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Article History:  Abstract. Continuous bathymetry mapping for shallow waters is very important considering that these wa-
ters are prone to change. Bathymetry measurements obtained from satellite imagery are an alternative that 
can be used. This study aimed to evaluate and develop algorithms that can be used to estimate shallow 
water depth values obtained from satellite imagery. In this study, the depth mapping results were obtained 
from Surface Reflectance derived from Sentinel-2A image processing. A comparative analysis was performed 
by comparing measurements obtained with an echosounder and estimated depths estimated with Lyzenga, 
Stumpf, and modified Stumpf algorithms. In this study, where the depth ranged from 2–6 meters, the Lyz-
enga algorithm performed the best algorithm with the R2 value of 0.94 and the RMSE 0.23, followed by the 
modified Stumpf algorithm with an R2 value of 0.93 and RMSE 0.24, and Stumpf algorithm with a R2 value 
of 0.88 and a RMSE of 0.32. Overall, this study provides an important contribution to comparing Lyzenga 
and Stumpf algorithms for estimating water depths. This study provides guidance on choosing the correct 
algorithm for bathymetric mapping using satellite imagery in similar water locations. 
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as Google Earth Engine (GEE), makes the use of satellite 
imagery an attractive alternative in bathymetric mapping 
in shallow water areas (Muzirafuti et al., 2020; Sagawa 
et al., 2019; Said et al., 2017).

Satellite Derived Bathymetry (SDB) uses satellite image 
data and image processing techniques to extract water 
depth information. This method utilizes the characteristics 
of light reflected from the seabed and complex processing 
processes to produce accurate depth estimates (Lyzenga, 
1978). In recent years, SDB has become an interesting re-
search topic and has been shown to provide competitive 
results compared to conventional methods (Al Najar et al., 
2021; Cesbron et al., 2021; Duplančić Leder et al., 2023). 
Bathymetry mapping using SDB has several advantages. 
The use of satellite imagery allows extensive and continu-
ous bathymetry mapping in shallow water areas which 
include coastal waters, estuaries and coral reefs (Westley, 
2021). This provides a more comprehensive picture of the 
structure of the seafloor and the aquatic environment as 
a whole. With SDB, bathymetry mapping can be faster, 
more accurate and more cost-effective (Duplančić Leder 
et al., 2023). The use of satellite imagery allows water areas 

1. Introduction

Bathymetry mapping is the process of measuring and 
visualizing ocean depths. This process has an important 
role in understanding and managing marine resources, 
especially in shallow water areas. The shallow water area 
is one of the most dynamic and rapidly changing environ-
ments. Intensive and frequent changes in this coastal area 
demand an efficient monitoring method that can produce 
repeated updates of seafloor topography and bathymetry 
information. Bathymetry information in shallow water ar-
eas is needed in various ways such as tsunami propaga-
tion modeling (Poliyapram et al., 2017), waste distribu-
tion modeling (Jeyar et al., 2015), shipping safety (Seto & 
Crawford, 2016), and coastal environmental management. 
A bathymetry map is used to plan coastal infrastructure 
developments, such as wharves, embankments, or water-
ways. In conventional bathymetry methods such as using 
an echosounder, bathymetry measurements take a long 
time (Parente & Vallario, 2019). The availability of open-
access satellite imagery with high spatial resolution such 
as Sentinel-2 and cloud-based computing platforms such 
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to be mapped quickly without deploying ships or special 
equipment. The service is especially useful in emergen-
cy situations or when bathymetric mapping needs to be 
done quickly to support marine activities like navigation, 
research, and natural resource management.

Several algorithms have been developed for the SDB 
method, both empirically and physics-based approaches. 
The empirical approach is the most widely used. An em-
pirical approach is made based on the statistical relation-
ship between known depth data and Rrs (λ) measurements 
in one or several bands (Wei et al., 2020). The main ad-
vantage of empirical approaches is the ability to retrieve 
water depths relatively easily, but their reliance on cali-
bration from field observations. This approach is easy to 
implement using multi-spectral satellite imagery. Some of 
the most widely used empirical approach algorithms are 
Lyzenga (Lyzenga, 1978) and Stumpf (Stumpf et al., 2003). 

In specific cases, the existing SDB algorithm must be 
adapted and modified according to the special character-
istics and conditions at the new location. Each water loca-
tion can have variations in light, seafloor substrate, and 
other environmental conditions that can affect the esti-
mated depth. The characteristics of the waters in the study 
area are dominated by total suspended solids, with con-
centrations ranging from 8–9 mg/L (Hidayat et al., 2023). 
The substrate in the area is a muddy sand base with no 
aquatic vegetation, such as seagrass or seaweed. There-
fore, it is necessary to conduct additional adjustments and 
validations to ensure the accuracy of the estimation at the 
new location. This study aims to compare several algo-
rithms commonly used in the SBD method and modify the 

algorithm so that it is suitable for bathymetric mapping in 
the study area.

2. Study area

Figure 1 illustrated the research location on the north 
coast of Java Island, precisely in Kaliwungu waters, Ken-
dal, Central Java, which is geographically located at 
6.9375–6.9023 °S, 110.2907–110.3268 °E. These waters are 
included in the category of shallow waters with a depth of 
0–6 meters and relatively in a calm conditions, constant 
wave and current conditions according to the season. The 
area around the research location is saturated with ply-
wood mills, so ships transporting or pulling wood often 
pass through it. The concentration of total suspended mat-
ter around the study site ranged from 9–106 mg/L and the 
concentration of Chlorophyll-a ranged from 1–9 mg/m3 

(Maslukah et al., 2022). According to Yuliastini et al. (2023), 
the Kaliwungu coast is classified as moderate vulnerability 
with a Coastal Vulnerability Index (CVI) of 21.38.

3. Data and methods

3.1. Tools and materials
This research used Sentinel-2 imagery which is available 
for free on the GEE platform. Although the Sentinel-2 
image has many bands, we only captured the blue (B2), 
green (B3), red (B4), and near-infrared/NIR (B8) bands. GEE 
provides two types of Sentinel-2 images, namely: (1) Level-
1C orthorectified top-of-atmosphere reflectance (TOA), an 

Figure 1. Research location for bathymetric model analysis. The image is a Sentinel-2 image composite used for analysis
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image that describes the reflectance of sunlight reaching 
the upper atmosphere and reflection from the ground sur-
face. This image needs further processing to reduce the in-
fluence of the atmosphere to produce an atmospherically 
corrected image. (2) Level-2A orthorectified atmospheri-
cally corrected surface reflectance (SR) or Bottom-of-At-
mosphere (BOA), images that have gone through atmos-
pheric correction and provide reflectance values that are 
reflected directly by objects on the earth’s surface. Shallow 
water areas often have high levels of turbidity, which can 
affect the absorption and scattering of light by the water. 
The use of SR imagery can provide more accurate infor-
mation about the amount of light reflected by the water 
surface (Kuhn et al., 2019). This study uses harmonized SR 
imagery (S2_SR_HARMONIZED). Harmonized images are 
images that have gone through a normalization process 
to eliminate atmospheric and instrument differences be-
tween various images taken at different times and condi-
tions. These images provide consistency of image values 
over time and allow for more accurate comparison and 
analysis between images. Harmonized Sentinel-2 product, 
integrates L8/OLI and S2/MSI input data into a consistent 
data set with higher temporal frequencies (2–4 days) and 
standard spatial resolution (Chaves et al., 2020).  

Several factors are considered when selecting an image 
from the cloud, including cleanliness and recording time. 
The image recording time determines the depth correction 
value between high and low tide when field data is collect-
ed. Six Sentinel-2 scenes at different times are composited 
and the average value for each band is calculated (Table 1).

Satellite image processing was conducted using Google 
Earth Engine. This platform was chosen for its robust capa-
bilities in handling large geospatial datasets and applying 
complex image analysis algorithms. For testing accuracy, 
RStudio was utilized to calculate performance metrics such 
as coefficient of determination ( 2R ) and Root Mean Square 
Error (RMSE). Map visualization was performed using Ar-
cGIS software.

3.2. Field data acquisition
In situ bathymetry data from the sounding results were 
used to train, validate, and test the SDB model. A total 
of 300 points were used for training and validation, and 
100 points were used for accuracy testing. The data was 
obtained using the Garmin GPSmap 585 Sounder, which 
operated using a dual-frequency (50/200 kHz) transducer 

and equipped with a Garmin GPS antenna. This type of 
echo sounder is widely used for bathymetry measure-
ments (Kumaat et al., 2021; Lubis et al., 2020; Purba et al., 
2022). The total route was 20 km with a total of more than 
2000 points and the average distance between points was 
15 meters.

The sounding data was extracted into xyz format 
where the x and y values indicate the coordinate position, 
while the z value indicates the depth value. The data was 
previously corrected with tidal data and the depth of the 
transducer installation. Based on tidal data for 15 days, 
it is known that the sounding was done when the tide 
is between –0.03 and 0.13 meters. The depth data from 
echosounder measurements is reduced by the tides using 
Equation ((1)).

( )= − + 0 .t tr TWL MSL Z  (1)

In this equation,  tr – the magnitude of the reduction 
(correction) given to the measurement value at time t, 

 tTWL – the true water level at time t,  MSL – the mean sea 
level, and 0  Z – low tide depth below MSL. Then, the actual 
depth value was determined using Equation ((2)):

= − ,tD dT r  (2)

where  D – actual depth,  dT – transducer corrected depth, 
and  tr – ocean tide reduction. Then, the actual depth point 
values that have been scattered were processed using 
mapping software to be interpolated. Interpolation is 
the process of predicting the value at a point that is not 
a sample point, based on the value of the surrounding 
points that are sampled. Interpolation returns values for 
locations where data is not available. The interpolation 
method used in this study is Kriging. Kriging is recognized 
as superior for constructing bathymetric data compared 
to other interpolation methods such as Inverse Distance 
Weighting (IDW) (Ferreira et al., 2017). The Kriging pro-
cess was conducted with a grid resolution that adjusts 
the spatial resolution of the Sentinel-2 imagery, which is 
10 meters.

3.3. Satellite image processing
The processing stage was begun with separating land and 
sea (masking). This stage aims to prevent the land area 
from being processed when entering the shallow water 
bathymetry algorithm. Masking process conducted with 
Normalized Difference Water Index (NDWI) algorithm, 

Table 1. Sentinel-2 image used for analysis

Id Image Time (UTC+7) Tide (m)

20210421T024541_20210421T025916_T49MDN 21 April 2021 09:45:41 –0.03
20210423T023539_20210423T025728_T49MDN 23 April 2021 09:45:39 –0.02
20210426T024539_20210426T030731_T49MDN 26 April 2021 09:45:39 0.12
20210511T024551_20210511T025920_T49MDN 11 May 2021 09:45:51 0.18
20210516T024549_20210516T025931_T49MDN 16 May 2021 09:45:49 0.26
20210521T024551_20210521T025921_T49MDN 21 May 2021 09:45:51 0.03
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which assesses the wettability of an area by comparing 
the values of the green reflectance band (B3) and the near 
infrared band (B8) (McFeetters, 1996). This algorithm has 
been widely used to separate terrestrial and aquatic (Aryal 
et al., 2021; Cordeiro et al., 2021; Ngoc et al., 2019). The 
algorithm from NDWI is given in Equation ((3)).

−
=

+
3 8  .
3 8

B BNDWI
B B

 (3)

A total of 70% of the 300 points used for training 
were selected to represent various depth values. These 
points were used to study the relationship between the 
input variable (reflectance values from satellite images 
in each band) and the output variable (bathymetry val-
ues). Through several iterations, the model adjusted its 
parameters to minimize prediction error. The remaining 
30% of the points were used for model validation. This 
process was carried out to prevent overfitting, where 
the model may perform well on training data but not 
on new data.

The depth values were obtained using several com-
monly used algorithms and modified algorithm developed 
by the author. The first algorithm is Lyzenga (1985). Sea 
surface radiation is the result of bottom reflection and 
light attenuation through the water column underlies the 
development of the Lyzenga algorithm (Rossi et al., 2020). 
The approach considers light attenuation exponential re-
lationship with water depth and uses a linear transforma-
tion function to relate observed reflectance values to water 
depth. This model uses linear regression to obtain shallow 
water depth values from multispectral images, so it is also 
called a linear algorithm. The Lyzenga algorithm is widely 
applied to shallow water areas (Aulia et al., 2020; Prasetya 
et al., 2023; Westley, 2021). The Lyzenga algorithm used is 
described in Equation ((4).

=
= +∑

3
0 11

.  tt
Z m m R  (4)

In this equation, Z  – depth of prediction in meters, 
0m  = constant or regression intercept, 1m – regression 

coefficient in each band, and tR – reflectance value of each 
band. The constants 0m  and 1m  are obtained from the 
results of analysis using multivariate regression. We use 
a combination of the three bands Red, Green, and Blue 
so that we can produce an R2 of 0.93 and an RSME of 
0.26 meters. The regression equation becomes as follows:

= − − +6.7863 0.0064  0.01 .36  0.0159 red green blueZ R R R  (5)

The Stumpf Algorithm (Stumpf et al., 2003) was ap-
plied for the second algorithm. This model assumes that 
reflections on certain band absorb more slowly than re-
flections from other bands. Consequently, the ratio of 
the high absorption band to the low absorption band 
will display a linear decrease with depth when both are 
log-transformed. This algorithm is also known as the Ra-
tio Algorithm because it uses the ratio of observed object 
reflections and two constants that can be adjusted to get 

the water depth (Equation ((6)). 

( )
( )

−×= 1 0
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  ,
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b

g

R
Z m m
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 (6)

where Z – the prediction depth in meters, m1 and m0 are 
constants and regression intercept, Rb – the reflectance 
value in the blue band, and Rg – the reflectance value 
in the green or red band. The combination of the Blue 
and Green bands gives an R2 value of 0.89, an RMSE of 
0.32 meters, and Equation (7):

( )
( )

= −
ln

144.3 × 1  37.2.
ln

blue

green

R
Z

R
 (7)

The Stump Algorithm was modified by including the 
Red channel, which produces a better R2 value, 0.93, and 
RMSE of 0.26. The modified equation becomes Equa-
tion (8):

( )
( ) ( )

= × −
+

ln
173.9 85.14.

ln ln
blue

red green

R
Z

R R
 (8)

3.4. Accuracy test
An accuracy test was conducted to assess the per-
formance of the developed model. This test involved 
comparing the actual depth values with the model’s 
predicted depth values. The evaluation was performed 
using 100 points different from those used in the train-
ing and validation processes. To evaluate the accuracy 
of the bathymetric estimation, we use the coefficient of 
determination/ 2R  (Equation ((9)) nd Root Mean Square 
Error/ RMSE  (Equation ((10)).
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where n – the number of samples, preZ  represents the 
predicted depth value in meters obtained from image pro-
cessing, and obsZ  represents the sounding depth value in 
meters. 2R  is a statistical measure to assess how well a 
regression model makes predictions. This value provides 
information about the proportion of variance in the de-
pendent variable that the independent variables can ex-
plain. 2R values range from 0 to 1; the closer the value 
is to 1, the better the model describes the data variance. 
RMSE  is a metric used to measure the error level in a pre-
dictive model. In other words, RMSE  indicates the average 
difference between predicted and actual values. A lower 
RMSE  value indicates that the model has better accuracy 
in predicting the actual values.
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4. Results and discussion

The GEE platform used in this study is a cloud-based ge-
ospatial analysis platform that allows fast processing of 
large data sets. Figure 2 depicts the bathymetry values 
in the study area. Bathymetry data from sounding results 
are interpolated to obtain a raster view of the depth from 
the points (Figure 2a). The results of the SDB model with 
three algorithms are shown in Figure 2b, 2c, 2d. Visually, 
all SDB models conform to the reference bathymetry im-
ages. Depth values can be estimated SDB, even in places 
where there is no data in the reference bathymetry images. 
Depth values in the study area are in the range of 0–8 me-
ters with gently sloping seafloor contours.

Generally, the three SDB algorithm models successfully 
mapped bathymetry at the site. The Stumpf algorithm is 
simpler and easier during the processing stage. The basic 
principle of the Stumpf algorithm is that each band has 
a different absorption rate in the water body. This differ-
ence in absorption rate results in the ratio between the 
bands, which consistently changes along with the change 
in depth. Theoretically, an increase in band ratio would 
indicate an increase in depth (Said et al., 2017). The bands 

with higher absorption rates will continue to decrease as 
the depth increases. However, this model gives slightly 
grainy results compared to the Lyzenga model which has a 
cleaner finish. The Lyzenga algorithm requires more com-
plicated techniques at the processing stage because this 
model applies the multiple regression method. The third 
algorithm which is a modified Stumpf algorithm produces 
results similar to Lyzenga algorithm but is easier to imple-
ment since linear regression is the only method used.

The results of the comparative analysis between the 
in-situ survey and the SDB have been presented in Fig-
ure 3. Figure 3 illustrates that the depth contour pat-
terns are almost similar between the three methods. 
However, there are differences in the depth values 
generated using the Stumpf algorithm. In this case, the 
pattern formed by the Stumpf algorithm (blue line) ap-
pears to be unstable, with a tendency to over-estimate 
or under-estimate the depth value compared to the 
other two algorithms which tend to under-estimate the 
depth value. All three algorithms revealed larger errors 
for deeper points. The accuracy of bathymetry mapping 
with SDB is affected by the depth of the water. Duan 
et al. (2022) stated that the SDB model tends to provide 

Figure 2. A depth value of in-situ data processing results and Sentinel-2 Imagery: a – results of in-situ data interpolation; b – 
SDB using the Lyzenga equation; c – SDB using the Stumpf equation; and d – SDB using the modified Stumpf equation

a) b)

c) d)
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more precise results in shallow water areas, but has a 
significantly higher error rate in deeper waters.

According to Figure 4, all algorithm figures displayed 
a good linear trend. The best relation is shown by the 
Lyzenga algorithm (R2 = 0.94), followed by the modified 
Stumpf algorithm (R2 = 0.93), and the Stumpf algorithm 
(R2 = 0.88). The RMSE value indicated that Lyzenga has 
the smallest error value, which was 0.23 m, followed by 
the modified Stumpf (0.24), and Stumpf (0.32). Lyzenga 
algorithm has been widely used in bathymetry mapping. 
The use of the Lyzenga algorithm in this study has the 
best accuracy value. These results were also found in 
a study conducted by (Rossi et al., 2020), in which the 
study compared the Lyzenga algorithm with other meth-
ods, where the Lyzenga algorithm produced the most 
accurate results.

The SDB algorithm is strongly influenced by the 
characteristics of the existing seafloor substrate. Sev-
eral factors, such as sediment type, rock structure, and 
vegetation, significantly affect the depth estimation re-
sults produced by this algorithm. Different types of sub-
strates can give different error values. The sand-based 
substrate type is the best type of substrate to apply 
SDB (Li et al., 2023). Sand has greater physical stability 

than mud. This minimizes the disturbance caused by wa-
ter movement, providing more consistent data for the 
SDB algorithm to process. The seafloor substrate type in 
the study area is dominated by sand. Therefore all SDB 
model results have good accuracy (RMSE ≤ 0.32 m). 

In addition, the content of both dissolved and un-
dissolved particles also affects the results of estimat-
ing the depth value using the SDB method. There are 
several parameters that influence optical processes in 
water, including total suspended solids (TSS) and chlo-
rophyll-a concentrations (Caballero et al., 2019; Mudi-
yanselage et al., 2022). High concentrations of TSS can 
trigger light scattering and absorption, reducing the 
ability of satellite imagery to obtain accurate informa-
tion about the seafloor substrate. Meanwhile, the con-
centration of chlorophyll-a can affect the color of the 
water. The high concentration of chlorophyll-a in the 
waters can cause spectral changes in satellite images. 
An increase in chlorophyll-a content tends to give the 
water a greener or murkier color, which can affect the 
quality of satellite imagery. These spectral changes can 
affect the depth estimation using the SDB method. The 
presence of a higher concentration of suspended matter 
can affect the accuracy of the depth value and reduce 

Figure 3. The SDB profile uses three different algorithms compared to the depth profile survey results (b); a transect 
perpendicular to the coastline located in the middle of the study area (a)

a) b)

Figure 4. Scatter plot validation of the predicted depth value (y-axis) against the depth of the in situ measurement 
results (x-axis), the 1:1 line is shown in red: a – implementation of Lyzenga (Equation (5)); b – implementation of Stumpf 
(Equation (7)); and c – implementation of modified Stumpf (Equation (8))

a) b) c)
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the maximum depth limit that can be measured (Casal 
et al., 2020). In order to estimate water depth using 
SDB, other water parameters must be considered. How-
ever, the SDB algorithm can be used for a variety of 
applications, including maritime navigation, monitoring 
changes in wetlands, and understanding the dynamics 
of aquatic ecosystems. The SDB algorithm is expected 
to make a significant contribution to efficiently mapping 
and monitoring aquatic environments with advances in 
technology and analysis.

5. Conclusions

This paper compares the bathymetry values derived from 
satellite imagery in shallow waters obtained through three 
different algorithms. The results of this study provide 
knowledge about the effectiveness and accuracy of each 
algorithm in the context of bathymetric mapping using 
satellite imagery. The Lyzenga algorithm provides reli-
able estimates of shallow water depths, as indicated by its 
highest coefficient of determination. By exploiting a sta-
tistical relationship between the reflectance of light from 
the seafloor and the actual depth, this algorithm is able 
to provide accurate and consistent estimates. However, 
Lyzenga algorithm requires multiple regression analysis, 
which is quite challenging to implement. The algorithm 
that we developed from the modification of the Stumpf 
algorithm can be another alternative. This algorithm gives 
a coefficient of determination and error that is not much 
different from the Lyzenga algorithm.
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