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Article History:  Abstract. Traffic noise mapping frequently employs Kriging, Inverse Distance Weighted (IDW), and Triangu-
lar Irregular Networks (TIN) spatial interpolations. This study uses the Henk de Kluijver noise model to evalu-
ate the performance of spatial interpolations. Effective traffic noise mapping requires that noise observation 
points (Nops) be designed as 2 m grids. The upper and lower slopes function as noise barriers to reduce 
sound levels. Therefore, assessment of accuracy is essential for visualising noise levels in undulating and 
level terrain. In addition, this work gives an accurate comparison of traffic noise interpolation in undulating 
areas. The elements of spatial interpolations, such as the weighting factor, variogram, radius, and number of 
points influence the interpolation accuracy. The Kriging with a Gaussian variogram, where the radius is 5 m 
and the number of points is 12 demonstrates the highest level of precision. However, there is no direct rela-
tionship between accuracy validation and cross-validation. In cross-validation, however, the accuracy of the 
Gaussian variogram with a 7 m radius and 18 points is more accurate. In addition, this study demonstrates 
that Kriging is superior for extrapolating noise levels in undulating regions. Accurate visualising traffic noise 
levels requires a prior understanding of spatial interpolations.
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lating traffic noise (Ranjbar et al., 2012). According to this 
model, noise reduces with the distance from 10 log (r); r 
is the distance between the noise source and the receiver 
point. Therefore, designing noise observation points (as 
2 m intervals) with the embedding of a 2D city model is 
important for noise visualisation (Debnath & Singh, 2018). 
Most visualisation of traffic noise was conducted in flat 
areas (Kurakula & Kaffer, 2008). Designing noise observa-
tion points on the undulated areas is still an issue because 
upslopes and downslopes act as noise barriers. Therefore, 
designing noise observation points beyond these slope 
areas is not prominent (Law et al., 2011). 

Inverse distance weighted (IDW), Kriging, and triangu-
lar irregular network (TIN) are widely used to interpolate 
traffic noise levels. Factors associated with these interpola-
tions affect the accuracy of the interpolated surface (Stoter 
et al., 2007; Tang et al., 2022). The weighting factor, num-
ber of points (observed, points), and points search radius 
are the factors that need to be considered for the accuracy 

1. Introduction

1.1. Road traffic noise visualisation
Noise pollution is a serious environmental problem. Road 
traffic noise pollution is 90% of noise pollution (Iglesias-
Merchan et al., 2021). Identifying traffic noise levels is vital 
for noise control policies (Huang et al., 2018). Collecting 
traffic noise levels everywhere is not a possible task in 
urban cities (Ridzuan et al., 2024). Therefore, calculating 
traffic noise levels for designed noise observation points 
in two-dimensional (2D) space by a proper noise equa-
tion and spatial interpolation is prime to visualise traffic 
noise (Mishra et al., 2018). Noise observation points are 
designed as grid patterns (Kurakula & Kaffer, 2008). The 
number of vehicles, type of vehicle, speed of the vehicle, 
noise absorption by air, noise reflectance by the wall and 
building barriers, and noise absorption by the ground im-
pact noise levels (Gilani & Mir, 2021). Therefore, the Henk 
de Kluijver traffic noise model is more effective in calcu-
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of IDW interpolation. Not like IDW, the correlation of ob-
served points is considered in Kriging interpolation (Wu 
et al., 2022). The semi-variance of observed points is 
mapped in the 2D coordinate system, and the model is 
fitted for the semi-variance. This model is called a vario-
gram. The circular, spherical, exponential, Gaussian, and 
linear are the variogram in Kriging. The accuracy of the in-
terpolated Kriging surface depends on the variogram (Van 
Groenigen, 2000). The number of points and variety of the 
observed points affect the accuracy of the TIN interpolat-
ed surface. Therefore, considering the influence factors of 
these spatial interpolations is vital for noise mapping. The 
interpolated surface should be fitted with observed points 
for accurate interpolation. The surface-fitting accuracy de-
notes cross-validation (Risk & James, 2022). Moreover, the 
interpolated surface is validated by sample points using 
the root mean square error (RMSE) (Lesieur et al., 2021).  
According to accuracy validation and cross-validation, we 
conclude which spatial interpolation technique is the best 
for traffic noise interpolation.

1.2. Spatial interpolation
1.2.1. IDW interpolation

The IDW method is deterministic for multivariate spatial 
interpolation (Tomczak, 1998; Samal et al., 2018). Based 
on the mathematical assumption, the value of an un-
known point is calculated by the weighted average of 
known points considering the neighbourhood (Schneck 
et al., 2021). The weight is not affected by the statistical 
perspective of the samples (Fung et al., 2022). The weight 
is inversely propositional to the distance as the value is 
computed as the following Equation (1) (Fung et al., 2022).
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where: w (x, y) is the predicted value positioned at the 
point (x, y), N is the number of known points (x, y), ki is 
the weight of the observational results wi positioned at 
the point (xi, yi), di is the distance between the known 
point (xi, yi) and the unknown point (x, y). Degree p is the 
weighting factor. The value p can be changed depending 
on the user’s requirements. Generally, the default value 
of p is 2. Many geoscience problems involve predicting 
attribute values to unknown points. In that case, IDW is 
a comparative solution. However, IDW does not provide 
favourable results for clustered data (Chen & Liu, 2012). 
Compared with other spatial interpolation methods, like 
Kriging, the IDW does not associate with the semi-vario-
gram model (spatial autocorrelation of the known sample 
points). Moreover, IDW is better for small size of samples 
where variograms are difficult to fit (Varentsov et al., 2020). 

The influence of the weighting parameters and the 
number of points is considered for the interpolation, and 
selecting the sample points through a variable search ra-
dius and a fixed search radius are the main components 
used in the IDW function (Maleika, 2020). The weighting 
parameter shows a significant relationship between the 

known values and the interpolated values. Increasing the 
weighting factor proportionally relates to the smoothness 
of the interpolated surfaces. It means that the value of 
the interpolated location is more the same as the value 
of known locations. Therefore, the weighting factor of the 
IDW function is vital. This is a reason for the less accurate 
interpolated surface. When selecting faraway known points 
for interpolation, the correlation between predicted points 
and known points may be decreased. The many numbers 
of known points may be a reason to get an average value 
for the interpolated points. Therefore, the search radius 
of the points is important (Maleika, 2020). Recently, IDW 
has been used for traffic noise mapping (Kurakula & Kaf-
fer, 2008; Harman et al., 2016). The suggestions of these 
studies have recommended that the comparison of the 
accuracy is vital with the influence factors of the IDW for 
noise mapping.

1.2.2. Kriging spatial interpolation

Kriging interpolation is based on geostatistical methods 
that include autocorrelation (Aumond et al., 2018). Kriging 
is favourable for clustered data and large sizes. Kriging is 
not only dependent on surrounding points like IDW (Le-
sieur et al., 2021). It considers the autocorrelation (Fitting 
a model) of neighbour points. Kriging also includes an in-
verse distance-weighted method (Taghizadeh et al., 2013). 
But this weight is not only dependent on the distance be-
tween the predicted points and the observed points, and 
autocorrelation of observed points affects the weights. The 
autocorrelation is measured by semi-variance (decreasing 
similarity of interpolated points with observed points with 
distance). Ordinary Kriging is widely used for geoscience 
applications (Susanto et al., 2021). Assuming a constant 
mean for the observed points is a reasonable point of view 
in ordinary Kriging. Because smaller grid sizes (2 m) for 
noise observation points are used in traffic noise mapping, 
it is not an issue to apply ordinary Kriging to traffic noise 
mapping (Kurakula & Kaffer, 2008). Moreover, traffic noise 
is reduced by approximately 1dB(A) for a 2 m distance 
while noise propagation (Ranjbar et al., 2012). Therefore, 
the constant mean for the observed value (noise observa-
tion points) is a possible point of view in noise mapping. 
The function of Kriging is described in Equation (2) (Fazio 
& Roisenberg, 2013).
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where: so is the predicted point, z(si) is the measured value 
(known point), λi is the unknown weight of the measured 
value and N is the number of measured values (Fazio & 
Roisenberg, 2013). Thus, in ordinary Kriging, the model 
λi depends on the fitted model to the semi-variogram. 
Five fitted models for semi-variance are described in the 
Kriging as circular, spherical, exponential, Gaussian, and 
linear. These are called variograms in Kriging. The selected 
model influences the accuracy of the interpolated surface. 
Therefore, identifying a proper semi-variogram model is 
vital for interpolation (Van Groenigen, 2000). The following 
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Figure 1 illustrates the model fitting for the semi-variance 
in the 2D Cartesian system.

Figure 1. Model of, Variogram (Esri, 2021)

According to the graph above, it can be concluded that 
the correlation of points decreases with distance. There 
are significant equations to fit the model for the vario-
gram (circular, spherical, exponential, Gaussian, and linear) 
(Jaman & Adhikary, 2020). Figures 2, 3, 4, 5, and 6 have 
described the shapes and equations of the mathematical 
models used to describe the semi-variance. In the spheri-
cal model, the spatial correlation decreases (increases the 
semi-variance) equivalently until some fixed distance, and 
then the semi-variance is a constant. In the circular model, 
the spatial correlation decreases until to a fixed distance, 
and then the semi-variance is a constant. Semi-variance 
increases exponentially with the distance, and it is in-
creasing until there is an infinite distance. In the Gaussian 
model, semi-variance increases as concave up to a cer-
tain distance, and then increases as concave down, and 
semi-variance is constant finally constant. Semi-variance 
increases gradually in the linear model (Ramadhan et al., 
2021). If the sample locations have distances closer dis-
tances to the range, these are autocorrelated (Taharin & 
Roslee, 2021). Therefore, to identify the accuracy of the 
interpolated surface by Kriging, the variogram, the number 
of observed points, and the range (search radius) are vital 
(Van Huynh et al., 2022).

1.2.3. TIN spatial interpolation

The Triangular Irregular Network (TIN) is a data struc-
ture managed to make a digital elevation model (DEM) 
to highly variable data (Kurakula et al., 2007). Although 
TIN spatial interpolation is not widely used in noise 
mapping, several studies were associated with TIN for 
interpolating of traffic noise levels (Laxmi et al., 2019). 
TIN provides a surface of vector-based formed by trian-
gulating vertices (points). Collecting these serious edges 
that create a network of triangles. The Delaunay triangle 
is commonly used to create these triangles. The noth-
ing vertex lies inside any of the triangle circumstances, 
and minimum interior triangles are the satisfaction for 
the Delaunay triangle. Because nodes can be placed ir-
regularly on a surface, TIN has a higher visual resolution 
in areas where the surface is highly variable or where 
more details are needed. TIN is more effective at gen-
erating a continuous surface using discrete points and 
line data. Noise is a discrete phenomenon (Suthanaya, 
2015). Therefore, it is not an issue to use the TIN to 

Figure 2. Spherical equation (Esri, 2021)

Figure 3. Circular equation (Esri, 2021)

Figure 4. Exponential equation (Esri, 2021)

Figure 5. Gaussian equation (Esri, 2021)

Figure 6. Linear equation (Esri, 2021)

interpolate noise levels (Wenzhong, 2000; Laxmi et al., 
2019). TIN provides a facility to convert a TIN surface 
to a raster format through the natural neighbour (Iaaly-
sankari et al., 2010). According to results of previous 
studies, traffic noise levels do not fluctuate more, and 
approximately 1dB(A) decreases within a distance of 2 
m. However, there is some fluctuation in noise levels 
in the undulated areas, because upward and downward 
slopes appear as noise barriers. The heights of the noise 
observation points vary in undulated areas with road 
level. Therefore, applying TIN interpolation for these 
conditions is vital for an accurate comparison of noise 
mapping.
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2. Methodology

2.1. Study area
The study area is located at the Universiti Teknologi Ma-
laysia (UTM), Johor, Malaysia. The location is 1°33′37.6′′ N 
103°38′16.4′′ E. There is a higher traffic flow at UTM in the 
morning and evening. The average traffic noise levels have 
been detected about 70 dB(A) (Nejad et al., 2019). This 
study is carried out to visualise traffic noise in 2D, space 
and to identify the performance of spatial interpolations 
on traffic noise levels. Figure 7 illustrates the overview of 
the study area.

Figure 7. Overview of the study area (source: Google Earth)

2.2. Methods
Digital data layers were organised to create the 2D model 
of the study area (buildings and road network). TIN was 
prepared for the terrain to identify the topographical 

variance of the terrain. The TIN of the terrain is vital to 
identify with of the receiver (observation points) heights 
respect to the road level. The research workflow is shown 
in Figure 8. Noise observation points (Nops) were de-
signed as normal to the centreline of the roads, and main-
tained 2 m distance intervals a pair of Nops. The number 
of vehicles and the speed of vehicles (road statistical data) 
were observed in the morning (7.30 a.m. to 9.30 a.m.). The 
Henk de Kluijver traffic noise model was used to calculate 
noise levels to Nops. Equation (3) elaborates on the Henk 
de Kluijver traffic noise model (Ranjbar et al., 2012).

LAeq = E + Coptrek + Creflectie – Dafstand – Dlucht –  
Dbodem – Dmeteo – Dbarrier .       (3)

LAeq is the noise level of the Nop, and E is the noise 
emission level. Coprek is the extra noise emission from 
vehicle braking and accelerating. Creflectie is the noise re-
flexion of barriers. The Dafstand is the mitigation of traffic 
noise with distance. Dlucht is the mitigation of traffic noise 
due to absorption from the air. r is the shortest distance 
between the noise source and the observation point. Dbo-

dem is the traffic noise absorption by the ground. Dmeteo 
denotes the reduction in noise caused by wind condi-
tions. The noise reflexion correction was determined as 
+1.5 dB(A). When the ground is completely made up of 
grass, the noise absorption coefficient of the ground was 
assumed to be 1 (International Organization for Stan-
dardization, 1996). Then the noise absorption coefficient 

Figure 8. Research workflow
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of ground was assumed to be 0.7 for lawns, and 0.3 for 
gravel roads (Attenborough et al., 2016). The samples 
points were randomly selected to validate the interpolated 
surface. The grid resolution was considered to be 1 m for 
the interpolated surface. In the IDW, the power parameter 
was selected as 1, 2, 3, and 4.  The number of points and 
selecting observation points through the variable search 
radius were fixed as respectively 6, 8, and 12, 3 m, 5 m, 
and 7 m. In the Kriging, different types of variogram were 
used for the interpolation, and the Delaunay triangulation 
method was used for the TIN. An accuracy comparison was 
conducted through a cross-validation (fitting observation 
points with interpolated surface) and a sample validation 
(to validate the interpolated surfaces with sample points). 
Especially, the accuracy validation of the interpolated sur-
face was carried out for the entire study area and slope 
areas separately to obtain a significant comparison of the 
interpolated surface.

3. Results and discussion

Figure 9 illustrates the Nops and 2D model of the study 
area. The hundred (100) sample noise observations were 
used to validate interpolated surfaces. Sample points were 
selected by considering the density of sample points, the 
number of samples, and distribution of samples with re-
spect to the study area. The forty (40) Nops were used 
for cross- validation. Table 1 and Figure 10 show the ac-
curacy comparison of the IDW interpolation. In Figure 10, 
1, 2, 3, 4, and 5 refers to the weighting factor. Table 2 and 
Figure 11 show the accuracy comparison of the Kriging 
interpolation.

Table 1. Accuracy validation of IDW

Radius Points Power 
(1)

Power 
(2)

Power 
(3)

Power 
(4)

Power 
(5)

3 6 2.633 2.628 2.708 2.807 2.892

5 12 2.828 2.580 2.584 2.690 2.795

7 18 3.188 3.024 3.102 3.157 3.055

Figure 9. 2D Model with nops

Table 2. Accuracy validation of Kriging

Radius, 
Points

Spherical
(1)

Circle
(2)

Expo-
nential

(3)

Gaussian
(4)

Linear
(5)

3,6 2.071 2.107 1.893 21.431 2.204
5,12 1.747 1.731 1.677 1.529 1.734
7,18 1.741 1.730 1.682 1.549 1.709

Figure 10. Accuracy validation of IDW

Figure 11. Accuracy validation of Kriging

According to Table 1, the weighting factor of IDW is 
1,2,3,4, and 5. The number of points and fixed radius have 
been used for the interpolations that show in the first and 
second columns. According to Figure 10, the minimum 
RMSE (2.580) is represented for the weighting factor is 2, 
the number of points is 12, and the distance of the radius 
is 5 m in IDW interpolation. According to Table 2 and Fig-
ure 11, the minimum RMSE (1.529) is represented for the 
Gaussian variogram, and the radius and number of points 
are respectively, 5 m and 12. However, the minimum RMSE 
for IDW and Kriging was taken when the number of points 
is 12 and the fixed radius distance is 5 m. It means that 
when distance between Nops is 2 m, the number of points 
is 12 and the fixed radius is 5 m is vital for the accuracy 
of IDW and Kriging interpolation. The RMSE is closed to-
gether when weighting factor is 5, whatever fixed radius 
and number of points in IDW interpolation. In Kriging, 
the minimum RMSE is taken for the Gaussian variogram 
whatever fixed radius and number of points. The RMSE of 
accuracy validation for TIN is 3.341. Therefore, the type 
of variogram and the weighting factor of the Kriging and 
IDW is vital for the accuracy of the interpolated surface.

For cross-validation (to identify the accuracy com-
parison of the interpolated surface and Nops), the 40 
Nops were used to find the RMSE between Nops and the 

Figure 8. Research workflow
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interpolated surface. According to Table 3 and Figure 12, 
the minimum RMSE was taken when the weighting factor 
is 2, radius 7, and the number of points is 18 in IDW. Thus, 
it can be concluded that RMSE is minimised for both ac-
curacy validation and cross-validation when the weighting 
factor of IDW is 2. However, when the weighting factor is 
applied, the accuracy of cross-validation is increased in 
IDW. In Kriging interpolation, Table 4 and Figure 13 there 
are no a direct relationship between accuracy and interpo-
lation factors. But the accuracy of cross-validation is higher 
in the Gaussian variogram. The RMSE for cross-validation 
of TIN is 3.443. The 20 sample noise points were selected 
to validate the noise levels in undulated areas. Table 5 
shows the accuracy validation of Kriging, IDW, and TIN 
noise interpolations in undulated areas.

Table 5. Accuracy validation of undulated areas

Kriging IDW TIN

RMSE 1.690 3.017 4.321

The IDW surface with RMSE is 2.580 was used to vali-
date sample points in undulated areas. Like that, a Kriging 
surface was used, which RMSE is 1.529. The similar TIN 
surface mentioned above was used. However, the Krig-
ing interpolation has a lower RMSE in undulated areas. 
But comparatively, there is a higher RMSE for IDW, and 
TIN in undulated areas. When considering the accuracy 
of Kriging, IDW and TIN interpolated surfaces, the Kriging 
(Gaussian variogram, radius is 5 m, and number of points 
is 12) has a lower RMSE than other interpolated surfaces. 
Therefore, to visualise the 2D noise levels, this Kriging sur-
face was used. The 2D traffic noise visualisaton is shown 
in Figure 14.

Figure 14. Visualisation of 2D traffic noise

4. Conclusions

A proper noise model is vital for the calculation of traffic 
noise. Visualisation of traffic noise is effective in designing 
noise policies for urban planners. Although IDW, Kriging, 
and TIN are widely used to interpolate traffic noise levels, 
the performance of spatial interpolations is vital for noise 
mapping. The Gaussian variogram of Kriging (with radius 
is 5 m and number of points are 12) is prime to increase 
the accuracy of interpolated surface. However, to achieve 
that much accuracy, the distance should be maintained at 
2 m between Nops. In cross-validation (fitting interpolated 
surface with Nops), the IDW (weighting factor is 2, radius 
is, 7 and number of points are 18) has a high accuracy. 
However, there is no direct relationship between cross-
validation and accuracy validation of traffic noise inter-
polated surfaces. In undulate areas, the Kriging shows a 
higher accuracy for traffic noise interpolation. Therefore, 
Kriging is vital to interpolate traffic noise levels under any 
topographical conditions. The Kriging considers the cor-

Table 3. Cross-validation of IDW   

Radius Points Power 
(1)

Power 
(2)

Power 
(3)

Power 
(4)

Power 
(5)

3 6 2.560 2.292 2.247 2.249 2.281

5 12 2.559 2.295 2.246 2.247 2.249

7 18 2.396 2.244 2.247 2.250 2.251

Table 4. Cross-validation of Kriging

Radius, 
Points

Spherical
(1)

Circle
(2)

Expo-
nential

(3)

Gaussian
(4)

Linear
(4)

 3,6 2.268 2.267 2.270 2.711 2.811

 5,12 2.266 2.265 2.265 2.265 2.711

7,18 2.267 2.265 2.263 2.733 2.264

Figure 12. Cross-validation of IDW

Figure 13. Cross-validation of Kriging  
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relation between observation points, the values of Nops,
not more variety. Therefore, the Kriging spatial interpola-
tion technique fits to sample points with higher accuracy.
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