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zone, where several energy and industrial companies 
operate.

Several GPS networks have been observed in this region, 
but the coordinates of the points forming the backbone of 
these networks are not compatible with the true WGS84 
geodetic datum. In fact, the quality of each GPS network de-
pends on the nature and accuracy of the used control points. 
In addition, the coordinates of these networks have been 
transformed to the local datum by applying several sets of 
transformation parameters that are not necessarily accurate. 
A major problem then arises as soon as we want to merge 
two adjacent seismic studies, whether under the WGS84 geo-
detic datum or under the local geodetic datum.

In this study, we explain how it is possible to deter-
mine exhaustive transformation parameters between the 
WGS84  and the local datum using the available control 
points with coordinates determined in both the global and 
local systems. Giving a set of candidate models for the 
data, the preferred model for Illizi region is chosen with 
the minimum RMS of differences between the original lo-
cal coordinates of control points and its corresponding 
transformed WGS84 coordinates.

1. Introduction 

In geodesy, it is essential to represent all the collected data 
in various ways in a common geodetic reference system. 
In the past, these data were expressed in arbitrarily de-
fined local systems, which made it impossible to combine 
them in a single reference frame. With the development 
of satellite navigation systems, the position is expressed 
in a unified global system namely WGS84 system, thus 
avoiding the need for multiple geodetic reference frames 
(Mitsakaki, 2004).

Most countries have not migrated to this global sys-
tem and cannot directly apply GNSS measurements with-
out transforming them into a local system (Ziggah et al., 
2017). Coordinates provided by the world geodetic system 
(WGS84) often have to be transformed into local geodetic 
coordinate systems (Paláncz et al., 2010). The Illizi region 
is a concrete example where GNSS data are often trans-
formed to the local reference frame in order to merge 
them with the old geodetic data.

Illizi is located in South-East Algeria, on the border 
with Libya. It is considered as an important industrial 
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2. Materials and methods

2.1. Geodetic data
1.	 Local geodetic triangulation 1960-61: This triangulation, 

carried out between 1960 and 1961, comprises a main 
network (66 points) and a secondary network (50 points). 
Planimetric coordinates are expressed in the UTM pro-
jection associated to the Clarke 1880A local ellipsoid. 
These points have been linked in altimetry. It was high-
lighted that the various triangulations that still exist in the 
southern regions of Algeria have not been adjusted for 
as a whole, so there may be a discrepancy between two 
neighboring triangulations. It is advisable to avoid carry-
ing out operations based on points from different origins 
without first estimating this discrepancy.

2.	 GNSS network 2021: This network was surveyed using 
GNSS techniques. It consists of 57 legacy points from 
the Illizi geodetic triangulation network, which serve as 
dual-reference points between the WGS84 global datum 
and the local geodetic datum (see Figure 1). The geo-
detic tie of the network was performed from three sta-
tions determined with high accuracy under ITRF 2014.

3.	 As the number of observed GNSS points was substan-
tial, the GNSS observations were rigorously planned 
and the observation strategy was fine-tuned (choice 
of favorable constellations, choice of antennas after 
check/calibration, occupancy strategy, minimum mask 
angle, field check of sustainability of the old points, 
availability of material and human resources, etc.). 
As several GNSS receivers were used simultaneously, 

a computation of internal and external closures (in rela-
tion to the three control points) was systematically carried 
out after processing of the collected data in static mode 
using TBC (Trimble Business Centre) software. Final pro-
cessing of the observed baselines was carried out using 

precise ephemeris. Network adjustment was performed 
and the geodetic coordinates of points were adjusted un-
der WGS84. Residuals on the adjusted coordinates were in 
sub-centimetric order in the Easting and Northing com-
ponents. Residuals in the vertical component were from 
2 to 3 cm.

2.2. Methods
Given a number of points with coordinates in two differ-
ent spatial reference frames (known as control points); the 
problem is to find a good model for the transformation 
between these two frames. In geodesy, we use a variety 
of 3D transformation models. The most commonly used 
models are Geocentric Translation Model, Seven Parameter 
Similarity Transformation, Molodensky-Badekas Transfor-
mation, Abridged Molodensky transformation and Multi-
ple Regression Equations (MRE).

We start from the Geocentric Translation Model. In this 
model, we assume that the axes of the ellipsoids associ-
ated to the two datums are parallel and that there is no 
scale difference between the source and target coordinate 
reference system.

Then geocentric coordinate reference systems may be 
related to each other through three translations known as 
shifts ,XT  YT  and ZT  in the sense of source geocentric 
coordinate system to target geocentric coordinate system:

= + ;T S XX X T 	 (1)

= + ;T S YY Y T 	 (2)

= + ,T S ZZ Z T 	 (3)

where ,( SX SY , SZ ) are the coordinates of the control 
point in the source geocentric coordinate system and 
( TX , TY , TZ ) are the coordinates of the point in the tar-
get geocentric coordinate system.

The Seven Parameter Similarity Transformation, also 
known as Bursa-Wolf 7 Parameter model, is derived by as-
suming that the axes of source and target systems are not 
parallel and the two systems have different scales (Bursa, 
1962; Wolf, 1963):
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where ( XR , YR , ZR ) represent the rotations to be applied 
to the point’s vector and ∆S  is the scale correction to 
be made to the position vector in the source coordinate 
reference system in order to obtain the correct scale in the 
target coordinate reference system.

In the Molodensky-Badekas transformation, instead of 
the rotations being derived from the geocentric coordi-
nate reference system origin, they may be derived from a 
location within the control points used in the determina-
tion. Three additional parameters are then required, mak-
ing 10 parameters in total. The equation is (Molodensky Figure 1. Spatial distribution of the 57 geodetic points used 

for developing the transformation models 

8.75

28.75

28.50

28.25

8.75

9.00

9.00

9.25

9.25



236 M. Haddad, M. Gahlouz. A comparison of transformation models between geodetic reference frames: case study in Illizi region...

et al., 1962; Badekas, 1969):
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(5)

where ( PX , PY , PZ ) are the Cartesian coordinates of the 
centroid point, given in the source coordinate reference 
system.

The Molodensky transformation is a complex equation 
for the shift in latitude, longitude and height. Abridged 
version of these equations, which yields the result called a 
five parameter transformation, is given as follows (Defense 
Mapping Agency [DMA], 1990):

= +φ φ φ;T S d 	 (6)

= +λ λ λ;T S d 	 (7)

= + ,T Sh h dh 	 (8)
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where ( φS ,λS , Sh ) and ( φT ,λT , Th ) represent the latitude, 
longitude and ellipsoid height in the source and target 
reference systems, ρS  and νS  are the meridian and prime 
vertical radii of curvature at the given latitude φ

S
, da is the 

difference in the semi-major axes of the target and source 
ellipsoids and df is the difference in the flattening of the 
two ellipsoids. 

The abridged Molodensky transformation is simple to 
implement, requiring only the 3 shifts between the input 
and output frame, and the corresponding differences 
between the semi major axes and flattening parameters 
of the reference ellipsoids. The equations do not contain 
the ellipsoidal heights Sh  of points to be transformed.

The multiple regression equations (MRE) are ad hoc 
equations for transforming two-dimensional geographical 
coordinates between geodetic datums. Since they offer 
a means of modelling distortions, they are capable of a 
more accurate fit to datum-shift datasets than more basic 
direct methods (Ruffhead, 2022; Appelbaum, 1982). MRE 
take the general form (DMA, 1987):
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where 0 1 0 1, , ..., , , , ...,nn nnA A A B B B  are the coefficients de-
termined in the development and U  and V  are the scaled 
latitude and longitude given by:

 
  
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= φ − φ
deg

;
Sin

U K m  	  (14) 

 
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,
Sin

V K m  	 (15) 

where φ λ,m m  are the latitude and longitude, in decimal 
degrees, of the point at the middle of the area of validity 
and K is the degrees-to-radians conversion factor. A wide-
spread practice, notably in (National Imagery and Mapping 
Agency, 2004), is to set K to ( )π 180n  where n  is a small 
integer. In our case, we take = π9 180.K

3. Results and discussion

During the phase of classic geodesy measurements or re-
covery of old coordinate data, errors can occur. These errors 
may be due to a measuring tool problem, a reading error 
or an entry error. These doubtful coordinate values (outliers) 
should not be included in the processing so as not to disrupt 
the adequacy of our transformation models. For this purpose, 
a number of more or less powerful statistical tests are avail-
able to detect outliers. The most widely used of these tests is 
the one based on the definition, around the empirical mean 
of the data series, of a random interval (depending on the n 
data) with a high probability (confidence interval). 

The approach taken to estimate the transformation pa-
rameters is then as follows:

	■ Identification of control points with known positions 
in both coordinate systems (global and local).

	■ Conversion of geographic coordinates ( φ , λ , h ) un-
der WGS84 of double points into UTM plane coor-
dinates (Easting, Northing) and three-dimensional 
Cartesian coordinates (X, Y, Z).

	■ Conversion of UTM (Easting, Northing) plane co-
ordinates and orthometric heights under the lo-
cal coordinate system into geographic coordinates 
( φ , λ ) and three-dimensional Cartesian coordinates 
(X, Y, Z). The ellipsoidal height relative to Clarke 1880 
A, ellipsoid associated with the North Sahara system, 
is taken to be equal to the orthometric height.

	■ Estimation of transformation parameters from the 
WGS84 coordinate system to the local coordinate 
system according to the chosen model.

	■ Transformation of WGS84 coordinates into local co-
ordinates: geographic, UTM plane and three-dimen-
sional Cartesian, using estimated parameters.
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	■ Estimation of the differences (residuals) between the 
source local geographic, UTM plane and three-di-
mensional Cartesian coordinates and those obtained 
by transformation from WGS84 as well as the RMS 
of the differences for each component.

	■ Definition of a 95% confidence interval for the East-
ing differences series and detection of outlier points 
whose differences are outside this interval.

	■ Definition of a 95% confidence interval for the 
Northing differences series and detection of outlier 
points whose differences are outside this interval.

	■ If necessary, eliminate control points deemed outli-
ers in Easting and/or in Northing and re-estimate 
transformation parameters.

The rest of this section presents the assessment re-
sults of the transformation parameters according to the 
five models previously presented. 

Using the all-57 control points, the evaluation of the 
performance of each coordinate transformation method 
is based on the analysis of residuals generated during 
parameter estimation. As an example, Table 1 shows the 
residuals in 3D Cartesian coordinates X, Y and Z compo-
nents and in UTM plane coordinates between the source 
local coordinates and those obtained from the coordi-
nates transformation based on the Bursa-Wolf model.

As shown in Table 1, the residuals are from –35.4 cm 
to +22.2 cm in Easting component and from –198.2 cm 
to +86.1 cm in Northing component and from –11.1 cm 
to +9.8  cm in height component. The RMS values for 
Easting, Northing and height components are ±7.8 cm, 
±17.7  cm and ±2.1  cm, respectively. These low RMS 

values indicate acceptable Bursa-Wolf parameters esti-
mates.

Table 2 summarizes the obtained RMS values using the 
different transformation models in 3D Cartesian coordi-
nates and in UTM components. RMS values are ranged 
from ±7.8 cm to ±19.2 cm in Easting component and from 
±17.7 cm to ±30.3 cm in Northing component. The rela-
tively high RMS values in Northing component indicate 
the possible presence of outlier values on the source local 
coordinates of some control points. 

For each model, a statistical test based on a 95% 
confidence interval is applied separately for the Easting 
and Northing residuals series to detect possible outliers. 
As shown in Table 3, this test revealed that there are two 
points depicting largest coordinate differences, particu-
larly in Northing component, and therefore are detected 
as outliers for the whole of transformation models, namely 
the R05 and R32 points.

A second processing was carried out in order to es-
timate more exhaustive transformation parameters than 
those previously determined. For that: 

	■ The two doubtful points (R05 and R32) were elimi-
nated from the treatment, 

	■ 49 control points out of the 55 deemed good were 
used for the estimation of the parameters, 

	■ The remaining six (06) control points out of the 55 
were used as test points (external validation of the 
estimated transformation parameters). The identifi-
ers of these 06 points are: R09 (near R05), R22 (near 
R32), R01 (extremity of the zone), H (extremity of the 
zone), R03 (middle of the zone) and R48 (middle of 
the area).

Table 1. Residuals on transformed coordinates using Bursa-Wolf model

Station X (m) Y (m) Z (m) Easting (m) Northing (m) Height (m)

R01 0.007 –0.217 0.076 –0.215 0.080 0.011
R02 –0.046 –0.002 0.140 0.005 0.144 0.027
R03 –0.031 0.134 0.044 0.137 0.043 0.013
R04 0.066 –0.167 –0.049 –0.175 –0.062 0.011
R05 –0.414 –0.424 0.723 –0.354 0.861 –0.072
R06 0.048 –0.239 0.005 –0.243 –0.001 0.010
R07 0.054 –0.222 –0.054 –0.227 –0.057 –0.011
R08 –0.075 0.040 0.096 0.051 0.116 –0.014
R09 –0.014 0.127 0.021 0.128 0.016 0.015
R10 –0.023 0.052 0.047 0.055 0.048 0.010
R11 –0.008 0.128 0.028 0.127 0.019 0.024
R12 –0.011 0.137 0.000 0.137 –0.005 0.009
R13 –0.076 0.061 0.085 0.072 0.105 –0.017
R14 0.025 0.130 –0.062 0.124 –0.075 0.010
R15 –0.039 0.130 0.065 0.135 0.066 0.015
R16 0.008 0.073 –0.016 0.071 –0.023 0.009
R17 –0.066 –0.071 0.049 –0.060 0.079 –0.044
R18 –0.035 0.144 –0.026 0.147 –0.017 –0.023
R19 –0.014 –0.053 0.057 –0.050 0.060 0.008
R20 0.001 0.034 –0.008 0.034 –0.010 0.002
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Station X (m) Y (m) Z (m) Easting (m) Northing (m) Height (m)

R21 –0.125 0.067 –0.024 0.085 0.033 –0.111
R22 0.007 0.099 –0.068 0.097 –0.070 –0.013
R23 –0.079 0.100 0.087 0.111 0.106 –0.013
R24 –0.076 –0.043 0.197 –0.031 0.211 0.022
R25 –0.051 –0.044 0.143 –0.035 0.153 0.018
R26 –0.011 0.057 0.100 0.058 0.088 0.046
R27 –0.059 –0.133 0.204 –0.122 0.217 0.028
R28 0.068 –0.137 –0.058 –0.146 –0.073 0.012
R29 –0.005 –0.160 0.080 –0.157 0.085 0.012
R30 –0.108 0.103 0.114 0.119 0.144 –0.025
R31 –0.040 0.136 0.088 0.141 0.086 0.027
R32 0.939 0.189 –1.737 0.040 –1.982 0.014
R33 0.106 –0.121 –0.154 –0.136 –0.176 0.002
R34 0.100 –0.301 –0.190 –0.313 –0.192 –0.045
R35 –0.034 0.022 –0.042 0.027 –0.023 –0.047
R36 –0.004 0.029 0.086 0.029 0.075 0.041
R37 –0.062 0.115 0.079 0.123 0.090 –0.001
R38 –0.052 0.072 0.073 0.079 0.083 0.000
R39 –0.104 0.093 0.029 0.109 0.068 –0.064
R40 –0.057 0.090 0.088 0.098 0.097 0.005
R41 0.081 –0.045 0.072 –0.057 0.028 0.098
R42 0.030 0.075 –0.005 0.070 –0.025 0.034
R43 –0.005 0.225 0.053 0.222 0.031 0.052
R44 0.002 0.116 –0.002 0.114 –0.012 0.017
R45 –0.107 0.106 –0.058 0.122 –0.008 –0.106
R46 0.063 –0.088 –0.057 –0.096 –0.073 0.015
R47 0.016 0.132 –0.050 0.127 –0.062 0.008
R48 –0.040 0.098 0.016 0.103 0.026 –0.013
R49 0.035 –0.023 –0.032 –0.028 –0.043 0.011
R50 0.003 –0.091 –0.043 –0.090 –0.033 –0.030
R51 0.024 –0.095 –0.104 –0.098 –0.096 –0.043
R52 0.089 –0.035 –0.160 –0.049 –0.180 –0.005
R53 0.014 –0.126 0.025 –0.126 0.025 0.006
R54 0.058 –0.198 –0.014 –0.205 –0.025 0.016
R55 –0.020 0.006 0.097 0.009 0.094 0.030
R56 –0.013 0.106 0.067 0.107 0.057 0.036
R57 0.059 –0.191 –0.121 –0.198 –0.120 –0.033

RMS (m) 0.086 0.080 0.155 0.078 0.177 0.021

End of Table 1

Table 2. RMS on transformed coordinates

X (m) Y (m) Z (m) Easting (m) Northing (m) Height (m)

Geocentric Translation 0.102 0.201 0.208 0.192 0.236 0.035
Bursa-Wolf 0.086 0.080 0.155 0.078 0.177 0.021
Molodensky-Badekas 0.087 0.081 0.156 0.079 0.178 0.021
Abridged Molodensky 0.101 0.201 0.208 0.192 0.236 0.035
MRE 1st Order – – – 0.133 0.303 –
MRE 2nd Order – – – 0.097 0.266 –
MRE 3rd Order – – – 0.092 0.226 –
MRE 4th Order – – – 0.086 0.199 –
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The results in term of residuals and RMS have improved 
for all models. As an example of transformation model, Ta-
ble 4 shows the obtained residuals in 3D Cartesian coordi-
nates X, Y and Z components and in UTM plane coordinates 
between the source local coordinates and those obtained 
from the coordinates transformation based on the Bursa-
Wolf model after removing the two outliers. The RMS values 
went from ±7.8 cm to ±6.9 cm in Easting and from ±17.7 cm 
to ±5.1 cm in Northing. For the Cartesian coordinates, RMS 
values decreased from 8.6 cm to 3.3 cm in X, from 8.0 cm to 
6.7 cm in Y and from 15.5 cm to 4.8 cm in Z. 

Table 5 shows the assessment results from coordinate’s 
transformation of the six test points based on the Bursa-Wolf 
model. From the Table 5, the RMS of coordinate differences 
in 3D Cartesian components, X, Y and Z can be achieved at 
±2.6 cm, ±15.3 cm and ±7.5 cm for the three components, 
respectively. These stations still exhibit acceptable RMS.

Table 6 resumes the RMS on transformed coordinates 
of the 49 control points per model. The RMS values af-
ter removing of the two outlier points are slightly better 
than the previous ones (see Table 2); the RMS values are 
decreased for all models. A comparison of the RMS of 
the different models, in Easting and Northing components, 
shows that the most appropriate approach for transfor-
mation from WGS84 to local datum in Illizi region is that 
of Borsa-Wolf model, followed by Molodensky-Badekas 
model.

Table  7 resumes the obtained RMS on transformed 
coordinates of the six test points using different models 

Table 3. Detected outliers and gaps between source and 
transformed local UTM coordinates

Model
Outlier in Easting Outlier in Northing

Station Residual (m) Station Residual (m)

Geocentric 
Translation

R01 –0.660 R05 0.920
R06 –0.817 R32 –1.547
R07 –0.709
R54 –0.750

Bursa-Wolf
R05 –0.354 R05 0.861
R34 –0.313 R32 –1.982

Molodensky-
Badekas

R05
R34

–0.354
–0.313

R05
R32

0.861
–1.982

Abridged 
Molodensky

R01
R06
R07
R54

–0.659
–0.815
–0.708
–0.748

R05
R32

0.920
–1.548

MRE 1st Order R05
R34

–0.368
–0.355

R05
R32

0.911
–1.853

MRE 2nd Order

R04
R05
R34
R57

–0.224
–0.374
–0.182
–0.223

R05
R30
R32

0.911
0.504
–1.360

MRE 3rd Order
R04
R05
R57

–0.189
–0.338
–0.172

R05
R22
R30
R32

0.786
0.555
0.530
–0.855

MRE 4th Order R04
R05

–0.226
–0.307

R05
R22
R32

0.693
0.517
–0.474

Table 4. Residuals on transformed coordinates using Bursa-Wolf model after removing outlier points

Station X (m) Y (m) Z (m) Easting (m) Northing (m) Height (m)

R02 –0.032 0.035 0.103 0.039 0.103 0.027
R04 0.081 –0.147 –0.083 –0.158 –0.100 0.011
R06 0.053 –0.158 –0.026 –0.164 –0.036 0.011
R07 0.059 –0.155 –0.080 –0.162 –0.087 –0.009
R08 –0.065 0.069 0.068 0.078 0.085 –0.015
R10 –0.009 0.035 0.024 0.036 0.022 0.009
R11 0.007 0.102 0.005 0.100 –0.007 0.023
R12 0.004 0.099 –0.019 0.097 –0.026 0.008
R13 –0.071 0.080 0.072 0.090 0.090 –0.016
R14 0.035 0.098 –0.074 0.091 –0.088 0.008
R15 –0.031 0.108 0.056 0.112 0.056 0.014
R16 0.019 0.024 –0.025 0.021 –0.032 0.008
R17 –0.055 –0.133 0.041 –0.123 0.072 –0.047
R18 –0.025 0.099 –0.034 0.101 –0.025 –0.024
R19 –0.005 –0.107 0.053 –0.105 0.056 0.006
R20 0.009 –0.019 –0.009 –0.020 –0.011 0.001
R21 –0.123 0.044 –0.021 0.062 0.036 –0.111
R23 –0.050 0.126 0.020 0.132 0.031 –0.016
R24 –0.050 –0.004 0.132 0.004 0.139 0.019
R25 –0.035 –0.003 0.101 0.003 0.105 0.017
R26 0.007 0.086 0.058 0.084 0.041 0.045
R27 –0.040 –0.071 0.148 –0.064 0.154 0.026
R28 0.070 –0.229 –0.039 –0.237 –0.050 0.011
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Station X (m) Y (m) Z (m) Easting (m) Northing (m) Height (m)

R30 –0.074 0.116 0.042 0.126 0.063 –0.028
R31 –0.016 0.150 0.037 0.151 0.029 0.025
R33 0.134 –0.132 –0.209 –0.151 –0.237 –0.002
R34 0.118 –0.359 –0.211 –0.373 –0.215 –0.047
R35 –0.018 –0.031 –0.060 0.028 –0.042 –0.049
R36 –0.010 –0.041 0.117 –0.039 0.110 0.041
R37 –0.051 0.121 0.057 0.127 0.065 –0.001
R38 –0.042 0.061 0.058 0.067 0.066 0.000
R39 –0.097 0.097 0.016 0.112 0.053 –0.063
R40 –0.052 0.078 0.082 0.085 0.091 0.005
R41 0.090 –0.108 0.072 –0.120 0.028 0.098
R42 0.030 0.019 0.010 0.014 –0.007 0.033
R43 –0.014 0.183 0.083 0.182 0.065 0.053
R44 0.001 0.083 0.008 0.081 0.000 0.016
R45 –0.109 0.090 –0.049 0.106 0.002 –0.105
R46 0.051 –0.053 –0.041 –0.060 –0.056 0.017
R47 0.003 0.132 –0.025 0.129 –0.034 0.009
R49 0.023 0.000 –0.014 –0.003 –0.023 0.013
R50 –0.001 –0.060 –0.042 –0.059 –0.032 –0.029
R51 0.021 –0.036 –0.113 –0.039 –0.107 –0.041
R52 0.091 0.005 –0.175 –0.010 –0.197 –0.004
R53 0.022 –0.076 –0.003 –0.078 –0.007 0.007
R54 0.062 –0.123 –0.042 –0.132 –0.057 0.017
R55 –0.002 –0.005 0.065 –0.004 0.058 0.028
R56 0.005 0.111 0.030 0.109 0.015 0.034
R57 0.082 –0.202 –0.165 –0.212 –0.169 –0.036

RMS (m) 0.033 0.067 0.048 0.069 0.051 0.021

End of Table 4

Table 5. Residuals on transformed coordinates of testing points using Bursa-Wolf model after removing outlier points

Station X (m) Y (m) Z (m) Easting (m) Northing (m) Height (m)

R01 0.017 –0.150 0.039 –0.151 0.038 0.012
R03 –0.015 0.152 0.008 0.152 0.002 0.012
R09 0.002 0.106 –0.005 0.105 –0.013 0.014
R22 0.042 0.103 –0.139 0.096 –0.149 –0.016
R29 –0.009 –0.251 0.110 –0.247 0.120 0.011
R48 –0.043 0.102 0.021 0.107 0.031 –0.013

RMS (m) 0.026 0.153 0.075 0.152 0.081 0.013

Table 6. RMS on transformed coordinates after removing outlier points

Model X (m) Y (m) Z (m) Easting (m) Northing (m) Height (m)

Geocentric Translation 0.075 0.202 0.173 0.194 0.193 0.035
Bursa-Wolf 0.033 0.067 0.048 0.069 0.051 0.021
Molodensky-Badekas 0.034 0.068 0.049 0.070 0.052 0.022
Abridged Molodensky 0.075 0.201 0.172 0.194 0.192 0.035
MRE 1st Order – – – 0.121 0.089 –
MRE 2nd Order – – – 0.082 0.069 –
MRE 3rd Order – – – 0.078 0.065 –
MRE4thOrder – – – 0.074 0.062 –
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after elimination of the outlier points. The RMS values are 
low, which means that the estimated parameters according 
different models are acceptable.

4. Conclusions 

This study demonstrated analysis on the performance of 
five models for coordinate transformation at Illizi region. 
The experimental work used two geodetic datums which 
are WGS84  and local geodetic triangulation. The analy-
sis was carried out on a set of 57 control points that are 
known in both datum.

The residuals from the estimation of the transformation 
parameters according to the five models were acceptable, 
with a slight improvement after removing of two detected 
points as outliers using a statistical test. 

After the series of tests and residuals analysis, it was 
concluded that the geocentric Bursa-Wolf model is the 
most appropriate approach for coordinate transforma-
tion from WGS84 to local datum in the study area. The 
accuracy of Bursa-Wolf estimations exhibits RMS value at 
±6.9 cm and ±5.1 cm in UTM Easting and Northing com-
ponents respectively. The test stations show RMS up to 
±15 cm.

In conclusions, the experiment in the Illizi region al-
ready shows that it is entirely possible to resolve the 
problem linked to the referencing of the various geodetic 
networks to meet the needs in positioning and navigation.
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