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Article History:  Abstract. Land Surface Temperature (LST) is a crucial variable across various domains, including studies on 
the global ramifications of climate change, urban land use and cover, and geo- and biophysical modelling. 
Satellite data from Landsat 8, specifically the NIR channel, was utilized to generate LST maps, NDVI, and LU/
LC for Dahuk City. The correctness of LULC maps was verified by ground observation locations. The results 
indicate that the LST ranged from 4 to 14 degrees Celsius in 2013 and from 10 to 20 degrees Celsius in 
2023. The highest temperatures, ranging from 14 to 20 degrees Celsius, occur in urban areas, whilst the 
lowest temperatures, recorded in 2013 and 2023, are in forests and aquatic environments, measuring 4 and 
10 degrees Celsius, respectively and this occurred because of unplanned expansion of urban areas on behalf 
of green area as indicated by NDVI. Through this study planners and decision making could predict the fu-
ture increase in LST if no action taken against these activities.
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1. Introduction

The planetary boundary layer’s integrated thermal state 
and the Land Surface Temperature (LST) are both sig-
nificant climate variables. The latter is connected to the 
balance of surface energy. An estimation of the surface 
temperature of the planet, or the entire surface medium 
that the sensor views, in terms of kinetic temperature, is 
provided by satellite LST products down to a depth of 
around 12 meters (Becker & Li, 1995). Typically, the tem-
perature of the skin is equal to the average effective radia-
tive temperature of different soil and canopy surfaces. Skin 
temperature is determined by measuring the earth’s sur-
face thermal emission (Hall et al., 1992; Betts et al., 1996). 
LST controls upward terrestrial radiation, which regulates 
heat flux exchange with the atmosphere, both sensible 
and latent, on the surface, besides playing a crucial role in 
processes related to land surface (Aires et al., 2001; Sun 
& Pinker, 2003). Surface temperature estimation from R.S 
data has received a lot of attention (Li et al., 2013; Qin & 
Karnieli, 1999; Schmugge et al., 2002; Zhou et al., 2012; 
Ibraheem, 2022) for a variety of purposes, several writ-
ers have worked with remote sensing to determine LST. 

Using evapotranspiration modeling as an illustration. The 
assessment of soil moisture (Ahmad et al., 2010; Ibraheem, 
2023) as well as climate, hydrological, ecological, and bio-
geochemical investigations (Bhaga et al., 2020) is all de-
pendent on knowledge of the LST. Access to accurate LST 
estimation at vast geographic and temporal dimensions 
is therefore crucial. Field measurements are practically 
useless for obtaining such information, however satellite 
thermal infrared observations are very desirable since they 
provide access to spatiotemporal data that is necessary 
for LST calculation. One of the primary prerequisites for 
conducting a climate change analysis is tracking changes 
in land cover/cover (LULC) at the regional level during a 
certain time period. The exchange of materials and energy 
between the earth’s surface and lower atmosphere must 
be calculated, LST is the most significant environmental 
parameter (Feddema et al., 2005; Ibraheem & Al-Hadithi, 
2024). There are several factors that impact LST that indi-
cate that land cover change has a significant impact on the 
climate, such as precipitation (Joshi et al., 2020; Yagoub, 
2015). Soil moisture and vegetation water stress have been 
measured in certain research using the vegetation index 
and LST (Joshi et al., 2020; Nivedha et al., 2017).
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2. Materials and methods

2.1. Study area
Dahuk is in the northwest of the country of Iraq. It is 
situated in the center of Iraqi Kurdistan, near the meet-
ing point of the borders of Syria, Turkey, and Iraq, giving 
it a strategic position. Dahuk lies surrounded by moun-
tains, hills, and valleys. Its area (6595) km2. It takes the 
shape of an irregular rectangle, and passes a line 43 E. 
Where it extends between the eastern longitude 44° 10’ E 
and 43° 10’ E and the northern latitudes of 37° 20’ and 
36° 40’ N as shown in Figure 1. It has a population of 
about 1,523,602 people.

Figure 1. Location of the study area on the map

2.2. Data used
The first image was obtained on April 19, 2013, and the 
second image was obtained on April 15, 2023, both from 
the Landsat 8 OLI/TIRS. In this research, all bands were 
used, for locating LST (Table 1).

Table 1. Contains information about the remote sensing 
satellite data used

Bands (µm)
Landsat 8 OLI and TIRS

Resolution (m) Wavelengths (µm)

Band 1-Coastal/Aerosol 30 m 0.435–0.451
Band 2/Blue 30 m 0.452–0.512
Band 3/Green 30 m 0.533–0.590
Band 4/Red 30 m 0.636–0.673
Band 5/NIR 30 m 0.851–0.879
Band 6/SWIR-1 30 m 1.566–1.651
Band 10/TIR-1 100 m 10.60–11.19
Band 11/TIR-2 100 m 11.50–12.51
Band 7/SWIR-2 30 m 2.107–2.294
Band 8/Pan 15 m 0.503–0.676
Band 9/Cirrus 30 m 1.363–1.384

3. Methodology

3.1. Pre-processing images
ArcGIS 10.3 was used to import and process images. The 
images were processed visually and digitally. Band 10 of 

the thermal infrared spectrum was chosen for further re-
search. The area of interest was subset from the whole 
sceneries using shape files.

3.2. Analyzing images
ArcGIS 10.3 was used in the method’s construction. In this 
work, the Normalized Differential Vegetation Index (NDVI) 
was computed using bands 4 and 5, and brightness tem-
peratures were determined using Landsat 8 Thermal Infra-
red bands (Band 10). The USGS webpage included the LST 
retrieval procedures for getting top of atmosphere (TOA) 
spectral radiation. Following the procedures in Figure 2, 
the LST was retrieved. Table 1 displays the satellite image 
metadata that was used in the algorithm.

Figure 2. Methodology flowchart

3.3. Estimation of (LST) using Landsat 8 
Satellite images
The details of the steps for estimating the LST are dis-
cussed below 

Step 1: Transformation of digital numbers into top 
of atmospheric spectral radiance (TOA) 

Using the radiance rescaling parameters listed in the 
metadata file, the Thermal band data (DN) was trans-
formed to TOA spectral radiance (Avdan & Jovanovska, 
2016). 

L λ = ML × Qcal + AL, (1)
where: L λ – Spectral radiance of TOA; ML – Band-specific 
multiplicative rescaling factor computed from metadata; 
AL – An additive rescaling factor particular to a band is ob-
tained from the metadata; Qcal – Standard product pixels 
that have been quantized and calibrated (DN).

Step 2: Satellite brightness temperature to TOA 
conversion

The thermal constants in the MTL file can be used to 
convert thermal band data from spectral radiance to top 
of atmospheric Brightness temperature.
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where: BT – Brightness temperature of the atmosphere; 
K2 – Thermal conversion constant specific to bands from 
the metadata; L – Spectral radiance of the top of atmos-
phere; K1 – Thermal conversion constant of specific band 
taken from metadata.

Step 3: NDVI computation
Based on RS data, the NDVI is produced, has a strong 

correlation with conditions of drought. The different vis-
ible and near-infrared wavelengths of sunlight reflected 
by the plants are used to determine the density of green 
on a given plot of land; Bands 4 and 5, which correspond 
to the red and near-infrared regions, were used to com-
pute the Normal NDVI, respectively. Since the amount of 
vegetation present is a significant variable, estimating the 
NDVI is important since it may be used to infer the general 
status of the vegetation. Following the NDVI calculation, 
the vegetation proportion (PV), which is closely related to 
the NDVI, and emissivity (ε), which is related to the PV, 
should be determined. The NDVI which ranged from –1 
to 1, was calculated using the differences in green vegeta-
tion’s near-infrared and red reflectance. The following for-
mulas were used to determine the NDVI: Band 4 is the red 
band, or R, while Band 5 is the near-infrared band, or NIR.

NDVI = NIR RED
NIR RED 

−
+

.  (3)
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Figure 3. NDVI 2013 and 2023

Step 4: Finding the vegetation proportion
The percentage of the ground area covered by veg-

etation in a vertical projection is known as the vegetation 
fraction, sometimes referred to as the proportion of veg-
etation. When the vegetation cover changes, the land’s 
water and energy budgets are instantly impacted by plant 
transpiration, surface albedo, emissivity, and roughness 
(Aman et al., 1992; Ibraheem & Al-Hadithi, 2022). The 
NDVI values for both soil and vegetation have a strong 
correlation with the percentage of vegetation (Rouse et al., 
1974).

Pv = ( NDVI NDVIs
NDVIv  NDVIs  

−
−

), (4)

NDVIv and NDVIs are the maximum and minimum NDVI 
values which stand for the respective NDVIs of soil and 
vegetation, respectively.

Step 5: Calculating the emissivity (ε)
To calculate the emissivity, use the formula below (Sobrino 
et al., 2004).

ε = 0.004 × PV + 0.9860,  (5)
where: PV – the percentage of vegetation.

Step 6: Land surface emissivity calculation
Below is the LST, which has been corrected for emissivity 
(Stathopoulou & Cartalis, 2007):
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The emitting radiation’s wavelength, λ, is the LST in 
Celsius (for which the limiting wavelength’s average and 
peak responses are present). To be used is (λ = 10.895) 
(Barsi et al., 2014a), where ελ is the emissivity computed 
in (Barsi et al., 2014b; Azua et al., 2020; Xu et al., 2004).

4. Results and discussion

Maps representing the study’s findings include distribu-
tions of LST, NDVI, and alterations to the study area’s land 
use and cover.

4.1. Classification 
Many prior researches have employed both supervised 
and unsupervised classification in large amounts to create 
classifier maps and final output analyses. It has been not-
ed that the majority of supervised case classifications are 
more accurate (Erol & Akdeniz, 1998). This study employed 
supervised categorization, which necessitates manual sam-
pling for every area. High accuracy, a very low error rate, 
quick region classification, and area computation for each 
recognized region are the distinguishing features of this 
classification method.

This study employed supervised classification. Accord-
ing to the results, the area was classified into four primary 
classes based on the satellite images in order to show the 
changes in land use depicted in the maps that were cre-
ated for the periods of April 2013 and April 2023 (Figure 4). 
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Figure 4. Supervised classification for the study area (2013 
and 2023)
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Water bodies, vegetated land, bare land, and built-up areas 
are these classes. Overall accuracy and the kapa coefficient 
were used to assess the accuracy of the classifications; the 
results were 91.1% and 91.3%, respectively. Google Earth has 
been used to compare the 34 reference points in 2023 and 
the 46 reference points in 2013 that were selected to repre-
sent various land use types with their “ground truth” Class 
type. The calculated total accuracy (91.3%) is higher than the 
Kappa value (91.1%). Differences between these two mea-
sures are to be expected, as each combines different kinds 
of information from the error matrix. Errors by commission 
and omission are not included in the overall accuracy; only 
data along the major diagonal is. Nevertheless, the nondi-
agonal components of the error matrix are included as a row 
and column marginal product. As shown in Tables 2 and 3.

Overall accuracy = TCS (diagonal)/TS × 100; (7)

Kappa coefficient (T) = (TS × TCS) – S(Column total × 
Row total)/TS2 –S(Column Total – Row Total) × 100,

(8)
where: TS – Total number of reference pixels; TCS – Total 
number of correctly classified pixels.

4.2. Land use/land cover change detection
Effective community participation and management of 
agricultural areas has the ability to identify and recognize 

changes in land use and cover. This allows monitoring 
changes in land use. The information on land cover that is 
now available aids in determining land use patterns and 
the variables that affect them.

By examining satellite photos, as shown in Figure 4, 
changes in agricultural cover, urban regions, and desolate 
lands between 2013 and 2023 were discovered. The area 
covered by buildings and barren ground increased from 
17% and 15% to 42% and 27% of the entire research 
area, respectively, when comparing the percentage of 
change in land cover of the study area. In contrast, the 
area covered by vegetation and water have decreased 
from 46% and 22% to 29% and 2% as shown in Figure 5 
and Table 4.

Table 4 representative of the research area’s whole 
LULC area, which is about (6595) km2. Particularly in ur-
ban areas where they have greatly increased, LULC has 
grown. Table 4 shows that between 2013 and 2023, the 
building types have a big growth from (998.08) km2 
to (1767.79) km2. The barren area increased from 
(1125.5 km2 to 2743.3 km2) through the years 2013–
2023, whereas the area covered by water increased from 
(1417.04 km2 to 166.31 km2) through the years 2013–
2023. Vegetation area decreased from (3054.38 km2 to 
1917.6 km2), respectively from 2013 to 2023, as shown 
in table below.

Table 2. Accuracy assessment using the selected reference pixels in 2013

Total (User)Built up areaBarren landVegetationWaterClassification 

90009Water
1813140Vegetation
70700Barren land 
1212000Built up area
461310149Total producer

Table 3. Accuracy assessment using the selected reference pixels in 2023

Total (User)Built up areaBarren landVegetationWaterClassification 

70007Water
90090Vegetation
1201200Barren land 
63120Built up area
34313119Total producer

Table 4. The different land uses and regions in the research area between 2013 and 2023

Type of use
2013 2023 Change detection

Area km2 Area % Area km2 Area % Area km2 Area %

Water 1417.04 22% 166.31 2% –1250.73 –20%
Vegetation 3054.38 46% 1917.6 29% –1136.78 –17%
Barren land 1125.5 17% 2743.3 42% 1617.8 25%
Build up area 998.08 15% 1767.79 27% 769.71 12%
Total 6595 100% 6595 100%
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4.3. Land surface temperature map
The study area absolute LST map is the research’s output 
for the study region. In Figure 3, the resulting LST map is 
displayed. Temperature ranges reported by LST readings in 
2013 and 2023 were (4–14) and (10–20) degrees Celsius, 
respectively. For the entire region, the maximum LST rose 
by 6 °C from 14 °C in 2013 and 20 °C in 2023. Simultane-
ously, the minimum temperature rose to 6 °C from 4 °C to 
10 °C, as showing in Figure 4. The 2013 images were taken 
on April 19, 2014 and the 2023 images on April 15, 2023. 
Possible climate change effects include these changes.
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Figure 6. LST 2013 and 2023

Figure 6 shows the location of the LST in Dahuk City, 
the LST values ranged between (4–14) and (10–20) °C. 
A variety of LULC categories, such as water bodies, green-
ery, wasteland, and high-rise buildings are dispersed over 
huge areas present throughout the city. The majority of 
the research region is high mountainous terrain where 
temperatures are lower, like the 4 and 10 °C that were 
recorded there.

5. Conclusions

This study used multi-temporal remote sensing data to 
monitor changes in land use and land cover and how they 
affect LST in Dahuk Governorate. The strategies employed 
in this inquiry to accomplish the goals of the study proved 
effective. The aim of the study was to determine the impact 
of changes in land use categories on LST. Dry ground, urban 

areas, water bodies, and vegetated regions were separated 
from the research area. Political and socioeconomic forces 
reduced the size of water bodies and increased the growth 
of building areas, whereas vegetation and arid land reduced 
during the course of the research period. It is clear that 
there is a connection between LST and LULC. The study 
demonstrated that as LST values fluctuate, so do the various 
classifications of land cover; For example, vegetation areas 
and water bodies were high in 2013 when temperatures 
were low while the percentage of those areas decreased 
when temperatures increased in 2023.
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