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Article History:  Abstract. Monitoring crop condition, soil properties, and mapping tillage activities can be used to assess 
land use, forecast crops, monitor seasonal changes, and contribute to the implementation of sustainable 
development policy. Agricultural maps can provide independent and objective estimates of the extent of 
crops in a given area or growing season, which can be used to support efforts to ensure food security in 
vulnerable areas. Satellite data can help detect and classify different types of soil. The evolution of satellite 
remote sensing technologies has transformed techniques for monitoring the Earth’s surface over the last 
several decades. The European Space Agency (ESA) and the European Union (EU) created the Copernicus 
program, which resulted in the European satellites Sentinel-1B (S1B) and Sentinel-2A (S2A), which allow the 
collection of multi-temporal, spatial, and highly repeatable data, providing an excellent opportunity for the 
study of land use, land cover, and change. The goal of this study is to map the land cover of Côte d’Ivoire’s 
West Central Soubre area (5°47′1′′ North, 6°35′38′′ West) between 2014 and 2020. The method is based on a 
combination of S1B and S2A imagery data, as well as three types of predictors: the biophysical indices Nor-
malized Difference Vegetation Index “(NDVI)”, Modified Normalized Difference Water Index “(MNDWI)”, Nor-
malized Difference Urbanization Index “(NDBI)”, and Normalized Difference Water Index “(NDWI)”, as well as 
spectral bands (B1, B11, B2, B3, B4, B6, B7, B8) and polarization coefficients VV. For the period 2014–2020, 
six land classifications have been established: Thick_Forest, Clear_Drill, Urban, Water, Palm_Oil, Bareland, and 
Cacao_Land. The Random Forest (RF) algorithm with 60 numberOfTrees was the primary categorization ap-
proach used in the Google Earth Engine (GEE) platform. The results show that the RF classification performed 
well, with outOfBagErrorEstimates of 0.0314 and 0.0498 for 2014 and 2020, respectively. The classification 
accuracy values for the kappa coefficients were above 95%: 96.42% in 2014 and 95.28% in 2020, with an 
overall accuracy of 96.97% in 2014 and 96 % in 2020. Furthermore, the User Accuracy (UA) and Producer 
Accuracy (PA) values for the classes were frequently above 80%, with the exception of the Bareland class 
in 2020, which achieved 79.20%. The backscatter coefficients of the S1B polarization variables had higher 
GINI significance in 2014: VH (70.80) compared to VH (50.37) in 2020; and VV (57.11) in 2014 compared to 
VV (46.17) in 2020. Polarization coefficients had higher values than the other spectral and biophysical vari-
ables of the three predictor variables. During the study period, the Thick_Forest (35.90% ± 1.17), Palm_Oil 
(57.59% ± 1.48), and Water (5.90% ± 0.47) classes experienced a regression in area, while the Clear_Drill 
(16.96% ± 0.80), Urban (2.32% ± 0.29), Bareland (83.54% ± 1.79), and Cacao_Land (35.14% ± 1.16) classes 
experienced an increase. The approach used is regarded as excellent based on the results obtained. 
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optical data was rapidly hampered by the fact that cloud 
cover could be detected in the majority of images available 
in some parts of the earth. Understanding the location, size, 
and natural variability of wetlands is critical for their pres-
ervation in the face of land-use and environmental change, 
which is only one the reasons why (Ozesmi & Bauer, 2002). 

1. Introduction

Remote sensing images with very high spatial resolution 
(VHR) have significantly aided vegetation monitoring and 
mapping during the last decade, enabling for the gather-
ing of very detailed and exact data. However, analysis of 
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Many applications, including natural resource pres-
ervation, sustainable development, and climate change 
(S. Chaudhary & Dhanya, 2018; Disse et al., 2018; Rajbong-
shi et al., 2018), need extensive information on LULCC at 
global and regional scales (A. Chaudhary et al., 2018; Dh-
anya & Yerramalli, 2018). Remote sensing data are often 
used to obtain information on land-use and land-cover 
(Huang et al., 2017), particularly for agricultural land. This 
may be performed by using high-resolution remote sens-
ing data to generate LULCC maps, which reflect land-use 
for various human activities, such as agricultural or resi-
dential areas, or physical aspects of the Earth’s surface 
such as water bodies, grasslands, and rocks (A. Chaudhary 
et al., 2018; Shalaby & Tateishi, 2007). 

LULCC map are very useful for analyzing the composi-
tion and layout of a landscape as well as spotting changes 
in the landscape. They may also be used to assess modi-
fications in the landscape caused by environmental gradi-
ent (Vizzari & Sigura, 2015). Understanding the changes 
in LULCC throughout the course of a study period, as well 
as the spatial identification of transformation hotspots, is 
required of measuring and spotting small changes. This 
data is useful for monitoring, planning, and managing 
ecosystems. Such classifications often need an early step 
in which the multitemporal images is created to minimize 
cloud cover and image statistics and spectral indices are 
produced to improve classification accuracy. 

This is where GEE comes into play. It is a simple ap-
plication that enables users to establish several operating 
modes for the combining of input data, allowing for the 
efficient development of a lightweight, cloud-free, mul-
titemporal composite dataset without dealing with bot-
tlenecks caused by restricted local processing resources 
(Hermosilla et al., 2018; Méger et al., 2019). When applied 
to remote sensing data, standard LULCC automated clas-
sification algorithms depend on the use of training data 
to create spectral signatures of selected land cover classes 
and pixel-based discrimination between diverse land-cover 
types (Pfeifer et al., 2012). This is why optical remote sens-
ing data from various platforms, such as IKONOS, Quick-
bird, Wolrdview, ZY-3 (Zone 3), Sentinel, Landsat, and 
Moderate Resolution Imaging Spectroradiometer (MODIS), 
with spatial resolutions ranging from less than one meter 
to hundreds of meters, has been used by many research-
ers in a variety of research areas, including land-use clas-
sification and land-cover mapping (Congalton et al., 2014; 
Ghorbanian et al., 2020). 

Following the successful launch of Sentinel 1A in April 
2014, the ESA launched Sentinel-2, an optical satellite with 
high spatial resolution, on June 23, 2015. This sensor, can 
provide systematic worldwide captures of multispectral 
images with fine spatial resolution and revisit frequency 
(Çavur et al., 2019). This is critical for the next generation 
of operational products, such as land cover maps, land-use 
change detection maps, and geodesic variables (Pesaresi 
et al., 2016).

Because of its attractive properties, such as a spatial 
resolution of 10 m for four bands and a return length of 10 

days, Sentinel-2A image are especially effective for track-
ing regional sensing changes over short time periods. The 
rich information on spectral and spatial quality allows for 
precise differentiation of land types. Indeed, as previously 
noted, multi-date satellite data is essential to reduce the 
uncertainty associated with land cover classification. 

Sentinel-2A data have recently been provided with a 
higher spatial resolution than Landsat images, prompting 
the scientific community to choose Sentinel-2A data for 
their land use and land cover classification in various stud-
ies such as wetland monitoring (Kaplan & Avdan, 2017), 
crop and tree species classification (Immitzer et al., 2016), 
urban sprawl (Lefebvre et al., 2016) urban green space 
analysis (Kopecká et al., 2017). Several studies comparing 
the classification accuracy of Landsat data especially Land-
sat-8 and Sentinel-2A had more features than other data 
such as MODIS.

GEE is now one of the most commonly utilized of these 
systems, meeting the primary storage, composition, pro-
cessing, and analysis needs of remote sensing data (Pazúr 
et al., 2017). This platform includes a variety of ways for 
LULC classification based on sophisticated algorithms. Its 
user-friendly interface and straightforward JavaScript lan-
guage allow the developed scripts to be readily repro-
duced and exploited through the cloud platform. The GEE 
API may be used to import and visualize huge satellite 
photos, as well as to perform complicated geostatistical 
and geospatial operations on the images. Furthermore, 
GEE uses cloud computing to analyze data and offers a 
huge number of datasets from Landsat, Sentinel, MODIS, 
and other sensors, as well as techniques like as SVM, RF, 
Nave Bayes, and others. Sentinel imagery has been used 
in number of previous vegetation studies, including clas-
sification (Laurin et al., 2016; Perez et al., 2018; Tesfami-
chael et al., 2018), grassland (Mostafa et al., 2022; Sán-
chez-García et al., 2020), and forests (Chemura et al., 2017; 
Plank et al., 2019; Selvakumaran et al., 2018). In this case, 
the most widely used NDVI index is sensitive to vegetation 
characteristics (Periyasamy et al., 2021), the NDWI index is 
sensitive to water bodies (Qu et al., 2021) and the NDBI in-
dex is sensitive to built-up areas (Qu et al., 2021) as well as 
the NDMI index in order to examine their contributions to 
LULCC classification (Schucknecht et al., 2016). Data mining 
and machine learning approaches have recently evolved in 
the area of remote sensing to improve the performance 
of land cover categorization and change detection algo-
rithms. These approaches, which are capable of coping 
with the complicated state and dynamics of land cover 
data, include neural networks, decision trees, support vec-
tor machines, RF, and ensemble classifiers. 

These techniques may reach such high efficiency be-
cause they do not rely on the assumption of data distri-
bution, but rather are capable of coping with noisy ob-
servations (L. Breiman et al., 2003; Grinand et al., 2013). 
Non-parametric classification techniques like k-nearest 
neighbour (KNN), artificial neural network (ANN), support 
vector machine for regression (SVR), and RF have a better 
ability to discriminate fairly complex land uses between 
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predictors and different soil classes than ML techniques 
like k-nearest neighbour (KNN) (Slama et al., 2021).

GEE is now one of the most commonly utilized of these 
systems, meeting the primary storage, composition, pro-
cessing, and analysis needs of remote sensing data (Mas, 
2000). This platform includes a variety of ways for LULC 
classification based on sophisticated algorithms. Its user-
friendly interface and straightforward JavaScript language 
allow the developed scripts to be readily reproduced and 
exploited through the cloud platform. The GEE API may be 
used to import and visualize huge satellite photos, as well 
as to perform complicated geostatistical and geospatial 
operations on the images. Furthermore, GEE uses cloud 
computing to analyze data and offers a huge number of 
datasets from Landsat, Sentinel, MODIS, and other sensors, 
as well as techniques like as SVM, RF, Nave Bayes, and 
others (Gorelick et al., 2017).

Comparisons of supervised classification algorithms 
demonstrated that RF and other classification trees gen-
erated a high accuracy of 92 percent (Rodriguez-Galiano 
et al., 2012c). Similarly, Mansaray et al. (2019) found that 
utilizing satellite images from Sentinel-1A and Sentinel-2A, 
RF obtained overall accuracy performances of more than 
95% in their research of rice mapping in China (Mansaray 
et al., 2019).

In other words, the accuracy of LULC estimates could 
be improved by a combined use of multi-source remote 
sensing data. Machine learning approaches optimize algo-
rithm performance by learning the relationships between 
data from the data itself, using a training dataset with as 
much variability of the data as possible, as described by 
the term “universal approximations” (Lavy & Sand, 2019). 
In terms of prediction performance, it has been reported 
that the RF classification approach outperforms other 
classification methods such as maximum likelihood clas-
sification, SVM, and ANN (Schneider, 2012). In addition to 
MODIS data (Aide & Aide, 2012), Landsat data (Rodriguez-
Galiano et al., 2012b; Schultz et al., 2016; Tatsumi et al., 
2015), digital soil mapping (Grimm et al., 2008), and forest 
biomass mapping (Baccini et al., 2012).

Throughout 1960 and 2017, Côte d’Ivoire’s forest cover 
decreased from 12 million hectares to less than 3 million 
hectares, owing mostly to improved agricultural productiv-
ities, particularly cocoa and palm oil farming. Deforestation 
is occurring at an alarming rate, averaging about 3% each 
year. If current trends continue, Côte d’Ivoire’s forests will 
soon be unable to fulfill their ecological responsibilities, 
harming the country’s agricultural industry and jeopardiz-
ing the livelihoods of millions of small-scale farmers. 

Deforestation in agricultural tropical nations is mostly 
caused by cocoa and oil palm cops. They a land-use sys-
tem that dominates and changes most forest land use sys-
tem that dominates and changes most forest landscapes 
in West Africa, including Ghana, Nigeria, Cameroon, and 
Côte d’Ivoire (Sonwa et al., 2017; Wessel & Quist-Wessel, 
2015).

Indeed, previous research on deforestation in Côte 
d’Ivoire have provided important information on the 

country’s vegetation state (Abu et al., 2021); and degra-
dation due to agriculture (Abu et al., 2021; Barima et al., 
2016; Kouakou et al., 2020). However, only a few stud-
ies have investigated the use of current satellite data as 
sentinels (Kouassi et al., 2021c). Their work, on the other 
hand, is still limited in terms of object-based pixel detec-
tion modification design principles understanding and 
comprehension. The goal of this research is to categorize 
the study area by utilizing a combination of Sentinel 1B 
and 2A data, spectral indices, and biophysical parameters 
gathered during the study period. 

2. Methods

2.1. Study area
This study was conducted in Côte d’Ivoire, a West Afri-
can country located on the African continent between 4- 
and 11-degrees north latitude and 2- and 9-degrees west 
longitude. Côte d’Ivoire has a tropical and humid climate. 
The following are the country’s major climatic zones: The 
southern hemisphere has a tropical equatorial climate. 
During this time of year, temperatures range from 21 °C 
to 33 °C (Falk et al., 2016). The weather is oppressively hot 
and dry. Côte d’Ivoire’s two most major vegetation zones 
are forest in the south and savannah in the north. Because 
of the Southwest’s climate, vegetation, and soils, tropical 
cash crops like as cacao and palm oil flourish (Falk et al., 
2016). These two crops are crucial to the growth of the 
Ivorian economy. Côte d’Ivoire is now Africa’s biggest palm 
oil exporter, accounting for 60% of total ECOWAS palm oil 
exports. The nation also supplies crude and refined petro-
leum to the regional market (Cheyns et al., 2000). In terms 
of cocoa output, Cote d’Ivoire is the world’s leading pro-
ducer, owing to the performance of massive plantations 
via forest exploitation, which is based on the country’s vast 
exploitation of forest resources (Tano, 2012). The bulk of 
the primary woods found in the research region are home 
to some of the area’s most biologically important eco-
systems (N’Guessan et al., 2019; Sanial et al., 2023). The 
area (Soubré) has a diverse terrestrial vegetation, including 
mangroves, shrubs, and woodlands, as well as a variety of 
fauna and terrestrial reptiles (Assi & Guinko, 1996; Klop-
per et al., 2012). The majority of recent growth activities 
in the region, such as major infrastructure and investment 
projects, are directly or indirectly linked to environmen-
tal degradation. There are also industrial palm producing 
companies present.

This area of the Cote d’Ivoire was selected for research 
because it is a crucial location for the development of in-
dustrial cash crops, as well as the biggest supplier of cocoa 
beans and a significant oil palm producing area. Figure 1 
presents the study area.

2.1.1. Google Earth Engine tool

The GEE engine was used in this study. It is a cutting-edge 
cloud-based platform for geospatial and remote sens-
ing data processing. GEE provides access to a database 
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of public remote sensing images, including Sentinel-1A 
and 2B, Landsat-8, and MODIS, as well as a range of extra 
composite products. GEE offers a Google computing in-
frastructure (https://developers.google.com/earth-engine/) 
to developers for parallel processing of geographic data 
using the Javascript API. Random Forest, Nave Bayes, Clas-
sification And Regression Trees (CART), and Support Vector 
Machine (SVM) are just a handful of the machine learning 
algorithms for classification available on the GEE platform 
(Mohammadi & Khodabandehlou, 2020).

2.1.2. Data

Sentinel imaging data has been widely employed in land 
use classification, environmental monitoring, and urban 
planning, as well as in the assessment of LULCC. The Sen-
tinel-1 synthetic aperture radar (SAR) and Sentinel-2B 
cloud-free multispectral images used in this study were 
available from the ESA Copernicus Sentinel Scientific Data 
Hub (https://scihub.copernicus.eu/dhus/#/home). The Sen-
tinel-1A C-band images utilized in this study were cap-
tured in the wide swath interferometry mode of both the 
VH (vertical emission – horizontal reception) and VV (verti-
cal emission – vertical reception) polarizations of the VH 
(vertical emission – horizontal reception). The SAR images 
have a pixel size of 10 m and are processed at the great-
est resolution possible, Ground Range Detection (GRD) 
level 1. Because of its architecture, the sensor onboard 
this satellite can gather data at a frequency of 5405 MHz 
and in a range of polarizations (European Space Agency, 
2019). Sentinel-2B top-of-atmosphere reflectance images 
recorded at Level 1C were utilized in this investigation, and 
they were orthorectified and spatially registered following 
processing. The imaging had a resolution of 10 m (bands 
2–4 and 8), 20 m (bands 5–7, 8a, 8b), and 20 m (bands 

5–7, 8a, 11–12), and 60 m (bands 5–7, 8a, 11–12) in the 
visible and near-infrared areas, and a resolution of 10 m 
(bands 5–7, 8a, 11–12) in the shortwave infrared region 
(band 1, 9–10).

2.2. Processing 
Using the GEE platform, we were able to access Sentinel-
1A and 2B multi spectral radar (MSR) data by filtering the 
data for the region of interest, which was the study area. 
To cover the whole satellite image, about 1740 training 
polygons were physically scanned in the study area, and 
samples were collected at random. The training sample 
specifically comprises seven distinct kinds of land cover 
and land use classifications: The categories are as follows: 
(1) Thick Forest; (2) Urban; (3) Clear_Drill; (4) Cocoa_Land; 
(5) Water; (6) Bareland; and (7) Palm_Oil. The survey find-
ings are shown in Table 1. This technique ensures that a 
representative sample of each terrain type is used (Wang 
et al., 2019). It is feasible to improve the accuracy of the 
most accurate classification in non-parametric machine 
learning classification, such as RF, by using a large number 
of reference data (Chrysafis et al., 2017). The test polygons 
were divided in half so that they could be utilized for both 
testing and validation. Among other things, this resulted 
in the construction of 1740 training polygons, 870 train-
ing polygons, and 870 test polygons. We manually labeled 
high-resolution Google Earth images between 2014 and 
2020 that we received from the Internet. After that, we 
utilized visual verification to ensure that the supplied class 
was accurate. Table 2 shows the defined land cover classes 
that have been selected. 

The images were then imported into GEE for addition-
al processing (Murray et al., 2018). The GRD bands were 

Figure 1. a – Map of the study area; b – Côte d’Ivoire map 

Table 1. Class training point

Class Thick_Forest Urban Clear_Drill Palm_Oil Water Bareland Cocoa_land Total

Validation training Point 212 255 225 205 265 207 371 1740

a) b)
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eliminated and the noise was corrected before processing 
the S1 image; radiometric correction and terrain correction 
were performed using the orbit file, which was then ap-
plied to the S1A image (Gulácsi & Kovács, 2020; Veci et al., 
2014). The S1 data were filtered to obtain “transmitterRe-
ceiverPolarisation” [“VV” and “VH”] and “filterMetadata” to 
obtain “instrumentMode”, “equals”, and “IW” (Khan et al., 
2020). The S2B images were pre-filtered to get less hazy 
granules and to reduce the number of cloudy pixels to 
20% of the overall image. Additionally, the S2B data was 
filtered using the pixel quality characteristics of the “‘Pixel 
QA”’ band as defined by the CFMaskAlgorithm, which was 
applied to the S2 data.

 The clouds were removed using the “Pixel QA” band, 
which is a binary mask band with a CFMask quality indicator 
(CFMask) (Foga et al., 2017). Bits 10 and 11 in the visualiza-
tion represent S2’s cloud shadow, and are referred to as 
the “CloudBitMask” and “cirrusBitMask”, respectively, as well 
as the Masks [qa.bitwiseAnd (cloudBitMsk)] and [qa.bitwise-
And   (cirrusBitMask)]. These filter functions were used to 
minimize speckle noise (an extremely noisy, salt-and-pep-
per look), which reduces image quality and hinders image 
interpretation (Choi & Baraniuk, 2001; Fosgate et al., 1997). 
The benefit of this technique is that it makes use of the in-
tensity data as well as the intrinsic pixel structure of the SAR 
data (Amitrano et al., 2014; Gao et al., 2017). The function 
“updateMask” was created by multiplying the bands from 
1 to 11 by a factor of 10000. A backscatter coefficient was 
derived using S1 data on the “VV” data, and bands 8, 4, and 
3 were used as false colours on the “VV” data. 

To collect data across the region of interest, the inter-
ferometric wide swath mode (IW) was used. The Terrain 
Observation with Progressive Scan SAR (TOPSAR) approach 
is utilized in the IW mode to acquire three sub-sweeps. 
This approach gathers data in pulses by cyclically switching 
the antenna beam between the three sub-bands. The main 
indices were computed and the results were compared to 
each other for feature classification prediction. In order 
to identify which predictor was the most successful, GINI 
was used to assess the importance of the S1A and S2B 
features, as well as the properties of the spectral bands 
and vegetation indices.

The GINI coefficient was chosen because it provides an 
idea of the average total diminution of the impurity of the 
nodes, and because it was applied to all of the RF deci-
sion trees. GINI feature provided us with information on 
how important the input characteristic was relative to the 

classification (Argamosa et al., 2018; Descals et al., 2019; 
Han & Lee, 2020; Mansaray et al., 2020). The sample point 
was performed to develop the categorization of S1A and 
S2B with RF. In this research, we looked at the producer 
accuracy (PA), user accuracy (UA), and Kappa accuracy coef-
ficients (KA). In the last step of the categorization process, 
the land cover maps were converted into polygonal shape 
files in ArcGIS for subsequent processing and analysis.

2.2.1. Accuracy assessment

The accuracy assessment was created to assess a mod-
el’s ability to detect and define land use and land cover 
categories in a study area. In the accuracy assessment, it 
quantifies the accuracy of the maps, calculates the area 
of each class formed by the reference classification, and 
analyses the uncertainty of the classifications of the area 
classifications (Olofsson et al., 2014). The validation score 
approach, which was used to validate the RF model, was 
used to assess the correctness of the RF model. The valida-
tion score is calculated by reserving a part of the original 
training data before training the models and then evalu-
ating the models’ efficacy using ensemble decision trees 
(Sharma et al., 2020).

The classification accuracy was expressed in terms of 
the estimated confusion matrix in terms of overall accu-
racy, error of commission (user accuracy), and error of 
omission (omission error) (producer accuracy). The matrix’s 
column contains the reference information, the row has 
the classification result information, and the intersection of 
the two columns produces the number of samples classi-
fied in a certain class (Rodriguez-Galiano et al., 2012a). In 
general, overall accuracy refers to the percentage of cor-
rectly categorized samples, while user accuracy refers to 
the proportion of correctly identified samples in each class. 
We utilized a slightly modified version of the technique 
described by (Olofsson et al., 2014) to assess the accuracy 
of the land cover. This research used a stratified random 
sampling method. By applying the following formula to 
the data, the proper sample size was calculated (Olofsson 
et al., 2014) Equation (1):

( )
( ) ( )

( )
( )

2 2

2 2
,

ˆˆ 1
WiSi WiSi

n
S OS O WiSi

N

 ∑ ∑ = ≈       + ∑       

  (1)

where n = the number of units, S( )S Ô  is the standard error 
of the estimated overall accuracy, 

Table 2. Land Categories definition (W. Li et al., 2020; Xiong et al., 2017)

Land Classification Class colors Définition

Thick_Forest  *Forest, natural or planted forests, evergreen forest land, mixed forest land.
Urban  *Built-up area of all settlement, including industrial zones and other artificial surfaces.
Clear_Drill  *Deciduous forest land, Shrubs or herbaceous may be present.
Palm_Oil  *Industrial and traditional oil palm plantation.
Water  *Lakes, rivers, marries, wetlands, reservoirs, streams and canals, reservoirs, bays, estuaries.
Bareland  *Bareland, exposed rock, strip mines, quarries, gravel pits, transitional areas, mixed barren.
Cocoa_Land  *Industrial and traditional cocoa plantation.
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Wi is the mapped percentage of the area in class i and 
Si is the standard deviation of the mapped proportion of 
the area in class i Equation (2): 

( )1 .Si Ui Ui= −      (2)

Different Accuracies (User’s, Producer’s, Overall and 
Kappa coefficient) have been calculated for verifying the 
time-series RF classification (Ghosh et al., 2014).

2.2.2. Random Forest classification method

It is a robust model, well-suited to classification, and it can 
cope with both a large number of predictor variables and 
large and difficult data sets with reasonable ease (Cutler 
et al., 2007; Kolyaie et al., 2019). Amit and Geman (1997) 
developed a CART approach that iteratively constructed a 
large CART cluster by combining bagging (R. F. Breiman 
et al., 1990; Amit & Geman, 1997) with random variable 

Figure 2. Flow chart of the steps used for land use and land cover mapping using Sentinel data  and multispectral imagery 
with RF implemented in GEE and AcrGis 10.7
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selections at each node (Amit & Geman, 1997; R. F. Brei-
man et al., 1990). The classification result represents a 
majority vote or an average of the data in the collection. 
Without the necessity for pruning, each internal node of 
a number of RF decision trees determines the appropri-
ate separation features from a randomly chosen sample of 
predictors (Dhanda et al., 2017; G. Li et al., 2019); RF, which 
is based on the bootstrap sampling approach, ensures that 
the minimum possible bias and data variance are attained 
(Jović et al., 2012). Table 3 describes the satellite data fea-
tures for preparing sentinel and predictor data. Figure 2 
show the workflow of this study.

2.2.3. Choices of indices

Sentinel-2B bands 4 and 8, which correspond to Near 
InfraRed (NIR) and red wavelengths, respectively, were 
used to forecast vegetation in a number of calculations, 
including the NDVI. Bands 3 and 8, which correlate to 
NIR and green, were used to develop the NDWI. Bands 
3 and 11 of the MNDWI were used as prediction vari-
ables, whereas bands 8 and 11 of the NDBI were used 
as prediction variables. Finally, the GEE “maskS2clouds” 
function was used to the S2B images, together with the 
“CloudBitMask” and “CirrusBitMask” variables, to mask 
any cloud interference and provide a median composition 
per pixel for each of the multispectral bands and each of 
the four indices, respectively. Because of the employment 
of these approaches, it was feasible to eliminate from the 
final composite image dark pixels generated by shadows 
as well as unnaturally bright pixels caused by lingering 
clouds. Table 4 shows the Sentinel imagery that was ob-
tained for the research.

Table 4. Sentinel data images used for this study

Mission 
(2014–2020) Product Cell Size 

(m) Agency

Sentinel-1B Level-1 GRD-HR 10 ESA/Copernicus

Sentinel-2A Multispectral 
image Level-1C 10 ESA/Copernicus

3. Results

Sallustio et al. (2015) showed that the Confusion Matrix 
(CM) result is a common approach for evaluating the cat-
egorization accuracy of remote sensing images (Sallustio 
et al., 2015). Overall, the UA and PA coefficients are more 
than 90% for the years 2014 and 2020, with the excep-
tion of two years in which the PA was less than 90%, 
which happened in the Bareland class in 2014. The most 
favoured years were 2014 (81.90%) and 2020 (79.20%) (Ta-
bles 5 and 6). The success of the strategy was shown by 
the highest possible scores obtained across all courses. 
When comparing the PA and UA of the Clear Drill, Water, 
and Palm Oil classes in 2014 to the other soil classes, the 
RF classifier considerably overestimated the PA and UA of 
the Clear Drill, Water, and Palm Oil classes in 2014. It did, 
however, drastically underestimate the PA and UA of the 
2020 Bareland class

The Table 7 includes the coefficients, overall accuracy, 
and kappa values. The figures for 2014 are higher than 
the values for 2020, and they account for more than 95 
percent of the total.

Figures 3 and 4 show the UA and PA values for the 
soil types in 2014 and 2020, respectively. As a result of 

Table 3. Sentinel data preprocessing and predictors

Imagery 
data Predic tors Predictors of 

Interest Description References

Sentinel-1

Polarization

VV vertical transmit-vertical channel
VH vertical transmit-Horizontal channel Chen et al. (2023)
V/H VV/VH
VH-VV transmitterReceiverPolarisation

Texture

VH+VV transmitterReceiverPolarisation Haifeng et al. (2020)
IW instrumentMode, equals
B1 Ultra Blue, 443 nm
B2 Blue, 490 nm
B3 Green, 560 nm

Sentinel-2

Multispectral 
bands

B4 Red, 665 nm https://gisgeography.com/
B6 Red edge, 749 nm
B7 Red edge, 783 nm
B8 Near Infrared, 842 nm
B11 Short Wave IR, 1610 nm
MNDWI (Band 3 − Band 11)/ (Band 3 + Band 11) Chen and Zhao (2020)

Vegetation 
Indices

NDBI (Band 11 − Band 8)/ (Band 11 + Band 3) Mengqi et al. (2022)
NDWI (Band 3 − Band 8)/ (Band 3 + Band 8) Pattanayak and Diwakar (2018)
NDVI Band 8 − Band 4)/(Band 8 + Band 4) C. Huang et al. (2021), Jiaxin et al. (2023)
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the classification approach adopted, better results were 
achieved in both study years. Except for the Bareland class 
for the year 2020, the average accuracy ratings are around 
or over 90%. In general, accuracy is falling in 2020, com-
pared to the accuracy levels obtained for the PA created 
the previous year. Some categories, however, such as the 
water class, have remained stable.

When the findings of Figures 3 and 4 are compared, 
it is clear that the backscatter coefficients VV (46.17) and 
VH (50.37) of S1 for 2014 have much higher values than 
the other predictor variables. The NDWI (51.01) and Sen-
tinel variables are determined to be the strongest predic-
tors among these three prediction categories, followed by 
spectral B1 (49.59), B11 (47.56), and B3 variables (44.99). 
The backscatter coefficient value (70.81) is higher than the 
other predictors in the Sentinel-1 VH polarizations. The VV 
polarizations show greater values than the other predic-
tors, as do the spectral index B2 (57.98), NDWI (56.75), and 
NDBI (53.21). NDVI has decreased in all variables except 
the cross-polarization backscatter coefficients VH (70.80 

Table 5. RF confusion Matrix results  2014

Class Thick_
Forest Urban Clear_Drill Palm_Oil Water Bareland Cocoa_

land
Commis-

sion
Omis-
sion PA

Thick_Forest 154 0 1 0 0 0 1 0.012 0.083 91.66±1.87
Urban 0 125 0 0 0 3 1 0.018 0.031 96.89±1.92
Clear_Drill 0 0 111 4 0 0 3 0.212 0.005 94.06±1.91
Palm_Oil 0 0 0 101 0 4 4 0.198 0.009 92.66±1.95
Water 0 0 0 0 131 0 0 0 0 100±1
Bareland 14 4 1 0 0 81 1 0.246 0 81.90±1.77
Cocoa_land 0 0 4 1 0 5 194 0.025 0.015 95.09±1.93
Total 168 129 117 106 131 93 204 – – –
UA 89.43±1.85 96.84±1.92 94.87±1.93 95.28±1.90 100±1 87.09±1.94 95.09±1.93 – – –

Table 6. RF confusion Matrix results 2020

Class Thick_
Forest Urban Clear_Drill Palm_Oil Water Bareland Cocoa_land Com-

mis sion
Omis-
sion PA

Thick_Forest 148 0 2 4 0 0 2 0.013 0.081 94.87±1.90
Urban 1 124 0 0 0 5 0 0.023 0.032 95.12±1.95
Clear_Drill 0 0 111 2 0 0 3 0.02 0.054 94.87±1.90
Palm_Oil 3 0 0 100 0 2 2 0.0129 0.029 93.47±1.94
Water 0 0 0 0 131 0 0 0 0 100±1
Bareland 11 4 2 3 0 80 1 0.259 0 79.20±1.74
Cocoa_land 1 0 4 5 0 3 194 0.025 0.025 93.71±1.93
Total 164 128 119 114 131 90 202 – – –
UA 90.24±1.87 96.87±1.92 93.27±1.90 87.71±1.87 100±1 88.88±1.95 97.48±1.93 – – –

Table 7.  Comparison of Overall and Kappa accuracy of two 
classifications

Accuracies 2014 2020

Kappa 96.42±1.92 95.28±1.91
Overall 96.97±1.93 96±1.92

Figure 3. LULCC producer and User accuracy in 2014
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Figure 4. LULCC producer and User accuracy in 2020
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for 2020) and VV (54.11 for 2021) (Figures 5 and 6), both 
of which are substantially related to NDVI. Furthermore, 
we notice a reduction in the importance of NDWI from 
51.01 to 48.29 for the years 2014 and 2020, indicating a 
decrease in moisture of NDVI from 34.34 to 47.28, indicat-
ing a decrease in moisture (Tables 8 and 9).

Figure 5. Variable importance of Gini feature histogram 
showing the relative contribution of the top 14 most 
influential predictor variables (2014)

Figure 6. Variable importance of Gini feature histogram 
showing the relative contribution of the top 14 most 
influential predictor variables (2020)

3.1. LULCC analysis
Following the categorization results, an assessment of 
change detection was performed in order to identify the 
evolutionary tendency of the different classes studied 
within the study area. We were able to finish the LULCC 
categorization inquiry using the ArcGIS 10.7 platform 
(Rosan et al., 2021). Using the pixel-based categorization 
result images, the total area and change of each LULCC 

were computed. Calculations were carried out to deter-
mine the total area and change of each LULCC class within 
the study’s area. The formulae Equations (3–4) were used 
to calculate the total area and change of each LULC class 
in the study area from these pixel-based classification 
result images for the purpose of change detection, and 
the formula Equation (5) was used to calculate the rate of 
change in the study area from 2014 to 2020 from these 
pixel-based classification result images. The proportion of 
each LULCC type used was calculated using the following 
formula:

% 100%;i
i

t

S
S

S
= ×     (3)

1 2 ;i i iS S t S t= −   (4)
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where Si denotes the land use type area, “i” St denotes the 
total study area, and Si percent denotes the proportion of 
each land use type area in the overall research area. Sit1 
and Sit2 refer to the total area of land use type “i” in the 
first and second years of the land use type “i” categoriza-
tion system, respectively (Alam et al., 2020). In this study, 
the word “area” refers to the rate of change, which is the 
magnitude of change observed between 2014 and 2020 
(Tian et al., 2014).  Table 10 shows the change in surface 
area for each of the soil classifications assessed. Figure 7 
shows the proportions of changes in land cover and use.

Table 10. LULCC area percentage and change rate for 2014 
and 2020

Class
Area 

(Km2) in 
2014

Area (Km2) 
in  2020

Net LULC 
change 
(Km2)

Percentage 
(%)

Thick_
Forest 47 656.55 35 066.13 –12 590.13 35.90±1.17

Urban 2166.3 2218.82 +55.52 2.32±0.29

Clear_Drill 84 343.88 101 577.79 –17 234.91 16.96±0.80

Palm_Oil 23 878.98 15 152.46 –8726.52 57.59±1.48

Water 3119.52 2951.70 –162.82 5.90±0.47

Bareland 1935.17 11 755.17 +9824 83.54±1.79

Cocoa_
Land 21 258.98 32 912.31 +11 654.33 35.14±1.16

Table 8. Importance of GINI of Number tree 2014

Indices B1 B11 B2 B3 B4 B6 B7 B8 MNDWI NDBI NDVI NDWI VH VV

Values 51.55 50.18 57.98 44.11 50.12 47.20 43.91 44.30 56.75 53.21 47.20 48.29 70.80 57.11

Table 9. Importance of GINI of Number tree 2020

Indices B1 B11 B2 B3 B4 B6 B7 B8 MNDWI NDBI NDVI NDWI VH VV

Values 49.59 47.56 42.49 44.99 36.54 32.25 31.48 32.45 45.95 46.60 34.34 51.01 50.37 46.17
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4. Discussion

4.1. Sentinel classification
We were able to determine the GINI Importance of Tree 
Numbers values for fourteen distinct types of spectral in-
dexes using pre-processed S1A and S2B images (Tables 
7 and 8). Many previous research has shown that many 
remote sensing and vegetation indicators are sensitive to 
different types of LULCC (V. F. Rodriguez-Galiano et al., 
2012b). As a result, the approach used in this study, which 
was based on a combination of remote sensing and veg-
etation spectral indices, was effective in discriminating be-
tween the various types of vegetation observed in the ana-
lyzed area (Aredehey et al., 2018; Atzberger, 2013; Pareeth 
et al., 2019; V. F. Rodriguez-Galiano et al., 2012c). Previ-
ous study found that when comparing the coefficients of 

the Sentinel spectral indexes and the vegetation indices, 
as well as the relevance of GINI characteristics in RF, the 
Sentinel-1A texture features showed a high potential for 
predicting the categorization of LULCCs (Bourgoin et al., 
2021). Backscatter coefficient values of parallel cross-po-
larizations in 2014 are higher (VH: 70.80; VV: 57.11) than 
in 2020 (VH: 50.37; VV: 46.17) and greater than the other 
plant and spectral index values. Overall, the values for 
2020 are significantly higher than those for 2014. Over-
all, these biophysical vegetation characteristics, as well as 
the Sentinel-1A data polarization variables, were extremely 
valuable for land categorization. 

Indeed, as previous research has shown, the S1A 
backscatter coefficient and the S2B vegetation indices 
were effective and frequent predictors. The C-band 
backscatter “VV” is very sensitive to soil moisture in 
open areas (Nonni et al., 2018), and it has been found 
to be useful in distinguishing the different types of 
vegetated or herbaceous land covers in the study area 
(crop, Thick Forest, Clear Drill, Water bodies) (Alekseev 
& Chernikhovskii, 2021; Khellouk et al., 2021). In the 
study field, a method based on a combination of remote 
sensing spectral indices, biological variables, and back-
scatter coefficients was created and tested, and it was 
shown to be effective in identifying LULCC and change 
detection. The spatial resolution of the Sentinel-1A and 
Sentinel-2B data revealed its use in categorizing fea-
tures in the area, showing the data’s significance. It was 
discovered that change detection by LULCC classifica-
tion was effective, with good accuracy values for the 
PA and UA coefficients, as well as the OA coefficients, 
using the method of combining biophysical variables, 
backscatter coefficients from S1A and S2B images, and 
remote sensing spectral indices. 

According to various authors, classifications are inac-
curate when vegetation is characterized by spatial com-
plexity (Garioud et al., 2021). Despite the complexity of 
the study area, the extra spectral bands of Sentinel-2A 
were crucial in boosting the identification and mapping 
of the plant cover in the study area, as shown in this 
work. The findings revealed significant differences at the 
class level, with both losses and gains in area observed. 
The random forest approach, which was implemented in 
GEE, was used to successfully categorize land uses. As 
a consequence, we may infer that the combination of 
a high spectrum resolution and a reasonably excellent 
spatial resolution at S1A & S2B allowed the RF clas-
sification to yield superior classifications, with an out-
OfBagErrorEstimate of 0.0314 in 2014 and a value of 
0.0498 in 2020. 

Thus, the interplay of spectral indexes with biophysi-
cal parameters and polarization variables was critical in 
the development of an image that contained all three 
types of information and was capable of discriminat-
ing and categorizing the different characteristics with 
high accuracy. The images from S1A and S2B may have 
made a substantial contribution, notably in distinguish-
ing soil types. The biophysical variables of parallel and 

Figure 7. Land-use/land-cover area loss and gain between 
2014 and 2020

Figure 8. RF LULCC classification map of study area in 2014

Figure 9. RF LULCC classification map of study area in 2020
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cross polarization of S1A (the “VV” and “VH” of S1), 
spectral indices, and vegetation indices, among others, 
might be used to identify the distinct classes present in 
a mixed pixel. Classifications that were valid and gener-
ated greater accuracy characteristics were created us-
ing Sentinel-1A and 2B data, as well as polarization and 
backscatter variables. The spectral bands used in this 
study, which included the B1, B2, B3, B4, B6, B7, B8, and 
B11 bands, provided a substantial amount of value to 
the biophysical indicators, allowing for more accurate 
distinction between classes and better categorization. 
Indeed, these differences are particularly important 
when it comes to classifying more complex creatures 
such as mammals (Radoux et al., 2016). Aside from that, 
a combination of the spectral bands B3 to B11, as well 
as the spectral bands 7 to 8, and B11, proved to be 
very intriguing in the classification of agricultural areas 
(Palm-oil and Cocoa), as it was capable of discriminating 
between the various crops. 

Authors were able to distinguish between the dif-
ferent classes with greater accuracy ratings because to 
the technique adopted in this investigation, which in-
corporated spectral and biophysical characteristics from 
S1A and S2B multispectral optical imaging data. Figures 
8 and 9 show a multi-date colour composite in “VH” 
polarization of the radar backscatter coefficient for the 
years 2014 and 2020, respectively, based on the radar 
polarimetry characteristic of the Sentinel data used. Each 
of these distinct colours signifies a change in phenology 
at various plant stages during the duration of the study 
period’s seasons. In Côte d’Ivoire, four distinct seasons 
are recognized and recorded, during which certain veg-
etation loses its greenness or changes colour and wilts 
depending on whether it is the dry or rainy season, but 
the bulk of forest areas remain their dominant colour, 
which is green.

The reason for this is because the cross-polarized 
backscattered signal and the sensor signal are distinct, 
and the sensor signal contains or maintains information 
about the radar response, as shown in our sentinel-1 
data. The radar images captured in our case using vari-
ous combinations of spectral, polarization, and wave-
length variables in cross-polarization “VH” were thus 
able to detect changes in the classes and provide dif-
ferent and complementary information on the various 
classes over the course of the study period. When RF 
classification was applied to S1A and S2B data (Figures 8 
and 9), the overall classification accuracy improved. Ac-
cording to the confusion matrix, the overall accuracy for 
2014 and 2020 is 96.97% and 96%, respectively, which is 
rather impressive for a prediction system. 

The Kappa coefficient was calculated using the in-
formation provided by the matrices. The kappa value of 
96.42% and 95.28%, respectively. A value of greater than 
90% was obtained for practically all of the classifications 
studied, including “Thick Forests”, “Urban”, “Clear_Drill”, 
“Palm_Oil”, “Water”, “Cocoa_Land”, and “Bareland”, sug-
gesting that the overwhelming majority of pixels were 

appropriately recognized. On the contrary, with the ex-
ception of the class “Bareland”, which earned a value 
less than 90 percent (81.90%) and (79.20%) for the years 
2014 and 2020, all other classes received values lower 
than 90 percent. According to the commission error, 
which is the proportion of pixels that are classified in a 
different class than the one to which they should belong 
(Collet & Calloz, 2001), in 2014 the class “Thick_Forest” 
had 2 pixels wrongly classified, Clear_Drill class had 7 
pixels, Urban had 4 pixels, the class “Palm Oil” had 8 
pixel, the class “Bareland” had 20 pixels, and the class 
“Cocoa_Land” had 10 pixels. In 2020, the class “Thick 
Forest” had 8 pixels incorrectly classified, Urban had 6, 
the class “Paml_Oil” had 7 pixels incorrectly classified, 
the class “Bareland” had 21 pixels incorrectly classified, 
and the class “Cocoa Land” had 13 pixels incorrectly 
classified, “Clear_Drill” had 5 pixels incorrectly classified; 
in total, 60 out of 888 pixels do not belong to these 
classes. With the classification technique applied in this 
analysis, the overall RF performance may be classed as 
good, notwithstanding the misattributed pixel identified 
in this study. 

4.2. The influence of agricultural on 
biodiversity
Cote d’Ivoire is a developing nation whose economy fo-
cuses on agriculture (export crops) and primary industries, 
particularly mining, which constitute the vast majority of 
its economic production and income (Eveillé et al., 2020). 

According to Kouakou (2021), basic crops such as 
cocoa, oil palm, and coffee are the key sources of eco-
nomic income in Côte d’Ivoire, as well as the biggest land 
consumers (Kouakou, 2021). Over the past three decades, 
these crops have been recognized as contributors of de-
forestation in the nation (Kouassi et al. 2021a, 2021b; As-
salé et al., 2020; Ruf et al., 2020; Ruf & Varlet, 2017). Ac-
cording to World Bank estimates, agriculture has contrib-
uted more than three-quarters of total GDP in every year 
from the country’s independence to the present (Ongolo 
et al., 2018). It is the most significant source of employ-
ment and income for around two-thirds of the country’s 
citizens, accounting for a quarter of the total. 

This understanding may explain the significant pres-
sure that has been imposed on forest area by increasing 
export crops in order to fulfill agriculture as the country’s 
principal economic resource.  Figure 9 depicts the types 
of change, with the Bareland land class having the highest 
percentage of change (83.54%), followed by the Palm Oil 
land class, and the Thick_Forest land class having the low-
est percentage of change (70%). The losses and increases 
on both sides of the land cover classes over the study 
period indicate a change in the study area. Our results 
back with the findings of Global Forest Watch, which pre-
dicted that Côte d’Ivoire would lose around 248,000 hect-
ares of primary forest by 2020. A substantial percentage 
of this deforestation is caused by the clearance of forest 
for plants used in the global cocoa business. The loss of 
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Thick_Forest area was equal to the loss of cultivated cocoa 
land, according to the study’s findings in Table 9. Accord-
ing to some ideas, this is because virgin land in the Thick_
Forest class has been converted to cultivated Cocoa_land.

5. Conclusions 

This study allowed us to map the study area using the 
pixel classification approach, which integrated biophysi-
cal characteristics, polarization variables from S1A and 
S2B data, vegetation indices, and spectral indices across 
a six-year time series. When it comes to identifying 
changes and categorizing the study area, the classifi-
cation findings demonstrate that the combination ap-
proach based on the combination of polarization coef-
ficients, backscatter coefficients, biophysical factors, and 
spectral bands proved to be quite effective. Because of 
the study’s high spatial and temporal resolutions, the 
new Sentinel-1A satellite image series was found to be 
particularly beneficial for monitoring temporal detection 
change and discriminating land cover categories in the 
study area. Sentinel 2B was also proven to be efficient 
in discriminating between planted Cocoa land and palm 
oil. The inclusion of the cross-polarization variables “VH” 
in the study area classification proven to be highly im-
portant and trustworthy. The polarization variables “VV” 
and “VH”, which had the best backscatter coefficients, 
were the greatest predictors of backscatter coefficients 
over a two-year period. These findings highlight the 
value of NDVI, NDBI, and NDWI indices as factors for a 
wide range of applications, including monitoring vege-
tation health, calculating farmed areas, measuring urban 
development, and identifying water features. In summa-
ry, this study investigates the feasibility of employing a 
mix of vegetation, built-up, and water indices generated 
from Sentinel 1 and 2 bands to aid in the mapping of 
vegetated areas, urban areas, and water bodies. The in-
tegration of the four data kinds (Sentinel-1, Sentinel-2, 
spectral indices, and biophysical indices) enhanced and 
accomplished excellent multi-sensor classification ac-
curacy of the recognition for LULCC mapping by as-
suring exceptional multi-sensor classification accuracy. 
The combination of Sentinel-1 and Sentinel-2B images 
yielded an excellent land cover classification accuracy of 
more than 90%. SAR data features from Sentinel 1A that 
included several temporal and polarization bands aided 
in distinguishing across data classes. With the aid of this 
study, we will be able to follow the LULCC of the main 
land classes in the study area through time. The find-
ings provide light on the temporal dynamics of these 
spectral indices, emphasizing their critical importance 
in efficient land management, fostering sustainable ur-
ban growth, improving environmental monitoring, and 
managing water resources sustainably. In light of these 
findings, it is suggested that government agencies and 
policymakers fund new research initiatives that focus on 
these indices in combination with environmental con-
cerns. This technique would help us better comprehend 

changes in land use patterns, particularly in urban and 
agricultural regions. Furthermore, future study studies 
must account for the impact of elements such as fast pop-
ulation expansion, landscape changes, and socioeconomic 
variables. These factors will surely help to inform decision-
making and planning for sustainable development and en-
vironmental conservation of natural resources.
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