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Article History: Abstract. This research involved training two deep learning prediction models: Long Short-Term Memory 
(LSTM) and Dipper Throated Optimizations Fitness Grey Wolf-LSTM (DTOFGW-LSTM), utilizing data obtained 
from remote sensing to reconstruct and predict the Terrestrial Water Storage Changes (TWSC) over Nile 
River Basin (NRB). We evaluated factors including Terrestrial Water Storage Changes (TWSC) and Groundwa-
ter Storage Changes (GWSC), identified through the Gravity Recovery and Climate Experiment (GRACE) and 
GRACE-Follow-On (GRACE-FO), alongside precipitation data collected by the Global Precipitation Climate 
Change Program (GPCP) to analyze the patterns of change within the research area. We utilized the LSTM 
and DTOFGW-LSTM algorithms to rebuild the TWSC and GWSC from 2018 to 2024. We utilized the precise 
model to forecast the GRACE gap from 2017 to 2018 and the TWSC from 2024 to 2030. The findings dem-
onstrated the superiority of the suggested model (DTOFGW-LSTM) with a root mean square error (RMSE) 
of 0.51, a coefficient of determination (R²) of 0.99, and a mean absolute percentage error (MAPE) of 0.21.
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irrigation, industrial output, urban water supply, and the 
upkeep of the ecological environment. Hence, the precise 
forecasting of TWSC holds immense importance for water 
resource management, drought and disaster risk assess-
ment, and the advancement of coordinated development 
of the ecological environment (Duan et al., 2024). 

Multiple studies have been carried out to reconstruct 
the Total Water Storage (TWS) utilizing various datasets 
and methodologies, encompassing both grid and basin 
scales. The TWSGRACE reconstruction has utilized hydrocli-
matic or gravimetric datasets, both measured and mod-
eled (Gyawali et al., 2022). The hydroclimate variables were 
utilized to reconstruct TWS by establishing a correlation 
between the spatial and temporal variations in these vari-
ables and the spatial and temporal variations in TWS. 
Some examples of climatic variables are temperature, rain-
fall, sea surface temperature, and climate indices (Ahmed 
et al., 2019). Hydrological factors including soil moisture, 
runoff, water level, and evapotranspiration (Llovel et  al., 
2010; Long et al., 2014; Pan et al., 2012).

In order to anticipate the effects of future changes in 
the earth system on (TWSC) and (GWSC), it is important 
to measure the relationship between changes in climate, 

1. Introduction

Recent data gathering techniques and algorithmic solu-
tions provided by platforms such as GRACE (Gravity Re-
covery and Climate Experiment) and GRACE-FO (Follow-
On) satellite data have started to yield further insights 
into the dynamics of water resources in the NRB (Awange 
et al., 2014; Hasan & Tarhule, 2020). The GRACE mission 
comprises two low-Earth orbiting satellites situated in the 
same orbital plane at an altitude of 450  km and an in-
clination of 89.5 degrees. The distance between the two 
satellites is accurately estimated using a K-band ranging 
device, while the position of each satellite is established by 
GPS receivers onboard the spacecraft (Tapley et al., 2004). 

The GRACE satellite offers novel gravity data that en-
ables the monitoring of changes in Terrestrial Water Stor-
age (TWSC). TWSC is categorized into five components: 
groundwater, soil moisture, surface water, snow/ice wa-
ter, and biological water storage (Strassberg et al., 2009). 
The Earth’s climate system is significantly influenced by 
the vast range of spatio-temporal scale changes in TWS. 
TWS, or Total Water Storage, is a crucial strategic asset for 
any country. It serves as the foundation for agricultural 
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surface water extent, hydrological components, and veg-
etation in order to understand how groundwater responds 
to these changes (Sahoo et al., 2017).

Recently, advanced deep learning models, including 
the Long Short-Term Memory (LSTM) model, a type of 
Recurrent Neural Network (RNN), and the Convolutional 
Neural Network (CNN) model, have been created to ad-
dress complex and nonlinear prediction tasks with long-
term dependencies. These models have demonstrated 
impressive performance (Wang et al., 2021).

This study utilized two deep learning models in con-
junction with remote sensing data to accurately predict 
spatiotemporal changes in Terrestrial Water Storage 
(TWSC) and Groundwater Storage (GWSC). The remote 
sensing data provided continuous and geographical in-
formation, enhancing the accuracy of the predictions. This 
study aimed to construct LSTM and DTOFGW-LSTM deep 
learning models to predict GWSC and TWSC from multi-
satellite data and photos, considering the potential effec-
tiveness of combining deep learning models with remote 
sensing image data.

2. Materials and methods 

2.1. Study area
The Nile River basin (NRB; approximately 3.18 million km²) 
constitutes a complicated transboundary hydrological sys-
tem (Shahin, 1985). The Nile is the longest river in the 
world, flowing for 6,850 kilometers. It is also the second 
largest river by watershed area, behind only the Amazon. 
The confluence of the White and Blue Nile rivers causes 
the Nile to flow northward from southward, making it 
unique among African rivers. The entire runoff at Aswan 
High Damin, Egypt, is projected to be over 88.5 billion 
cubic meters per year, according to the typical natural 
water flow in the Nile. There are four primary sub-basins 
that make up the Nile basin: the White Nile Basin (WNB), 
the BNB, the Atbara River Basin, and the main or trunk 
stem Nile Basin. The NRB is inhabited by around 320 mil-
lion individuals from 11 African states, according to 2018 

population estimates, constituting approximately 24% of 
Africa’s overall population (Hasan et  al., 2021). Figure  1 
shows the location of NRB throughout Africa continent.

2.2. Data used
2.2.1. GRACE Mascon data

Earth’s gravitational field models are commonly distribut-
ed in two types of products: spherical harmonic coefficient 
products and Mascon products (Loomis et al., 2021). Prior 
to their utilization in research, conventional spherical har-
monic coefficient products necessitate additional process-
ing steps, including the substitution and supplementing of 
low-order terms, the elimination of stripes, and the correc-
tion for Glacial Isostatic Adjustment (GIA). The Gravity field 
Mascon products address the limitations of the ball har-
monic coefficient products by effectively addressing the 
north-south strip error noise, correcting leakage error, and 
providing GIA correction without the need for post-pro-
cessing. Users can directly utilize these goods. Mascon is 
able to accurately determine changes in mass at increased 
levels of spatial and temporal resolution. This capability 
has resulted in a diverse variety of applications for Mascon 
in areas such as polar ice caps, alpine glaciers, hydrology, 
and seas. Zhang and Sun (2021) highlighted that the Mas-
con product is specifically designed to eliminate the need 
for post-processing and address the leakage errors that 
arise from filtering traditional spherical harmonic coeffi-
cients. It is particularly well-suited for accurately estimating 
mass changes in various layers of the Earth system.

Scanlon et  al. (2018) conducted a comprehensive 
evaluation of the results of CSR’s and JPL’s Mascon prod-
ucts for estimating terrestrial water storage in 176 basins 
worldwide. They found that the Mascon products were 
more accurate in recovering hydrologic-gravity signals 
compared to traditional spherical harmonic coefficient 
products. Currently, there are three worldwide organiza-
tions, namely JPL, CSR, and GSFC, that are publishing mas-
con products.

This research utilizes the GRACE RL06 v02  mascon 
product, which was published by the Center for Space Re-
search (CSR) at the University of Texas, USA. The CSR mas-
con product has a spatial resolution of 0.25. This research 
extracted a total of 163 months of TWSC time series from 
April 2002 to June 2017 as an input data, excluding any 
missing months as indicated by the CSR RL06 Mascon 
product, this data as shown in Figure 2 represents samples 
of TWSC over NRB which have been extracted from Netcdf 
format of the time series data of the GRACE mission and 
Figure 3 shows the value of TWSC over NRB during the 
period from 2002 to 2017 which have been generated 
using ArcMap 10.5 program. The GRACE & GRACE-FO 
data is available at the web site as shown in Table 1. The 
GRACE data is not available during the period from July 
2017 to June 2018 (Gap period) as shown in Figure 4. The 
GRACE time series data for GWSC over NRB as shown in 
Figure 5 during the study period (2002–2017).Figure 1. Location of the study area (was generated by 

ArcMap 10.8.2 sofware)
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Figure 2. Samples of time series Geotiff data 
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2.2.2. Precipitation and temperature data

We employed long-term precipitation data from 1901 to 
2020 sourced from the GPCC (Global Precipitation Clima-
tology Centre) gridded gauge-analysis precipitation prod-
ucts. The statistics were sourced from the Deutscher Wet-
terdienst (DWD), the German Meteorological Service. The 
GPCC offers global monthly gauge-corrected precipitation 
products at a 0.5 × 0.5 grid size. The long-term monthly 
records of precipitation, temperature, and potential evapo-

transpiration (PET) were sourced from time-series datasets 
provided by the Climate Research Unit (CRU) at the Uni-
versity of East Anglia, UK. The CRU data were computed 
at a resolution of 0.5 by 0.5, utilizing over 4000 meteoro-
logical stations globally (Belda et  al., 2015). The data of 
precipitation and temperature are available as shown in 
Table  1. The average precipitation over the study area 
(NRB) of the input data during the period (2002–2017) as 
shown in Figure 6.

Figure 3. TWSC during the period (2002–2017)

Figure 4. Gap period of GRACE data (2017–2018)

Figure 5. GWSC during the period (2002–2017)
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Table 1. Websites of the data used 

Data Types Data Websites

GRACE & 
GRACE-FO 
(TWSC)

CSR (RL06) http://www2.csr.utexas.edu/grace

GRACE & 
GRACE-FO 
(G3P)

GFZ (RL06) http://gravis.gfz-potsdam.de/gws

Precipitation GPCP http://gpcc.dwd.de/

Temperature CRU

https://climatedataguide.ucar.
edu/climate-data/global-
temperature-data-sets-overview-
comparison-table

2.3. Models used
This Section describes the models used in the reconstruct-
ing and predicting the TWSC over the study area during 
the period 2018 to 2030 using two deep learning LSTM 
and DTOFGW-LSTM models.

2.3.1. LSTM

LSTM is a prevalent deep learning technique utilized for 
regression, particularly in time-series forecasting, and it 
addresses the vanishing gradient issue in long-term pre-
dictions. LSTM is marginally more intricate than the con-

ventional RNN in computing hidden states and incorpo-
rates cell memory. In the LSTM cell memory, three types 
of gates (input gates, forget gates, and output gates) 
eliminate superfluous memories and ascertain what the 
network shouldretain. LSTM possesses a conveyor-belt-
like architecture comprising cell states, with each cell state 
featuring a learner for state updates (Zhang et al., 2018). 
The building of LSTM model according to Lu et al. (2024) 
as shown in Figure 7.

2.3.2. DTOFGW-LSTM

The proposed model is a synthesis of two methodologies: 
Dipper Throated Optimizations (DTO) and Fitness of Grey 
Wolf Optimizations (GWO), aimed at selecting the most 
effective parameters for this study. The parameters of the 
proposed model (DTOFGW) are detailed in Table  2. Ac-
cording to Pan et al. (2020) the optimization strategy, the 
number of training iterations, and other model variables 
and hyperparameter settings are enhanced through the 
DTO algorithm. The cross-validation process employs a 
dictionary containing predefined parameters with speci-
fied value ranges to perform a randomized search, with 
the objective of identifying the most suitable parameters 
for LSTM.

2.4. Performance measures
2.4.1. Root means square error

The Root-Mean-Square-Error (RMSE) is calculated by tak-
ing the square root of the ratio of the square of the dif-
ference between the predicted and true values, divided 
by the total number of observations, which is k. An obser-
vation’s divergence from its real value can be measured 
using the root mean square error. The lower the Root-
Mean-Squared Error (RMSE) value, the more accurate the 
results are since there is less of a discrepancy between the 
sequence of simulated values and the sequence of ob-

Figure 6. Average precipitation over NRB

Note: x = [x1, x2, …, xn] represents the input data. The input gate it serves as the mechanism for retaining current knowledge, gt retains the revised informa-
tion, σ is the activation function, W is the weight, h is the hidden state, b is the bias term, The forget gate ft deletes memories, the xt and the hidden state 
at t – 1 (ht – 1) pass through the activation function. The input gate and forget gate determine the new memory cell state (Ct) by an elementwise product.

Figure 7. The architecture of the LSTM model unit according to Lu et al. (2024) 
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https://climatedataguide.ucar.edu/climate-data/global-temperature-data-sets-overview-comparison-table
https://climatedataguide.ucar.edu/climate-data/global-temperature-data-sets-overview-comparison-table
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served values. Here is the equation:

RMSE = 	  (1)

where K represents the number of samples, iX  signifies 
the true value of the i-th sample, and  indicates the pre-
dicted value of the i-sample.

2.4.2. Coefficient of determination

The coefficient of determination (R2) is a statistic that 
quantifies the degree of fit. As R2 approaches 1, it indi-
cates that the regression line provides a good fit to the 
observations; on the other hand, a smaller value indicates 
a poor fit. Let me give you the equation:

R2 = 1 –  	  (2)

where K represents the number of samples, iX  signifies 

the actual observed value of the i-th sample,  indicates 
the predicted value of the i-th sample, and iX  symbolizes 
the mean of the actual observed values.

2.4.3. Mean absolute percentage error

The Mean Absolute Percentage Error (MAPE) is frequently 
employed to quantify prediction accuracy, particularly in 
the context of time series forecasting. The equation for 
calculation is as follows:

MAPE =  	  (3)

where K represents the number of samples, iX  signifies 

the true value of the i-th sample, and  symbolizes the 
predicted value of the i-th sample.

3. Results and discussion

This Section highlights the results of experiments aimed at 
assessing the efficacy of the proposed model (DTOFGW-
LSTM) and LSTM in recreating groundwater storage varia-
tions and terrestrial water storage fluctuations from 2017 
to 2024. Utilizing the superior model of the two to forecast 
data for the Gap period (2017–2018) and the subsequent 
years (2024–2030).

Table 2. The proposed method of DTOFGW

The suggested DTOFGW method

Get started Birds’ Distribution ( ) ( )i
BD   i 1,  2,  3,4, .,  s  = …… with size n, ( )iBS   i 1,  2,  3,   ,s= … , 

Fitness assessment Fs, fs, r1, r2, r3, R, C1, C2, C3, C4, C5, t=1, and max iterations _max iter

Evaluate Fitness assessment Fs for each ( )iBD
Find best bird BESTBD
While t < iter_max do
         for (i =1; i ≤ s) do
               If (Z < 0.5) then
                    Update The gey wolf operatives’ position as determined by:
Update (fitness)Strength training α



F  = ( ( )α α β δ+ +
   

/F F F F

Update (fitness)Strength training β



F = ( ( )α α β δ+ +
   

/F F F F

Update (fitness)Strength training δ



F  = ( ( )α α β δ+ +
   

/F F F F

β δα α β δ= × − = × − = × −
 

         

1 2 3    ,       ,      W W F F WD W F F WD W F F
                     else
                           Update The flying Velocity of bird applying:

( ) ( ) ( ) ( )( ) ( )( )3 4 1 BEST st.nd 5 1 G.BEST st.ndBS m 1  C BS m  C r BD m BD m    C r BD   BD m+ = + − + −

                           Update The swimming bird’s position as determined by: ( ) ( ) ( )st.nd 1 2 3BD m 1  r  z r 1 z r BS m 1+ = + × + − × + +
                     end after
          end after 
          Evaluate Fitness assessment Fs for each 



BDi
          Update R, r1, r2, r3, c, C1, C2

          Find best bird bestBL
          Set G.BEST BESTBD  BD=

          Set m = m + 1
end when
return G.BESTBL
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3.1. Reconstruction of TWSC
In this research, two artificial intelligence models (LSTM 
and DTOFGW-LSTM) were used to reconstruct TWSC data 
over NRB. Data taken from the GRACE and GRACE-FO be-
tween 2002 and 2018 were used as inputs data to runout 
the two models. The TWSC data was reconstructed in the 
period from 2018 to 2024 using LSTM model as shown in 
Figure 8 and using the proposed modified model (DTOF-
GW-LSTM), and the results were as shown in Figure  9. 
When analyzing the data from the two models, the results 
proved the superiority of the proposed model as follows: 
The proposed model (DTOFGW-LSTM) demonstrated su-
periority over previous models, with a Root Mean Square 

Error (RMSE) of 0.0.51, a Mean Absolute Percentage Er-
ror (MAPE) of 0.06, and a coefficient of determination
(R²) of 0.9937, as illustrated in Figure 10a. This model is
a linear polynomial (y = 1.022x – 0.0673), where y refers
to estimated TWSC obtained from the proposed model 
(DTOFGW-LSTM) and x is the measured TWSC from GRACE
data. Figure 10b shows the relation between the TWSC 
from LSTM model (Estimated) and TWSC from GRACE time 
series data, the RMSE for this model equal 0.6, the value of 
MAPE equal 0.34 and R2 equal 0.9796. LSTM algorithm is 
a linear polynomial (y = 1.0368x – 0.0569), where y is the 
estimated TWSC using LSTM model and x the measured 
data of TWSC over NRB during the period 2018–2024.
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Figure 9. TWSC from (DTOFGW-LSTM) model during the period (2018–2024)
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3.2. Reconstruction of GWSC
The proposed model (DTOFGW-LSTM) and LSTM model 
were applied for reconstructing the GWSC during the pe-
riod 2018 to 2024. Figure 11a shows that the proposed 
model, DTOFGW-LSTM, outperormed the others with an 
RMSE of 0.75, an MAE of 0.06, and an R2 of 0.9989. The 
estimated GWSC (y) is the result of the suggested model 
(DTOFGW-LSTM), and the observed GWSC (x) is the coef-
ficient of this linear polynomial model. Figure 11b displays 
the correlation between the GWSC observed data and the 
LSTM model data. The results demonstrate that the model 
has an RMSE of 2.52, an R2 value of 0.9879, and an MAE 
value of 0.42, where y is the estimated GWSC using the 
LSTM model and x is the observed data, the LSTM algo-
rithm is a linear polynomial (y  = 1.0006x – 0.4475). The 
reconstructing data of GWSC over the study area during 
the period (2018–2024) using the LSTM model as shown 
in Figure 12a and the GWSC during the same period using 
the proposed model as shown in Figure 12b.

3.3. The GRACE data gap forecasting 
The suggested model (DTOFGW-LSTM) was employed to 
ascertain TWSC data throughout the GRACE GAP period 
from 2017 to 2018 (about one year), with TWS variations 
ranging from 0.17927 mm to 14.03725 mm, as illustrated 
in Figure 13.

3.4. Data forecasting for the coming years
After using the proposed model (DTOFGW-LSTM) in 
reconstructing TWSC and GWSC over the NRB during 
the period from 2018 to 2024, this model is prepared 
for doing the prediction in future over NRB during the 
period from 2024 to 2030. The proposed model was 
used because it showed a very high accuracy rate in the 
process of reconstructing TWSC data and the extent of 
matching the results obtained from it with the actual 
GRACE data in the period between 2018 to 2024. The 
results related to the prediction of future groundwater 

Figure 11. Scatter chart for two models: a) LSTM algorithm; b) DTOFGW-LSTM

a)	 b)

a)	 b)

Figure 13. Data of TWSC during gap period (2017–2018) Figure 14. TWSC during the period (2018–2024)

Figure 12. GWSC during the period (2018–2024): a) GWSC from the proposed model (DTOFGW-LSTM); b) GWSC from (LSTM)
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storage in the period from May 2024 to January 2030 
(approximately 69  months) were obtained from the 
proposed model as shown in Figure 14. The projected 
period of six years indicates a progressive increase in 
groundwater supply, exhibiting variable rates of growth. 
Notably, the water stock rises throughout the months of 
July, August, September, and October, peaking in No-
vember and December. From February to June, there is 
a decline in the groundwater level.

4. Conclusions

The principal aim of this research was to reconstruct 
GRACE and GRACE-FO data for the Nile River Basin (NRB) 
utilizing an extensive time series dataset spanning from 
2002 to 2024, while examining the incidence of drought 
within the study area during the GAP period. This analysis 
was predicated on lunar data from the years preceding 
and succeeding the GAP period, alongside meteorological 
data concerning temperature and precipitation in the study 
area during the GAP period. This research depends on two 
artificial intelligence models (LSTM and DTOFGW-LSTM), 
these models first were used to reconstruct the GRACE 
data of TWSC and GWSC during the period (2018 to 2024) 
depending on the data of TWSC and GWSC from GRACE 
mission and the meteorological data of temperature and 
precipitation during the period from 2002 to 2017 as the 
input data to runout the models of artificial intelligence 
reconstructing data for TWSC and GWSC were obtained 
during the period from 2018 to 2024 the value of RMSE 
of the proposed model (DTOFGW-LSTM) for reconstruct-
ing TWSC and GWSC equal 0.51 and 0.75 respectively with 
value of coefficient of determination R2 equal 0.9937 and 
0.9979 respectively and The Mean Absolute Percentage Er-
ror MAPE equal 0.2 for reconstructing TWSC data during 
2018 to 2024. The proposed model showed high accuracy 
of the data obtained so it was used to predict GRACE data 
during the Gap period (2017–2018). After that, the pro-
posed model (DTOFGW-LSTM) was applied for predicting 
TWSC over NRB during the period from 2024 to 2030. The 
results obtained showed an increase in TWSC during this 
period. It was also noted that the months of July, August, 
September and October represent an increase in the level 
of TWSC and the peak for each year is in the months of 
November and December. It was also noted that there is 
a decrease during the months of March, April, May and 
June.
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