) is calculated by tak-
ing the square root of the ratio of the square of the dif-
ference between the predicted and true values, divided
by the total number of observations, which is k. An obser-
vation’s divergence from its real value can be measured
using the root mean square error. The lower the Root-
Mean-Squared Error (RMSE) value, the more accurate the
results are since there is less of a discrepancy between the
sequence of simulated values and the sequence of ob-
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x,] represents the input data. The input gate i; serves as the mechanism for retaining current knowledge, g; retains the revised informa-

tion, o is the activation function, W is the weight, h is the hidden state, b is the bias term, The forget gate f; deletes memories, the x; and the hidden state
att—1 (hy_4) pass through the activation function. The input gate and forget gate determine the new memory cell state (C;) by an elementwise product.

Figure 7. The architecture of the LSTM model unit according to Lu et al. (2024)
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Table 2. The proposed method of DTOFGW

B. Fawzi et al. Prediction of terrestrial water storage changes by using GRACE data over Nile river basin

The suggested DTOFGW method

Evaluate Fitness assessment Fs for each (BD)_
Find best bird BDge; '
While t < iter_max do
for (i =1;i < s) do
If (Z < 0.5) then

Update (fitness)Strength training Fo = (,EOL /(Fa + FB + I?6
Update (fitness)Strength training 'EB = (ﬁa /('Ea +F_B +,E5)
Update (fitness)Strength training ,ES = (ﬁa /(ﬁa +'EB + ﬁa)
W, xF, —F|, WDp = ‘Wz <F, - F
else

W, =

WD = W <F, ~F|

end after
end after

Evaluate Fitness assessment Fs for each B_D:
Update R, ry, 1y, 13, ¢, Cq, G,

Find best bird BL,

Set BDgpesr = BDgest

Setm=m+1
end when
return Bl geor

Get started Birds' Distribution (BD) (i=1,2,3,4,......., s) with size n, BS;(i=1,2,3,....5),
Fitness assessment Fs, f;, ry, 1y, 13, R, Cq, Cy, C3, Cy, Cs, t=1, and max iterations _max e,

Update The gey wolf operatives' position as determined by:

Update The flying Velocity of bird applying:

BS(m+1)= C;BS(m)+ c4r1(BDBEST(m)—BDstnd (m)) + c5r1(BDGBEST —BDst'nd(m))

Update The swimming bird’s position as determined by: BD; 4 (m +1) =L+ Zxn+ (1 = z)x r+ BS(m + 1)

served values. Here is the equation:

RMSE = </7

K
1
K 4

306X, )
=1

L

where K represents the number of samples, X; signifies

the true value of the i-th sample, and X; indicates the pre-
dicted value of the i-sample.

2.4.2. Coefficient of determination

The coefficient of determination (R?) is a statistic that
quantifies the degree of fit. As R2 approaches 1, it indi-
cates that the regression line provides a good fit to the
observations; on the other hand, a smaller value indicates
a poor fit. Let me give you the equation:

IR

LR

where K represents the number of samples, X; signifies

R2=1- )

the actual observed value of the i-th sample, X; indicates
the predicted value of the i-th sample, and X; symbolizes
the mean of the actual observed values.

2.4.3. Mean absolute percentage error

The Mean Absolute Percentage Error (MAPE) is frequently
employed to quantify prediction accuracy, particularly in
the context of time series forecasting. The equation for
calculation is as follows:

100% < | X~ X;
— 3)

k £ X
i=1

MAPE =

where K represents the number of samples, X; signifies

the true value of the i-th sample, and X; symbolizes the
predicted value of the i-th sample.

3. Results and discussion

This Section highlights the results of experiments aimed at
assessing the efficacy of the proposed model (DTOFGW-
LSTM) and LSTM in recreating groundwater storage varia-
tions and terrestrial water storage fluctuations from 2017
to 2024. Utilizing the superior model of the two to forecast
data for the Gap period (2017-2018) and the subsequent
years (2024-2030).
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3.1. Reconstruction of TWSC

In this research, two artificial intelligence models (LSTM
and DTOFGW-LSTM) were used to reconstruct TWSC data
over NRB. Data taken from the GRACE and GRACE-FO be-
tween 2002 and 2018 were used as inputs data to runout
the two models. The TWSC data was reconstructed in the
period from 2018 to 2024 using LSTM model as shown in
Figure 8 and using the proposed modified model (DTOF-
GW-LSTM), and the results were as shown in Figure 9.
When analyzing the data from the two models, the results
proved the superiority of the proposed model as follows:
The proposed model (DTOFGW-LSTM) demonstrated su-
periority over previous models, with a Root Mean Square
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Error (RMSE) of 0.0.51, a Mean Absolute Percentage Er-
ror (MAPE) of 0.06, and a coefficient of determination
(R? of 0.9937, as illustrated in Figure 10a. This model is
a linear polynomial (y = 1.022x — 0.0673), where y refers
to estimated TWSC obtained from the proposed model
(DTOFGW-LSTM) and x is the measured TWSC from GRACE
data. Figure 10b shows the relation between the TWSC
from LSTM model (Estimated) and TWSC from GRACE time
series data, the RMSE for this model equal 0.6, the value of
MAPE equal 0.34 and R? equal 0.9796. LSTM algorithm is
a linear polynomial (y = 1.0368x — 0.0569), where y is the
estimated TWSC using LSTM model and x the measured

data of TWSC over NRB during the period 2018-2024.
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Figure 10. TWSC (LSTM) during the period (2018-2024): a) Scatter chart for (DOTOFGW-LSTM); b) Scatter chart for (LSTM)
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Figure 12. GWSC during the period (2018-2024): a) GWSC from the proposed model (DTOFGW-LSTM); b) GWSC from (LSTM)

3.2. Reconstruction of GWSC

The proposed model (DTOFGW-LSTM) and LSTM model
were applied for reconstructing the GWSC during the pe-
riod 2018 to 2024. Figure 11a shows that the proposed
model, DTOFGW-LSTM, outperormed the others with an
RMSE of 0.75, an MAE of 0.06, and an R2 of 0.9989. The
estimated GWSC (y) is the result of the suggested model
(DTOFGW-LSTM), and the observed GWSC (x) is the coef-
ficient of this linear polynomial model. Figure 11b displays
the correlation between the GWSC observed data and the
LSTM model data. The results demonstrate that the model
has an RMSE of 2.52, an R2 value of 0.9879, and an MAE
value of 0.42, where y is the estimated GWSC using the
LSTM model and x is the observed data, the LSTM algo-
rithm is a linear polynomial (y = 1.0006x — 0.4475). The
reconstructing data of GWSC over the study area during
the period (2018-2024) using the LSTM model as shown
in Figure 12a and the GWSC during the same period using
the proposed model as shown in Figure 12b.

TWSC-Modeled
16
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Figure 13. Data of TWSC during gap period (2017-2018)

3.3. The GRACE data gap forecasting

The suggested model (DTOFGW-LSTM) was employed to
ascertain TWSC data throughout the GRACE GAP period
from 2017 to 2018 (about one year), with TWS variations
ranging from 0.17927 mm to 14.03725 mm, as illustrated
in Figure 13.

3.4. Data forecasting for the coming years

After using the proposed model (DTOFGW-LSTM) in
reconstructing TWSC and GWSC over the NRB during
the period from 2018 to 2024, this model is prepared
for doing the prediction in future over NRB during the
period from 2024 to 2030. The proposed model was
used because it showed a very high accuracy rate in the
process of reconstructing TWSC data and the extent of
matching the results obtained from it with the actual
GRACE data in the period between 2018 to 2024. The
results related to the prediction of future groundwater

Prediction of TWSC (2024-2030)

3/15/2023  7/27/2024  12/9/2025  4/23/2027 9/4/2028 1/17/2030 6/1/2031

Time

Figure 14. TWSC during the period (2018-2024)
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storage in the period from May 2024 to January 2030
(approximately 69 months) were obtained from the
proposed model as shown in Figure 14. The projected
period of six years indicates a progressive increase in
groundwater supply, exhibiting variable rates of growth.
Notably, the water stock rises throughout the months of
July, August, September, and October, peaking in No-
vember and December. From February to June, there is
a decline in the groundwater level.

4. Conclusions

The principal aim of this research was to reconstruct
GRACE and GRACE-FO data for the Nile River Basin (NRB)
utilizing an extensive time series dataset spanning from
2002 to 2024, while examining the incidence of drought
within the study area during the GAP period. This analysis
was predicated on lunar data from the years preceding
and succeeding the GAP period, alongside meteorological
data concerning temperature and precipitation in the study
area during the GAP period. This research depends on two
artificial intelligence models (LSTM and DTOFGW-LSTM),
these models first were used to reconstruct the GRACE
data of TWSC and GWSC during the period (2018 to 2024)
depending on the data of TWSC and GWSC from GRACE
mission and the meteorological data of temperature and
precipitation during the period from 2002 to 2017 as the
input data to runout the models of artificial intelligence
reconstructing data for TWSC and GWSC were obtained
during the period from 2018 to 2024 the value of RMSE
of the proposed model (DTOFGW-LSTM) for reconstruct-
ing TWSC and GWSC equal 0.51 and 0.75 respectively with
value of coefficient of determination R? equal 0.9937 and
0.9979 respectively and The Mean Absolute Percentage Er-
ror MAPE equal 0.2 for reconstructing TWSC data during
2018 to 2024. The proposed model showed high accuracy
of the data obtained so it was used to predict GRACE data
during the Gap period (2017-2018). After that, the pro-
posed model (DTOFGW-LSTM) was applied for predicting
TWSC over NRB during the period from 2024 to 2030. The
results obtained showed an increase in TWSC during this
period. It was also noted that the months of July, August,
September and October represent an increase in the level
of TWSC and the peak for each year is in the months of
November and December. It was also noted that there is
a decrease during the months of March, April, May and
June.
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