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(Zhang et al., 2018; Agüera-Vega et al., 2020), digital el-
evation models (DEM) (Peterson et al., 2019; Mishra et al., 
2020), canopy height models (CHM) (Tian et al., 2019; 
Zhang et al., 2021), tree surface models (Münzinger et al., 
2022; Nguyen et al., 2022), ice surfaces (Alfredsen et al., 
2018; Huang et al., 2019), and building surfaces (Wang & 
Kim, 2019; Chen et al., 2022).

Terrain refers to the geometric characteristics of a spe-
cific landscape surface, particularly its elevation, slope, as-
pect, and other morphometric parameters. In digital con-
texts, terrain is defined as a two-dimensional continuous 
field of elevations that represent terrain shapes. This rep-
resentation exists within a 3D space using raster models 
(Šašak et al., 2019; Dolejš et al., 2020). Vector models, such 
as irregular triangulated networks (TIN) (Ai et al., 2019), 
or mesh structures (Gallay et al., 2015; Harding et al., 
2021), are also used. In certain applications, a discontinu-
ous yet densely populated point cloud (e.g., with more 
than 1000 points/m2) can be employed as an alternative 
representation (Šupinský et al., 2019; Kuželka et al., 2020). 
A common research objective related to terrain is exam-
ining changes over time, such as the volumetric altera-
tions in rock material and soil, whose surfaces exemplify 
the terrain. It is related, for example, to the dynamics of 

1. Introduction

Remote sensing (RS) technologies are designed for topo-
graphic mapping and enable the parameterization of the 
intricate geometric structures of various terrain features. 
RS technologies offer an unparalleled level of spatial reso-
lution (LoSR) and can capture data over arbitrary time in-
tervals (Casagli et al., 2017; Zhong et al., 2019; Lissak et al., 
2020; Alvarez-Vanhard et al., 2021). The quality of the data 
is crucial when studying terrain changes, especially given 
the need for repeated measurements to ensure efficient 
data collection. At present, the predominant methods for 
monitoring landslides are RS techniques that employ laser 
scanning (Abellán et al., 2011; Pellicani et al., 2019; Jiang 
et al., 2021; Marotta et al., 2021; Kermarrec et al., 2022) 
and photogrammetry (James & Robson, 2012; Scaioni 
et al., 2015; Antoine et al., 2020; Devoto et al., 2020; Kyri-
ou et al., 2021; Mineo et al., 2022). These geospatial data 
collection methods yield a discrete point field of eleva-
tions, commonly known as a point cloud, which character-
izes exceptional spatial resolution and accuracy (Guerra-
Hernández et al., 2018; Tian et al., 2019; Dong et al., 2020). 
After further processing, this data can be used to generate 
various surface types such as digital terrain models (DTM) 
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landslides and rocks (Kyriou et al., 2021; Mazzanti et al., 
2021; Meng et al., 2021; Stumvoll et al., 2021), erosion of 
coastal cliffs (Devoto et al., 2020; Caputo et al., 2018; De 
Sanjosé Blasco et al., 2020; Roulland et al., 2022), by the 
transformation of the river bed (Calle et al., 2018; Nour-
bakhshbeidokhti et al., 2019; Akay et al., 2022), erosion of 
river banks (Duró et al., 2018; Rice et al., 2021), and other 
related phenomena.

The quantification of terrain volume changes is based 
on the distance between at least two DTMs, which capture 
the terrain features at different moments in time (Abel-
lán et al., 2011; Meng et al., 2021). The raster approach, 
which calculates height differences between identical grid 
cells (Woolrad & Colby, 2002; Mitasova et al., 2009; Sailer 
et al., 2012), is frequently employed in volume change 
analyses. This method is especially appropriate for pla-
nar terrains without notable fragmentation in the vertical 
dimension (e.g., surface inclinations over 60 degrees) or 
dramatic elevation changes, such as rock walls.

Conversely, for terrains with vertical dissections like 
rock walls, overhangs, and caves, 3D polyhedral networks 
or mesh models are utilized in DTM creation. These models 
better express the nuanced complexity of terrain shapes 
(Peytavie et al., 2009; Mancini et al., 2017; Gallay et al., 
2018). There is an abundance of software and toolboxes 
available for volume change analysis. From a theoretical-
methodological perspective, these tools utilize methods 
that determine the Euclidean distance in set directions (for 
instance, along the Z-axis or the shortest distance within a 
specified search window) between two raster layers (DoD) 
(Williams, 2012), point clouds (C2C) (Girardeau-Montaut 
et al., 2005), a combination of a point cloud and mesh 
(C2M) (Barnhart & Crosby, 2013), or different directions 
using a multiscale model. This multiscale model compares 
two point clouds to identify corresponding properties of 
normal vectors (M3C2) (Lague et al., 2013). 

Furthermore, varying LoSR of DTM are employed for 
volume change estimations, heavily influenced by the 
quality of the input data used to produce the DTM and 
the scope of the territory being examined. Consequent-
ly, disparate LoSRs of DTM, data structures, and volume 
change estimation methodologies can yield divergent 
results.

The paper at hand focuses on calculating the volume 
changes of a landslide observed over a 5-year monitoring 
period. Comprehending the dynamics of river sediment 
input, transport, and deposition is vital for identifying 
sediment fluxes, assessing sediment budgets, and effec-
tively managing river systems (Rusnák et al., 2020). The 
monitored landslide is typified as an undercut vertical 
cliff adorned with overhangs and multiple slopes exceed-
ing 60 degrees in steepness (Figure 2). Such character-
istics imply that conventional methods for calculating 
landslide volume changes using a raster approach might 
introduce some level of error in the volume computa-
tions. Additionally, variations in volume estimations can 
also be influenced by the properties of the DTM data 
structure and its LoSR.

Given this background, our primary research queries 
were:

 ■ How does the chosen method for volume change 
computation influence the resulting estimate? In 
this study, we juxtapose two methods for calculating 
landslide volume changes: one rooted in compar-
ing raster layers (R2R) and the other using 3D mesh 
models (M2M). Both methods portray the landslide 
terrain at two distinct moments.

 ■ How does the spatial resolution of the input data 
affect volume estimation? For this, we began with 
the hypothesis that as the spatial resolution of input 
data layers increases, the chosen method’s impact 
on volume change discrepancy would be more pro-
nounced. Yet, there exists a spatial resolution thresh-
old for input layers where the selected method’s 
influence on landslide volume change calculations 
becomes negligible.

2. Study area

The landslide area is located on the left bank of the Belá 
River, near the towns of Liptovský Hrádok and Vavrišovo 
village, in the northern part of Slovakia, specifically in the 
Liptov region (Figure 1).

The Belá River originates from the confluence of the 
Tichý and Kôprovský potok Brooks near Podbanské Vil-
lage and contributes to landslide formation in the area. It 
drains the mountainous regions of both the High Tatras 
and a significant portion of the Western Tatras Mountains. 
The river’s basin covers an area of 244 km², with elevations 
ranging from 630 meters above sea level (at the conflu-
ence with the Váh River) to 2494 meters above sea level 
(along the ridge of the High Tatras). The landslide under 
investigation spans approximately 5,100 m² and is situ-
ated about 6 km upstream from where the Belá and Váh 
rivers meet (see Figure 1a). The landslide’s lowest point, 
at 691 meters above sea level, is located at the edge of 
the Belá River, while its highest point reaches 725 meters 
above sea level at the landslide crown, presenting a rela-
tive elevation difference of 34 meters.

The examined area comprises clay loams derived from 
the less resistant calcareous claystones of the Huty forma-
tion (inner-Carpathian Paleogene), overlaid by coarser gla-
cifluvial sediments (Nemčok et al., 1994). The lower section 
of the cliff, in contact with the river channel, is covered 
with Holocene gravel sediments. This geological structure, 
along with the geotechnical properties of the rocks and 
various hydraulic and climatic factors, contributes to slope 
instability, increasing both erodibility and material move-
ment into the channel. While the tree vegetation on the 
leveled terrace at the top of the landslide, primarily con-
sisting of pines and spruces with shallow root systems, 
does offer some erosion resistance, its impact on subsoil 
compaction is limited (Zhang et al., 2022).

Vegetation, geological settings, and lateral erosion 
of the Belá River are primary drivers that determine the 
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evolution of landslides and cliff retreat. The central part 
of the landslide is formed by a slope that does not ex-
ceed 45°, with a gradual change in inclination. Conversely, 
steep slopes with an inclination of more than 60° cover 
approximately 20% of the landslide area (Figure 2). These 
parts are located at the foot of the landslide slope near the 
riverbed and are created by the river’s erosion of landslide 
accumulation. Similarly, steep slopes are also connected 
with the upper part of the landslide in the detachment 
zone of the main scarp. The upper part of the landslide 
and its crown edge are partially covered by tree vegeta-
tion. The root system of these trees ensures the compac-
tion of sediments and soil to a certain depth, but on the 
other hand, it destabilizes the main scarp with overhang-
ing blocks.

3. Methods and data 

3.1. Methodological approach
The analysis of volumetric changes in the studied land-
slide was conducted using terrestrial laser scanning 
(TLS) data obtained from two mapping campaigns in 
June 2016 and June 2020. The data layers for volumetric 
change analysis included TLS point clouds, which were 
used to derive DTMs in the form of 2D raster models 
and 3D polyhedral models (3D mesh models). To evalu-
ate the impact of different Levels of Spatial Resolution 
(LoSR), DTMs with spatial resolutions of 0.1 m, 0.25 m, 

0.5 m, 1 m, and 2 m were used. These DTMs were de-
rived from the filtered point cloud. For creating the DTM 
at a spatial resolution of 0.1 m, classified points from 
individual mapping campaigns representing the terrain 
were used based on the original, unfiltered point clouds. 
For DTMs with spatial resolutions of 0.25 m, 0.5 m, 1 m, 
and 2 m, input points with respective spatial resolutions 
of 0.05 m, 0.1 m, 0.2 m, and 0.5 m were utilized. The 
spatial extent of all point clouds for calculating volume 
changes was defined by a uniform polygon, which ex-
tended 5 m beyond the investigated landslide area. This 
was done to eliminate the edge effect when generating 
DTMs. The generated DTMs were then clipped to the 
polygon of the landslide area under investigation. Sub-
sequently, volumes for DTMs representing each LoSR 
were estimated, and volume changes during the moni-
tored period were analyzed. The methodological proce-
dure is illustrated in Figure 3.

3.2. Data collection and TLS raw data 
processing
Mapping campaigns were carried out in June 2016 and 
June 2020. Data collection was performed using a RIEGL 
VZ-1000 terrestrial laser scanner. During both mapping 
campaigns, 10 scan positions were established, with 7 po-
sitions located on the upper edge of the landslide and 3 
scan positions on the right bank of the Belá River, opposite 
the landslide.

Figure 1. The location of the study area – a landslide-cut cliff at the Vavrišovo site in the Liptov region, Slovakia. The landslide 
was undercut by the lateral activity of the Belá River (B). Part C illustrates the locations of the scanning positions (marked with 
red triangles), the computational extent for creating the Digital Terrain Model (DTM) (indicated by a grey dashed line), and the 
computational extent for volume change analysis (outlined in red)
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Figure 2. The slope of the area of interest in 2016 (a) and 2020 (b). Vertical profiles through the selected terrain parts (c, d) 
show terrain topography change during the monitored period

a) b)

c) d)

Figure 3. The methodological approach of the point cloud processing from two mapping campaigns (MC) and DTM creation, 
as well. Dashed line rectangles show the spatial resolution of input point clouds derived from the original point cloud 
resolution (R OR) and the spatial resolution of created 2D and 3D DTMs
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The placement of scanning positions was strategically 
chosen to eliminate obscurations of terrain forms and 
vegetation on the landslide, which appear in the resulting 
point cloud as dropouts of points or unmapped parts of 
the surface (Figure 1c). Due to the relatively small range 
of the area of interest, the scanner’s range was limited to 
450 m, and the laser pulse emission frequency was set 
to 300 kHz, achieving an effective measurement rate of 
122,000 pulses per second. The ‘Panorama 60’ parameter 
was also defined, whereby the scanner emits a laser pulse 
every 0.06° in both vertical and horizontal directions. This 
spacing results in a point distance of 6 cm at 100 m from 
the scanner and determines the density of the resulting 
point cloud.

Part of the data collection involved measuring the 
position of reference points using the Topcon HiPer II 
GNSS device. The position of these reference points was 
determined using differential position measurement in 
RTK mode, connected to the Slovak real-time positioning 
service (SKPOS). In total, 4 signaling targets were placed 
around the scanning positions, and their 3D positions were 
targeted by the GNSS device. The coordinates of these 
targets were used to transform the resulting point clouds 
from both mapping campaigns into a common coordi-
nate system, specifically the S-JTSK projection coordinate 
system (EPSG code: 5514) and the Baltic vertical datum 
after alignment (EPSG code: 8357). The TLS data were pro-
cessed in RiSCAN PRO software. This processing involved 
mutual registration – joining point clouds from individual 
scanning positions into a single point cloud. The standard 
deviation of registration of point clouds from individual 
campaigns was 0.004 m (June 2016) and 0.020 m (June 
2020), while the standard deviation of registration into the 
unified S-JTSK coordinate system and vertical datum was 
0.029 m (June 2016) and 0.025 m (June 2020), respectively.

The classification of points was processed in two steps 
due to the character of the research area and the vari-
ety of terrain features, which included significant vertical 
fragmentation, the occurrence of overhangs, and vary-
ing vegetation, including lying tree trunks. First, an au-
tomatic object classification algorithm was used, filtering 
out points with a high degree of position uncertainty and 
noise. In this step, a Deviation filter with a threshold value 
of ≤40 was applied, removing points with a high devia-
tion from the ideal laser pulse trace (Šupinský et al., 2019). 
Secondly, points that did not represent the terrain were 
manually removed, as automatic filtering methods were 
not entirely effective in areas with lying tree trunks and 
overhangs. Almost 70% of points from individual mapping 
campaigns were removed through filtering. The remaining 
points formed the input data layers for the creation of 
DTMs and subsequent volumetric analyses.

3.3. Derivation of DTMs with different spatial 
resolution
In the next phase of our research (Figure 3b), we focused 
on deriving DTMs from point clouds. To address our re-

search questions, we created two basic types of DTMs 
from these point clouds: a) 2D raster models and b) 3D 
mesh models, each at different Levels of Spatial Resolution 
(LoSR). Specifically, we utilized DTMs with spatial resolu-
tions of 0.1 m, 0.25 m, 0.5 m, 1 m, and 2 m. When prepar-
ing point clouds for each LoSR of DTM, we adhered to the 
principle that the input elevation point field should pos-
sess a spatial resolution four times greater than that of the 
resultant DTM (Hengl, 2006) (as shown in Figures 4a and 
4b). Concurrently, we examined how the lower density of 
the input point cloud, and consequently the lower spatial 
resolution of the DTM, would affect the accuracy of the 
estimated volume of the observed landslide. This aspect 
is crucial for understanding the data quality requirements 
necessary for effective long-term monitoring of landslides.

For the spatial resolution of the DTM at 0.1 m (Fig-
ure 4c), we employed the original density of the point 
cloud (Figure 4a). DTMs with spatial resolutions of 0.25 m, 
0.5 m, 1 m (Figure 4d), and 2 m were derived from point 
clouds thinned to respective levels of 0.05 m, 0.1 m, 0.2 m 
(Figure 4b), and 0.5 m. This reduction in point clouds was 
achieved through controlled filtering using the Space 
method and the Cloud subsampling tool in CloudCompare 
software (CloudCompare, 2022).

The computational region for deriving the DTMs was 
set to match the extent of the input point clouds. How-
ever, for determining volume changes, a smaller scope was 
defined. The shape and extent of this polygon were based 
on the spatial extent of the landslide in 2020, reflecting the 
significant loss of landslide mass and transformation of its 
boundaries between 2016 and 2020. The computational 
area for volumetric analysis was selected by trimming the 
resulting DTMs according to the polygon depicted in Fig-
ure 1c (indicated by the red line).

The raster DTMs were derived using the blast2dem 
tool in the LAStools software (LAStools, 2023). For 3D 
mesh models, we first calculated the normals of the input 
point clouds using the Compute normals tool in Cloud-
Compare software. The orientation of these normals was 
determined using the triangulation local surface model 
and the k-Nearest Neighbors algorithm with a value of 
10 (Mucherino et al., 2009). All datasets underwent visual 
inspection to ensure that normals were correctly oriented 
from the surface. The 3D mesh models were then derived 
using the Poisson Surface Reconstruction tool in Cloud-
Compare software (Kazhdan et al., 2006), with the spatial 
resolution set as required (0.1 m for Figure 4e, and 0.25 m, 
0.5 m, 1 m for Figure 4f, and 2 m) through the “Resolution” 
parameter setting.

We calculated the standard statistical parameters, such 
as average, median, minimum, and maximum values, for 
individual models across different data structures and res-
olutions. To analyze similarities or differences between the 
models (raster and 3D mesh), we used the most detailed 
model, i.e., the model with a spatial resolution of 0.1 m, as 
a reference. This statistical analysis assessed differences in 
elevations at identical locations across the models.
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For raster data structures, we calculated the differences 
between individual grid cells of the reference DTM (0.1 m) 
and the DTM representing the given LoSR using the Raster 
calculator tool in ArcGIS Pro. In the case of the 3D mesh 
data structure, we derived point clouds from the individual 
models. Then, we calculated the elevation differences be-
tween points of the reference 3D mesh model and the 
model representing the specified spatial resolution using 
the Compute cloud to mesh distance tool in CloudCom-
pare software.

In both cases, outliers were subsequently removed. 
This meant that the resulting statistical indicators were 
cleaned by excluding the percentiles of extreme values in 
both the positive and negative segments.

3.4. Determining the area of surfaces, 
volumes, and volume changes
For the evaluation of the volumetric analysis, we compared 
the raster and mesh DTM approaches, focusing on how 
the specific characteristics of each data structure influence 
the estimation of volumes and the detection of surface 
areas.

The fundamental characteristic of raster-based DTMs 
is that they are regular, positionally localized matrices of 

elevation values. They have a defined raster extent, cell 
size, number of rows and columns, and a reference co-
ordinate system. Raster-based DTMs are essentially two-
dimensional but can be visualized in 3D space. The area 
of raster DTMs is calculated based on the product of 
the number of cells and the cell size. However, there 
are methods for determining the 3D area of terrain de-
rived from raster data, such as the Surface Volume tool 
in ArcGIS Pro 3.1.0 (ArcGIS Pro, 2023) or r.surf.area in 
GRASS GIS 7.8.7 (GRASS GIS, 2022). These methods in-
volve deriving a point cloud from grid cells (cell cen-
troids), creating a TIN model, and then calculating the 
area of the 3D DTM surface. The calculation of volumes 
from raster data is the sum of the areas of the raster 
cells and their heights, with tools like Surface Volume in 
ArcGIS Pro, r.volume in GRASS GIS, and Compute 2.5D 
volume in CloudCompare 2.12.4 being designed for this 
purpose. However, when calculating volume from rasters, 
the course of the TIN surface is not considered.

For mesh DTMs, we used a TIN DTM represented by a 
spatially distributed set of triangles that approximate the 
terrain’s shape. The technical documentation specifies that 
the construction of the triangle network is limited to en-
sure that no more than one triangle occupies the same 
location, and no triangle has a vertical side (perpendicular 

Figure 4. Comparison of the level of detail of the input point clouds in full resolution (a) and after subsampling of point 
clouds with a step of 0.2 m (b), derived raster models with a spatial resolution of 0.1 m (c) and 1 m (d) and derived 3D mesh 
models with a spatial resolution of 0.1 m (e) and 1 m (f)

a) b)

c) d)

e) f)



Geodesy and Cartography, 2024, 50(4), 179–197 185

to the plane defined by the X and Y axes). This means that 
for any given X and Y values, there can only be one eleva-
tion value in the TIN model. However, this limitation does 
not apply to the 3D mesh data structure, as the expression 
of the terrain surface is not constrained by the number of 
elevation values for unique X and Y values. Therefore, the 
calculation of the surface area of mesh models is based on 
the sum of the areas of the individual triangles. Moreover, 
for 3D mesh models, the volume is determined as the sum 
of the volumes of tetrahedrons (three-dimensional objects 
with a triangular base defined by another vertex on the 
opposite side of the object). From this perspective, model-
ing the terrain using a raster structure can be considered a 
2D approach, while using a mesh data structure represents 
a 3D approach (Figure 5). In this context, we also focused 
on detecting the surface area from both 2D raster and 
3D mesh models, as well as estimating the volumes de-
rived from both data structures.

The volume calculation based on the Mesh-to-Mesh 
(M2M) approach was conducted using 3D mesh models. 
The first step in deriving 3D mesh models of the landslide 
block involved generating bases for these models. This 
process, which was carried out in Blender software (Blend-
er, 2018), created models that represented the mass of the 
landslide block from the 3D mesh DTM. In Blender, the 
imported 3D mesh terrain models were negatively extrud-
ed by 50 meters in the Z direction. To ensure consistency 
between individual 3D mesh models representing different 
time points, we created an auxiliary 3D mesh cube. The 
top wall of this cube served as a reference plane, set at an 
elevation of 690 meters above sea level.

These modified 3D mesh models, along with the cre-
ated cube model, were then imported into MeshLab soft-
ware (Cignoni et al., 2008). Using the geoprocessing tools 
of the libigl library (Zhou et al., 2016), which is integrated 
into MeshLab, we calculated the difference between the 
3D mesh model of the area of interest and the auxiliary 
cube. This procedure resulted in a database of 3D mesh 
models, each having a surface with a base at the reference 

level, representing the landslide at various defined spatial 
resolutions. The volume of these models was calculated 
using the Compute Geometric Measures tool (Mirtich, 
1996) in MeshLab.

Finally, the resultant change in volume was determined 
by subtracting the volumes at individual time points. The 
results were then evaluated based on the type of data 
structure used and the LoSR. To accurately compare vol-
umes or changes in volume, it is crucial to ensure that the 
extent of the study area remains consistent. In the case 
of a 2D raster model, determining the extent is straight-
forward due to the geometric structure of this data for-
mat. However, with 3D mesh models, changes in the area 
can occur both over time (comparing data from 2016 and 
2020) and across different spatial resolutions (0.1, 0.25, 0.5, 
1, and 2 meters). To prevent inconsistencies between the 
3D mesh model and the 2D raster model, we ensured that 
the extent of the study area was identical across all input 
datasets.

4. Results and discussion

To rigorously answer the research questions concerning 
the estimation of volumetric changes in the landslide, it 
is essential to analyze the impacts of the data structure 
and spatial resolution of the DTM, as well as the effects of 
specific terrain features.

4.1. Analysis of the data structure impact 
and spatial resolution of the DTM on the 
estimation of the volume change of the 
landslide
4.1.1. Evaluation of DTM and spatial resolution 
for calculating the surface area and volume of the 
landslide mass block

Table 1 and Figures 6a and 6b present the results of the 
calculated area of the landslide surface and the volume of 
the landslide mass block in 2016 and 2020.

Figure 5. Schematic visualization of raster (a) and 3D mesh (b) landslide block models. For the creation of landslide block 
models at different LoSR, the base with the same elevation was used

a) b)
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Our results indicate that when calculating the area of 
the landslide surface, a slight change occurs with varying 
spatial resolution. This change in area is associated with 
the shape of the territory, the different sizes of the grid 
cells, and the total number of cells in a given spatial reso-
lution. Although the 2D surface area corresponds to the 
area of the polygon (Figure 1c, red line), the area is altered 
due to the effect on the edges of the raster in grids, partly 
due to the change in spatial resolution and the varying 
number of differently sized cells within the extent, influ-
enced by rotated and irregular shapes.

In contrast, the 3D mesh models exhibit more signifi-
cant changes in the area of the landslide surface at dif-
ferent resolutions. As the spatial resolution decreases, the 
surface area of the landslide also gradually diminishes. 
This is because higher spatial resolutions allow for more 
detailed recording of smaller terrain forms, increasing the 
surface area of the 3D mesh DTM. Conversely, with lower 
spatial resolution and reduced level of detail, the surface 
area decreases. The 3D mesh approach also captures over-
hangs, landslide blocks, and gravels with detailed geomet-
ric structures in high spatial resolutions (up to 0.5 m). The 
change in the total area of the landslide between 2016 
and 2020 also reflects transformations in the landforms.

The landslide volume calculations revealed three main 
findings:

1) The raster data structure does not show a depen-
dence between the spatial resolution of the mod-
els and the estimated volume (Table 1, Figure 6). 
Therefore, changing the spatial resolution of the 
raster does not significantly affect (less than 1%) 
the calculation of the landslide mass block volume.

2) The 3D mesh data structure, however, reflected 
changes in spatial resolution in volume estimation. 
This can be attributed to changes in the landslide 
area, directly impacting the volume calculation. 
Thus, a smaller surface area is associated with a 
lower volume estimate.

3) The overall estimated volumes are overestimated 
by the raster data structure compared to the 3D 
mesh data structure. Higher overestimation up to 
the 0.5 m level is linked to better representation 
of overhangs, which are not captured by the ras-
ter data structure. In raster models, overhangs are 
often modeled as vertical walls due to the use of 
bivariate functions in surface generation (Mitášová 
& Mitáš, 1993; Florinsky & Pankratov, 2016). In-
creasing generalization from 1 m spatial resolution 

Table 1. Estimated values of landslide material volume and landslide terrain surface area expressed using 3D mesh and raster 
model at different LoSRs

Spatial 
resolution

2016 2020

3D mesh Raster 3D mesh Raster

(m) Area (m2) Volume (m3) Area (m2) Volume (m3) Area (m2) Volume (m3) Area (m2) Volume (m3)

0.1 6917.89 81 964.09 5115.73 82 267.22 6810.10 69 322.03 5115.73 69 709.73

0.25 6719.27 81 586.81 5118.31 82 262.96 6641.24 68 967.91 5118.31 69 712.59

0.5 6547.42 80 932.64 5118.75 82 192.83 6471.46 68 363.30 5118.75 69 668.60

1 6334.96 79 486.81 5120.00 82 147.43 6283.41 67 324.64 5120.00 69 696.51

2 6077.03 77 312.97 5104.00 82 689.32 5989.82 65 093.71 5104.00 69 353.30

Figure 6. Estimated landslide mass block volume (a) and landslide terrain surface area (b) expressed using 3D mesh and raster 
model at different LoSRs

a)           b)
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has a smaller effect on volume calculation because 
of the application of the Poisson interpolation func-
tion (Kazhdan et al., 2006), which more accurately 
captures surface trends and landform shapes. Ulti-
mately, 3D mesh surfaces provide a more precise 
estimate of landslide volume compared to raster 
models.

The selected statistical indicators (Table 2) revealed 
that raster DTMs with a grid size up to 1 m demonstrate 
a high degree of similarity. This similarity is evident in the 
median values and the proportional distribution of values 
in both positive and negative segments. More significant 
differences become apparent only in DTMs with a spatial 
resolution of 2 m. Generally, as spatial resolution decreas-
es, the range of values tends to gradually increase. The de-
viation in values can be gauged by comparing the eleva-
tion differences between the minimum and maximum val-
ues across individual resolutions. For raster data structures 
with resolutions up to 1 m, the distribution of elevation 
differences is minor (up to 2%). Elevation changes within 
these models are within ±0.5 m and are evenly distributed 
across both positive and negative sectors, influencing the 
overall volume change between different levels and indi-
cating higher detection quality. Although local differences 
in elevations exist between individual LoSR in raster mod-
els, these are typically offset by neighboring cells, which 
exhibit opposite elevation differences.

For the 3D mesh data structure with resolutions up to 
1 m, the minimum and maximum values reached ±0.2 m, 
suggesting a high similarity between these models. How-
ever, the range of values between positive and negative 
segments is larger (around 5%) compared to the raster 

data structure, as reflected in the average and median val-
ues. Although the values are very similar and close to zero 
for resolutions up to 1 m, there is a noticeable increas-
ing trend attributable to the nature of the interpolation 
function used during DTM creation. This greater dispar-
ity in the distribution of values between the positive and 
negative segments leads to a cumulative effect in eleva-
tion values, predominantly in the positive segment for our 
case. Consequently, this affects the larger difference in the 
estimation of the landslide mass volume. Therefore, in our 
study, the estimated volume value decreases as the LoSR 
of the 3D mesh model decreases.

4.1.2. Evaluation of volume changes for the 
monitored period

During the selected period, raster data structures with 
grid sizes up to 1 m indicated an erosion of approximate-
ly 12,500 m³, with a negligible difference between LoSR 
of ±50 m³ (less than 0.5% of the total estimated volume 
change). Consequently, it can be inferred that using raster 
models up to a resolution of 1 m allows for volume esti-
mates that are less dependent on the DTM’s spatial resolu-
tion. For grid sizes of 2 m, however, significant errors were 
observed. Echoing the findings of Štroner et al. (2019), we 
note that changing the spatial resolution of the cell size to 
1 m did not significantly impact the result of the volume 
change estimation (Table 3, Figure 7). The most notable 
differences in volume were observed at the 2 m resolu-
tion, where surface smoothing due to interpolation meth-
ods was evident. Additionally, the significant discrepancy 
in volume change at a spatial resolution of 2 m resulted 
in larger differences in volumes between 2016 and 2020 

Table 2. Selected statistical parameters of the analysis of height differences between the reference DTM and DTM’s in the 
selected LoSRs

DTM 
resolution

Count 
(98%) Average Median Min Max

Count
in the 

positive 
segment

Count
in the 

positive 
segment 

(%)

Count
in the 

negative 
segment

Count
in the 

negative 
segment 

(%)

R2R 
2016

0.25–0.1 m 499 894 –0.003 –0.001 –0.276 0.228 244 416 48.89 255 478 51.11
0.5–0.1 m 499 894 –0.002 0 –0.448 0.417 246 451 49.30 253 443 50.70
1–0.1 m 499 894 –0.004 –0.002 –0.809 0.777 245 110 49.03 254 784 50.97
2–0.1 m 499 894 0.014 0.010 –2.189 1.893 256 303 51.27 243 591 48.73

R2R 
2020

0.25–0.1 m 501 341 –0.003 0 –0.261 0.201 246 264 49.12 255 077 50.88
0.5–0.1 m 501 341 –0.002 0 –0.424 0.379 248 473 49.56 252 868 50.44
1–0.1 m 501 341 –0.003 –0.001 –0.778 0.737 248 579 49.58 252 762 50.42
2–0.1 m 501 341 0.029 0.023 –1.897 1.701 270 354 53.93 230 987 46.07

M2M 
2016

0.25–0.1 m 305 098 –0.002 –0.001 –0.078 0.056 144 040 47.21 161 058 52.79
0.5–0.1 m 287 728 –0.003 –0.002 –0.135 0.099 135 381 47.05 152 347 52.95
1–0.1 m 273 905 –0.004 –0.002 –0.236 0.186 132 557 48.40 141 348 51.60
2–0.1 m 260 833 0.046 0.052 –0.486 0.53 150 877 57.84 109 956 42.16

M2M 
2020

0.25–0.1 m 300 912 –0.003 –0.001 –0.109 0.057 139 808 46.46 161 104 53.54
0.5–0.1 m 284 245 –0.006 –0.003 –0.155 0.097 129 043 45.40 155 202 54.60
1–0.1 m 271 533 –0.006 –0.004 –0.22 0.184 127 041 46.79 144 492 53.21
2–0.1 m 257 217 –0.004 –0.005 –0.371 0.363 124 341 48.34 132 876 51.66
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(Table 1, Figure 6), leading to greater uncertainty in the 
DTM relative to the actual terrain.

In contrast, the 3D mesh data structure recorded ero-
sion of approximately 12,642 m³ at a resolution of 0.1 m. 
The smallest volume change was estimated at a resolu-
tion of 1 m (12,162 m³). The difference in volume changes 
between individual LoSRs gradually increased, from 0.18% 
at a spatial resolution of 0.25 m to 3.8% at 1 m, with the 
largest error increase observed when moving from 0.5 m 
to 1 m resolution (from 0.58% to 3.80%). These differences 
in volume changes across spatial resolutions depend on 
the DTM’s ability to capture specific terrain features at a 
given moment.

When comparing volume changes between raster and 
3D mesh data structures across different spatial resolu-
tions, it was found that higher resolutions (up to 0.5 m) in 
3D mesh models can record the volume of change more 
precisely (approximately 85 to 45 m³ difference). The 3D 
mesh model accurately captures the detailed geometric 
structure of terrain features, including specific elements 
like overhangs. At a spatial resolution of 0.5 m, both 
models are comparable, with a minimal value difference 
of about 45 m³ (0.35%). For this type of landform struc-
ture, at a resolution of 0.5 m, the area has minimal impact 
on the choice of model for calculating volume change. 
However, at resolutions up to 1 m, the raster structure’s 

results are similar to those of higher spatial resolutions 
(up to 0.85% difference). The decrease in resolution led 
to an increasing discrepancy in volume change, which can 
be attributed to greater generalization of terrain features 
in raster models, the edge effect (Wade et al., 2003), and 
increased uncertainty in rendering the landslide surface, 
subsequently affecting volume determination.

4.2. The influence of specific terrain features 
on the estimation of volume change at 
different levels of spatial resolution
4.2.1. Slope of the landslide body (SLB)

The main body of the landslide and its slope (SLB) together 
account for over 95% of the landslide’s total area. The SLB 
is characterized based on morphometric analyses, which 
identify it as an area with continuous elevation changes and 
without any abrupt changes in gradient (defined as a change 
exceeding 90°). The gradient here refers to the vector of the 
first derivatives of the scalar function in the direction of the 
slope. This part of the landslide is composed of the lower 
accumulation zone and the central transportation zone.

For a detailed comparison, we focused on a select-
ed sector in the central part of the landslide, measuring 
10×10 meters, as shown in Figure 8. In this specific region, 
only the erosion of material was observed, indicated by 
negative differences in elevation. Notably, our statistical 
analyses were not influenced by any compensation be-
tween positive and negative values.

The results for the Slope of the Landslide Body (SLB) 
were found to be similar to those of the entire landslide 
(Table 1, Figure 6b). In the raster data structure, the model 
area remains constant due to the grid cell size being fixed 
and aligned with the axes of the coordinate system, with-
out any rotation. Conversely, the 3D mesh data structure 
shows temporal variation, mainly attributed to surface ero-
sion and changes in microforms. This variation is observ-
able up to a spatial resolution of 0.5 m in the 3D mesh 
DTM. As the spatial resolution is reduced, the smallest ter-
rain forms begin to disappear.

The area extent of the 3D mesh demonstrates tempo-
ral changes due to surface erosion, an effect that is closely 
related to the model’s resolution. This implies that the 
change in area extent is significant enough to surpass the 
detection limits imposed by the resolution of the model.

Table 3. Volume changes in the monitored period at defined LoSRs and selected data structures (raster and 3D mesh)

Spatial resolution 
(m)

R2R M2M

Total volume 
change 
 (m3)

Volume change 
compared to 
0.1 m spatial 

resolution (m3)

Volume change 
compared to 
0.1 m spatial 
resolution (%)

Total volume 
change  

(m3)

Volume change 
compared to 
0.1 m spatial 

resolution (m3)

Volume change 
compared to 
0.1 m spatial 
resolution (%)

0.1 –12 557.49 0 0 –12 642.06 0 0
0.25 –12 550.37 7.12 –0.06 –12618.90 23.16 –0.18
0.5 –12 524.23 33.26 –0.26 –12 569.34 72.72 –0.58
1 –12 450.92 106.57 –0.85 –12 162.17 479.89 –3.80
2 –13 336.02 –778.53 6.20 –12 219.26 422.80 –3.34

Figure 7. The volume changes of landslide for raster and 3D 
mesh model
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Figure 8. The blue box shows the selection of the landslide part for the analysis of the terrain form of the slope. The red line 
shows the position of the profiles. The photo captures the state of the landslide in 2016. In the lower part of the image, there 
are profiles for individual LoSRs and data types. The dashed line is the recorded terrain profile for 2016 and the solid line for 
2020

Figure 9. Estimated volume of the landslide mass block (a) and the area of the landslide terrain surface (b) expressed using a 
3D mesh and a raster model at different LoSRs – the slope of the landslide body

a)                    b)
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Volume changes in the SLB were calculated at a height 
of 695 meters above sea level, as shown in Table 4 and 
Figure 9a. The volume calculations vary between different 
models at varying LoSRs. For raster DTMs with resolutions 
up to 1 meter, the impact on volume estimation is not 
significant. In 2016, the volume ranged from 979.03 m³ 
to 971.41 m³, with a difference of only 7.62 m³ (less than 
1% of the total estimated volume for the selected part 
of the SLB). In 2020, the estimated volumes varied from 

653.49 m³ to 647.08 m³, indicating a difference of 6.41 m³, 
which is again less than 1%.

However, at the lowest spatial resolution of 2 meters, 
there was a significant change in the estimated volume 
for the year 2016 (by more than 70 m³, equating to over 
7.5%). In this instance, the effect of the interpolation func-
tion on smoothing out terrain features becomes more 
pronounced. As a result, the values of terrain heights are 
underestimated (as depicted in Figure 8 RASTER), lead-
ing to a larger discrepancy in the estimated volume when 
compared to models with a higher LoSR, as detailed in 
Table 4 and Figure 9.

4.2.2. Overhang

The overhang is a distinctive landform characterized by 
a significant vertical change in gradient, typically with a 
slope greater than 90° relative to the horizontal plane. 
In our research area, this type of landform was predomi-
nantly located in the head scarp area. In this region, the 
presence of trees, with their root systems reinforcing the 
material to a certain depth, was notable. Below this depth, 
continuous erosion occurred (Figure 11). Following the 
collapse of trees along with the undercutting block, the 
tree trunks, along with the eroded material, gradually slid 
down towards the river.

Similar to the analysis conducted for the SLB, a specific 
part of the terrain, measuring 10×10 meters, was selected 
for detailed analysis of this landform feature (Figure 11).

The area change results for the raster data structure, as 
shown in Table 6 and Figure 12b, mirror those observed in 

Table 4. Values of the area and volume of the landslide mass block for the given spatial resolution and data structure – the 
slope of the landslide body

Spatial 
resolution 

(m)

2016 2020

3D mesh Raster 3D mesh Raster

Area (m2) Volume (m3) Area (m2) Volume (m3) Area (m2) Volume (m3) Area (m2) Volume (m3)

0.1 111.69 960.16 100 979.03 108.25 641.31 100 652.17

0.25 109.93 931.10 100 977.30 107.51 626.83 100 653.49

0.5 108.07 893.59 100 971.99 106.70 594.50 100 647.08

1 105.67 817.02 100 971.41 105.14 526.38 100 647.16

2 104.36 696.60 100 940.88 104.09 456.76 100 642.84

Table 5. Volume change on the slope

Spatial resolution 
(m)

R2R M2M

Total volume 
change 
 (m3)

Volume change 
compared to 
0.1 m spatial 

resolution (m3)

Volume change 
compared to 
0.1 m spatial 
resolution (%)

Total volume 
change  

(m3)

Volume change 
compared to 
0.1 m spatial 

resolution (m3)

Volume change 
compared to 
0.1 m spatial 
resolution (%)

0.1 –326.86 0 0 –318.85 0 0
0.25 –323.81 3.05 0.93 –304.27 14.58 4.57
0.5 –324.91 1.95 0.60 –299.09 19.76 6.20
1 –324.25 2.61 0.80 –290.64 28.21 8.85
2 –298.04 28.82 8.82 –239.84 79.01 24.78

Figure 10. The volume change on the slope terrain form for 
the raster and 3D mesh model
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the analyses of the entire landslide and the SLB. In these 
cases, the terrain surface area remains constant due to the 
regular, non-rotated square shape of the extent.

For the 3D mesh DTM surface, we observed a gradual 
decrease in the surface area up to a resolution of 1 meter, 
followed by a slight increase at a 2-meter resolution. We 
attribute this minor increase in surface area to the con-
tinuation of the function over the terrain edges, where 
there is a greater difference in elevation. The interpola-
tion functions, which are based on the input points, be-
have differently depending on the terrain’s morphometric 

characteristics. When the change in elevation is smooth 
(i.e., without steep changes), the area of the slope surface 
decreases with lower Levels of Spatial Resolution (LoSR), as 
this results in the smoothing of terrain microforms. How-
ever, when the interpolated surface crosses over a terrain 
edge, the influence of the interpolation function settings 
becomes more apparent. In such cases, the modeled sur-
face can exhibit more undulation along these sharp terrain 
edges, leading to a higher value of the surface area for this 
part of the landslide. It is important to note that since this 
analysis focused on a small part of the territory relative 

Figure 11. The blue box shows the selection of the landslide part for the analysis of the terrain form of the overhang. The red 
line shows the position of the profiles. The photo captures the state of the landslide in 2020. In the lower part of the image, 
there are profiles for individual LoSRs and data types. The dashed line is the recorded terrain profile for 2016 and the solid 
line for 2020

Figure 12. Estimated volume of the landslide mass block (a) and the area of the landslide terrain surface (b) expressed using a 
3D mesh and a raster model at different LoSRs – overhang

a)        b)
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to the entire landslide, this specific dependence was not 
observed in the analysis of the entire landslide (Table 1, 
Figure 6b).

3D mesh data structure reflects more significant 
changes in the volume for different resolutions (Table 7, 
Figure 13). Thus, as the LoSR decreases, the value of the 
estimated volume decreases significantly. In our research 
area, we noticed a decrease in volume with a gradual de-
crease in the spatial resolution of the 3D mesh model at 
the level of approximately 30% for both monitored time 
periods (from 2056.34 m3 to 1470.01 m3 for 2016, respec-
tively from 1740.13 m3 to 1259.21 m3 for 2020). However, 
with the decrease in volume for all LoSRs, the question 
may arise as to why the increase in surface area of this 
part of the landslide for the 2 m spatial resolution was 
not also reflected in the increase in volume. We explain 
(Table 5 and Figure 10) that for the modelled 3D mesh 
DTM, a diluted point cloud was used as input data, while 
the interpolation function overran the course of the in-
put point field. On the one hand, there was undulation 
of the surface, which was reflected in the increase of the 
surface area, but the resulting surface was located below 
the values of the input point field, which was reflected 
in the decrease of the block volume value. In the case of 
growth models, even in the case of an overhang, there 
is no significant change in the spatial resolution of the 
value of the estimated volumes. For the period 2016, we 
recorded a difference in the estimated value of the vol-
ume for individual LoSRs at the level of 14.66 m3, which is 
approximately 0.7% of the total volume, and for the year 

2020, it was a difference of 30.09 m3, which represents ap-
proximately 1.7% of the total volume (Table 7).

In both the raster and 3D mesh data structures, ero-
sion of the overhangs is identified as the dominant pro-
cess affecting volume changes, as detailed in Table 7 and 
Figure 13. Up to a spatial resolution of 0.25 meters, the 
differences in volume change between the raster and 

Table 6. Values of the area and volume of the landslide mass block for the given spatial resolution and data structure – 
overhang

Spatial 
resolution 

(m)

2016 2020

3D mesh Raster 3D mesh Raster

Area (m2) Volume (m3) Area (m2) Volume (m3) Area (m2) Volume (m3) Area (m2) Volume (m3)

0.1 144.12 2056.34 100 2098.02 157.81 1740.13 100 1776.72

0.25 136.82 2000.88 100 2098.25 152.48 1688.67 100 1777.21

0.5 131.30 1901.91 100 2084.53 149.38 1601.91 100 1767.10

1 110.70 1717.93 100 2099.19 146.04 1482.26 100 1780.29

2 126.14 1470.01 100 2093.04 152.01 1259.21 100 1750.20

Table 7. Volume change on the overhang

Spatial resolution 
(m)

R2R M2M

Total volume 
change 
 (m3)

Volume change 
compared to 
0.1 m spatial 

resolution (m3)

Volume change 
compared to 
0.1 m spatial 
resolution (%)

Total volume 
change  

(m3)

Volume change 
compared to 
0.1 m spatial 

resolution (m3)

Volume change 
compared to 
0.1 m spatial 
resolution (%)

0.1 –321.30 0 0 –316.21 0 0
0.25 –321.04 0.26 0.08 –312.21 4 1.26
0.5 –317.43 3.87 1.20 –300.00 16.21 5.13
1 –318.90 2.4 0.75 –235.67 80.54 25.47
2 –342.84 –21.54 –6.70 –210.80 105.41 33.34

Figure 13. The volume change on the overhang terrain form 
for the raster and 3D mesh model
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3D mesh models are minimal, with discrepancies up to 
4 m³. However, as the LoSR decreases, the disparity in 
volume changes between the two models becomes more 
pronounced.

Regarding volume change calculations, raster models 
yield more consistent values. Nonetheless, when com-
pared to the 3D mesh data structure, they exhibit a slight 
overestimation of volume change, exceeding 1.5%. This 
overestimation corresponds to a value of more than 5 m³. 
Notably, at spatial resolutions greater than 1 meter, par-
ticularly in the 3D mesh data structure, significant changes 
in the terrain area are observed in comparison to higher 
LoSRs. At these lower resolutions, the modelled surfaces 
become excessively smoothed, exhibiting interpolation 
artefacts. Consequently, these lower-resolution models 
are deemed unsuitable for accurate estimation of volume 
changes.

5. Conclusions

Nowadays, technological development and sensor im-
provement offer new possibilities for mapping and de-
tecting spatial changes. The application of 3D technology 
has become a fundamental technique for monitoring and 
assessing landscape change. SfM-photogrammetry also 
opens new avenues for generating low-cost and precise 
3D models. Field surveys with TLS are often combined with 
SfM-photogrammetry, drone LiDAR survey, or airborne Li-
DAR to produce a vast amount of data, especially in the 
form of point clouds. Assessing this type of data, with its 
high spatial resolution and vertical precision, brings sev-
eral challenges related to data processing and interpreta-
tion. This article aimed to answer two important questions. 
Firstly, how does the selection of the data model affect 
the estimation of volume change? Evaluations of (1) raster 
models (R2R) and (2) 3D mesh models (M2M) were tested 
and analyzed over two time horizons. Secondly, how does 
the effect of the spatial resolution of the input data affect 
the estimation of the landslide mass volume? 

An undercut landslide cliff near Vavrišovo in Slovakia 
was selected for the research and calculation of volume 
changes. The point clouds obtained from two TLS cam-
paigns in June 2016 and June 2020 were used as the 
source data for creating DTM in two data structures – 2D 
raster and 3D mesh. Before creating DTMs for different 
spatial resolutions, the input point cloud was classified 
and then spatially optimized. With this step, terrain mod-
els representing the landslide at various resolution levels 
(0.1 m, 0.25 m, 0.5 m, 1 m, and 2 m) were derived from 
point clouds of differing densities. Based on the presented 
methodology and the discussed results, we formulate the 
following observations and findings:

 ■ In the case of a raster data structure, changing the 
spatial resolution of a raster cell does not affect the 
calculation of the surface area of the investigated 
object since it is a 2D surface. The change in surface 
area is caused by the irregular shape of the extent 

and is related to the edge effect in the creation of 
the cell structure of raster models (irregular extent 
for whole landslide analyses). In the case of the anal-
ysis of specific terrain forms, regular and non-rotated 
polygons were used, and therefore, in these cases, 
the marginal effect of the raster models in determin-
ing the area of the territory did not manifest itself.

 ■ To determine the area of the landslide surface ex-
pressed by a 3D mesh data structure, the LoSR has 
a significant impact. The surface area is calculated 
based on the determination of the elementary faces 
of the mesh structure distributed in 3D space. The 
higher the LoSR, the larger the surface area is. This 
is related to the fact that when building a 3D mesh 
data structure derived from a point cloud, at higher 
LoSRs (0.5 m to 0.1 m), the geometry of the ter-
rain’s microforms is captured in more detail. Thus, 
a larger number of elementary faces distributed in 
space is needed to express the course of the terrain. 
As the spatial resolution decreases, greater smooth-
ing of terrain microforms is applied. In this case, the 
landslide area decreases for resolutions from 0.1 m 
to 2 m by 12%.

 ■ The results of the calculation of landslide mass block 
volumes from raster models indicate that the change 
in the spatial resolution of the raster cell does not 
significantly affect the size of the estimated volume. 
In our research area, the differences in determined 
volumes between raster models for different LoSRs 
(0.1 m, 0.25 m, 0.5 m, 1 m, and 2 m) at both time 
points (2016 and 2020) were at the level of ±1%. 
Thus, there was no dependence on the decrease in 
the LoSR for the estimation of volumes, which cor-
responds to the results of the works of Štroner et al. 
(2019) and Woolard and Colby (2002).

 ■ On the contrary, when determining the volume of 
the landslide mass block from the 3D mesh data 
structure, we can state that there is a dependence 
between the LoSR of the models and the value of 
the estimated volumes. Thus, the lower the LoSR of 
3D mesh models, the greater the difference in esti-
mated volume values is. In our research area, in the 
case of 3D mesh models, we achieved a difference 
in the estimated volumes of the landslide mass block 
between the highest (0.1 m) and the lowest (2 m) 
LoSR at the level of approximately 6%.

 ■ The character of terrain features also affects the es-
timation of the volume of the landslide mass block. 
In the case of territories where there are numerous 
landforms such as steep slopes (inclination greater 
than 90°) or overhangs, where locally there is a sig-
nificant change in elevation values, the influence of 
spatial resolution is more pronounced. Moreover, 
even at a high LoSR (0.1 m), there are larger dif-
ferences between the estimated volumes calculated 
from the raster and 3D mesh models. In our case, we 
achieved a difference of more than 2%.
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The following conclusions result from the above ob-
servations:

 ■ Raster data models slightly overestimate the volume 
estimate, but the influence of spatial resolution is not 
significantly manifested. Thus, the spatial resolution 
of raster models (up to the level of 1 m) does not 
have a significant effect on volume estimation.

 ■ 3D mesh models with a high spatial resolution (up to 
0.25 m) can record the geometry of terrain forms in 
detail, more precisely determining the course of the 
surface of the investigated area in three-dimensional 
space and thus determining its area, resulting in a 
more accurate estimate of the volume.

 ■ Up to the LoSR ≤ 0.5 m (i.e., 0.1 m, 0.25 m, 0.5 m) 
in the case of calculating volume changes (volume 
change over a certain period), raster and 3D mesh 
data models provide a similar result. Even in this 
case, it appears that raster models slightly overesti-
mate the volume. Above the LoSR ≥ 1 m, the results 
of volume changes in the case of 3D mesh models 
are already affected by a large degree of surface 
smoothing, therefore they are unsuitable for evalu-
ating volume changes.
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