
Copyright © 2023 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding author. E-mail: muhammadansharamran@gmail.com

Geodesy and Cartography
ISSN 2029-6991 / eISSN 2029-7009

2023 Volume 49 Issue 4: 180–185

https://doi.org/10.3846/gac.2023.18132

is characterized as a nutrient flow and the reduction of 
light penetration into the water (Ouillon et al., 2004; Petus 
et al., 2010; Güttler et al., 2013). Turbidity may endanger 
fish and other marine organisms by reducing food sup-
plies, destroying spawning areas, and affecting the ability 
of fish gills to absorb dissolved oxygen. In estuarine waters 
with high turbidity, dissolved oxygen concentrations can 
decrease dramatically, which can lead to decline of marine 
organisms (Gernez et al., 2014; Quang et al., 2017).

Conventional turbidity monitoring requires a large 
number of in-situ measurement points that are demand-
ing both in time and cost. In addition, traditional meth-
ods are constrained by poor spatial and temporal scopes. 
Alternatively, continuous measurement strategies using 
point locations with data-loggers can overcome temporal 
variations in water turbidity at designated locations, but 
fail to provide synoptic representations of water dynam-
ics. Effective mapping and monitoring of water quality in 
coastal environments is very difficult due to temporal and 
spatial variations. Many investigators have been limited by 
the inability to review a large coastal area as a whole at the 
same time so that mapping has to be done by relying on 
data from a series of sampling stations and then interpo-
lating parameter values between stations or extrapolating 
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Introduction  

Turbidity is an expression of the light-scattering property 
of water caused by the presence of fine suspended matter 
such as clay, silt, plankton, and other microscopic organ-
isms. The degree of scattering depends on the amount, size 
and composition of the suspended matter. Turbidity refers 
to the decreased ability of water to transmit light caused 
by suspended particulate matter (Boyd, 2000). Turbid-
ity measurement uses a nephelometry turbidimeter that 
principally compares light scattering by water samples to 
standard solutions. The units of turbidity from a calibrated 
nephelometer are called Nephelometric Turbidity Units 
(NTU).

Turbidity is one of the indicators of water quality 
and ecologically important parameter because it is asso-
ciated with a light limitation for phytoplankton growth. 
Turbidity distribution can also be used to identify and 
interpret geomorphological and hydrological processes, 
such as sediment transport, deposition and resuspension. 
By identifying the source and spatial distribution of sus-
pended matters, it is possible to deduce relevant spatial 
information about the availability of essential nutrients 
in the primary production of coastal waters. The linkage 
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to a wider area than the coverage of the station distribu-
tion.

In recent years, marine remote sensing techniques 
has become a useful tool for mapping turbidity at coastal 
waters. The advantage of using remote sensing for water 
quality analysis is its ability to obtain synoptic data from 
the entire study area to produce continuous surface data, 
can shows detailed spatial variability and periodically. The 
use of remote sensing technology for monitoring water 
quality has been carried out by several researchers, and is 
proven to be a cost-effective method with acceptable ac-
curacy (Brezonik et al., 2007; Islam et al., 2007; Wu et al., 
2015; Hu et al., 2016). The studies were to formulate the 
method of obtaining the quantity of water quality param-
eters from various sensors (Liu et al., 2003; Brezonik et al., 
2005; Islam et  al., 2007; Miller et  al., 2015; Lihan et  al., 
2008), that show a similarity in the relationship between 
water quality parameters and remote sensing data, but the 
relationship is concluded to be locally specific (Liu et al., 
2003; Sravanthi et al., 2013). Satellite remote sensing can 
be used to study the spatiotemporal variations of surface 
turbidity, and satellite-derived turbidity maps are useful 
tools for studying the effect of turbidity in shallow waters 
(Dogliotti et al., 2015; Quang et al., 2017).

Turbidity mapping and other water quality parameters 
have been conducted using data from wide-swath ocean 
color instruments such as SeaWiFS, Aqua/MODIS and 
ENVISAT/MERIS medium resolution images. For small 
or narrow areas, however, these applications are mis-
matched because their low spatial resolution causes many 
mixed pixels, resulting in low precision estimates. For this 
case, we can use Sentinel-2 imagery which has a higher 
spatial resolution of 10  m. Sentinel-2 has been used to 
analysis of turbidity patterns in coastal lagoon (Sebastiá-
Frasquet et al., 2019). 

Sentinel-2 consists of a pair of satellites that are part 
of the European Union’s Copernicus Program for obser-
vations of the Earth’s surface. To cover the full surface of 
the Earth every 3–5 days, Sentinel-2A and Sentinel-2B are 
in the same orbit but 180 degrees apart. Sentinel-2 data 
is categorized according to pre-processing level. Level-0, 
Level-1A, and Level-1B data are primarily composed of 
unprocessed raw satellite data. Surface reflectance detect-
ed at the top of the atmosphere is categorized as Level-
1C. Level-2A is the bottom of atmosphere reflectance is 
created by applying the Sen2Cor algorithm to Level-1C 
(Obregón et al., 2019). The best data for research purposes 
is Level-2A since it enables extra analysis without requir-
ing more atmospheric corrections. 

Studies on turbidity distribution using remote sensing 
technology have been done mostly follow semi-analytic 
or empirical models that correlate between remote sens-
ing reflectance with field turbidity (Ouillon et  al., 2008; 
Doxaran et  al., 2009; Petus et  al., 2010; Güttler et  al., 
2013; Vanhellemont & Ruddick, 2014; Dogliotti et  al., 
2015; Zhang et al., 2016). Ouma et al. (2020) have used 
Sentinel-2 (level-1C) to model the relationship between 

reflectance and turbidity of inland water reservoir. Estima-
tion of turbidity using Sentinel-2 (level-1C) data has also 
been used by Katlane et al. (2020) in the Gulf of Gabes, 
Tunisia.

This study aims to create a model to estimate coastal 
waters turbidity using Sentinel-2A level-2A. The empirical 
modeling has been applied in this study, which is based 
on the correlation between reflectance (R) extracted from 
Sentinel-2 and field measurements. The model has been 
validated by in-situ observations of turbidity in coastal 
waters of Makassar, Indonesia.

1. Materials and methods

Remote sensing studies for water quality generally use the 
preparation of regression models between water reflec-
tance and in-situ quantities of water quality parameters. 
Regression models were tested on single band reflectance 
and inter-band ratio. The best model was chosen based on 
the coefficient of determination (R2) of the model which 
was the larger or close to 1. The selected model was ap-
plied to Sentinel-2 imagery to map quantitative turbidity 
in all parts of coastal waters of study area. 

The general approach includes (1) taking water sam-
ples from predetermined sample locations simultaneously 
with the overpassing of Sentinel-2 satellite; (2) turbidity 
measurement of water samples; (3) development of regres-
sion models from Sentinel-2 data to estimate turbidity of 
waters; (4) applying a regression model to map the spatial 
distribution of water turbidity throughout the study area; 
and (5) assessment of modeling accuracy.

The study area comprises the coastal waters of Makas-
sar City, Indonesia (Figure 1). There are several locations 
of turbidity sources in the waters including estuary of Jen-
eberang River, estuary of Tallo River and Makassar New 
Port. 

This study integrated field survey and image proces-
sing. Field surveys include coordinates measurement of 
the sampling points (using Garmin GPSMap 64S) and 
measurements of turbidity (using Lutron TU-2016 Tur-
bidimeter) were done in accordance with imagery acqui-
sition time. The measurement points were placed on the 
region indicating a variation of turbidity. The field survey 
was carried out four times to create the model and twice 
to validate the resulting model. The survey is measured at 
60 sampling points each time, therefore 240 data are used 
to build the model, which is subsequently validated with 
120 data.

Imageries used for this study were Sentinel-2 level-2A 
downloaded freely from the Sentinel Scientific Data Hub 
(https://scihub.copernicus.eu/). The imageries used to 
build the model were acquired on June 26, 2022, July 13, 
2022, July 23, 2022, and July 28, 2022. While the imageries 
used for validation were obtained on August 22, 2022 and 
September 1, 2022.

Image correction was done to improve image quality. 
Geometric correction is performed to put each pixel in the 
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image at the actual coordinates by the first order polyno-
mial transformation method then followed by interpolat-
ing pixel values using nearest neighbor resampling.

Correlation test was applied by calculating Pearson’s 
moment-product correlation coefficient meant to know 
the closely linear relationship between turbidity and 
Sentinel-2 reflectance. Image bands tested were band-2 
(blue band), band-3 (green band), band-4 (red band) and 
band-8 (NIR band), because electromagnetic radiation 
can penetrate the water’s surface in these wavelengths of 
the bands. These four bands have a spatial resolution of 
10 meters. Reflectance values tested were the reflectance in 
the single band and the ratio between the bands. The test 
of inter-band ratio is intended to avoid the reflection effect 
from the sea bottom. Mathematical relationship was ob-
tained by multiple linear regression model between meas-
urable turbidity and reflectance on the imageries.

Figure 1. The coastal area of Makassar, Indonesia

Validation is done to determine the accuracy of the 
model by calculating the root mean square error (RM-
Serror). 
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where: Tobs,i – observed (in-situ) turbidity; Tmodel,i – tur-
bidity of model; n – amount of data.

2. Results

Correlation test (Table 1) indicated that high correlation 
values were obtained on single band of band-3 and band-
4, as well as the ratio between bands (band-3/band-2), 
(band-4/band-2) and (band-8/band-4). 

Table 1. Coefficient of correlation (r) between observed 
turbidity and bands reflectance (R)

Bands reflectance r

R2 0.218
R3 0.637
R4 0.856
R8 0.399

R3/R2 0.809
R4/R2 0.839
R8/R4 –0.888

The mathematical relationship was obtained through 
regression analysis by determining turbidity as depend-
ent variable while correlated reflectance (and reflectance 
ratio) as independent variables. Stepwise variable selection 
method was used to optimize the number of involved in-
dependent variables. Regression analysis yielded 2 tenta-
tive mathematical equations: 
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Both models have the same discriminant coefficient of 
0.927. RMSerror test (Table 2) showed that model (2) has 
the smallest value meaning that the model has the smallest 
average deviation. Based on the value of R2 and RMSerror 
then model Turbidity1 (2) selected to estimate turbidity. 

Table 2. Discriminant coefficient (R2) and RMSerror

Model R2 RMSerror

Turbidity1  (2) 0.927 0.189
Turbidity2  (3) 0.927 0.220

Estimated turbidity from this model was very close to 
in-situ turbidity. Figure 2 showed a very consistent relation-
ship between the estimated turbidity and in-situ turbidity.

The model obtained, Turbidity1, was applied to Sen-
tinel-2 image to produce turbidity distribution maps ac-
cording to the date of image acquisition (Figure 3).
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3. Discussion

Significant correlation values of R3, R4, (R3/R2) and (R4/R2) 
indicate the effect of phytoplankton on turbidity. The 
chlorophyll of phytoplankton reflect the green spectrum 
(band-3) and absorb the red and blue spectra (band-4 and 
band-2). Green band reflectance is highly correlated with 
low turbidity, whereas red band reflectance is highly cor-
related with high turbidity (Ouillon et al., 2004). Research 
in estuarine of Matla, Bay of Bengal, India, also shows that 
turbidity is closely related to the reflectance of green bands 
and red bands (Ray et al., 2013). The high correlation co-
efficient in the red band is in accordance with the results 
obtained by Katlane et al. (2020).

The correlation value of (R8/R4) is also high indicat-
ing the effect of suspended sediment on turbidity. Band-8 
and band-4 on Sentinel-2 are sensitive to the presence of 
soil elements. This means that turbidity in the study area 
is also affected by suspended sediments. The dynamics Figure 2. Relationship between estimated and in-situ turbidity

Figure 3. Distributions of estimated turbidity were derived from Sentinel-2
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of sediments produced by wave erosion, tidal currents, 
hydrological parameters, biological and chemical compo-
nents of water all affect the shallow water areas along the 
coast and in estuaries (Katlane et al., 2020). Band-8 (NIR) 
is used to avoid reflected radiation from the bottom of 
the water. In order to avoid significant interference from 
the bottom, it is necessary to measure turbidity in shallow 
waters using spectral bands that are sensitive to turbidity 
and have a restricted depth penetration (Caballero et al., 
2019). Rapid increases in water absorption are observed 
from red to NIR. Absorption in this spectrum limits ra-
diation from the bottom but scatters radiation from sus-
pended particles. A nice balance between turbidity detec-
tion and bottom detection is provided by these bands.

Increased turbidity always increases the energy flux 
that reaches the sensor, because more solar energy is re-
flected or backscattered by suspended particles in the wa-
ter. If the suspended particle were phytoplankton or mi-
croalgae, the scattering energy was in the visible spectrum, 
especially in the green band. Whereas if the suspended 
particle is a soil particle, the scattering energy tends to 
red and near infrared spectrum. The use of red and near 
infrared bands in turbidity mapping using remote sensing 
imagery has been demonstrated in the model prepared by 
Dogliotti et  al. (2015). The visible spectrum is sensitive 
to turbidity, while the near infrared spectrum is also sen-
sitive to turbidity even better than the visible spectrum 
because it is less influenced by bottom reflectance in shal-
low waters. Suspended particles increase total scattering, 
increase backscattering, change the spectral distribution 
of light, and reduce the average path length. The most 
important result of this effect is that turbid water is more 
reflective than clear water at all visible and near infrared 
wavelengths.

The produced maps show spatio-temporal variations 
in water turbidity. Validation through the determination 
coefficient and RMSerror shows that the model has con-
firmed the potential use of satellite imagery for mapping 
coastal waters turbidity. However, to map water turbidity 
in estuary areas, it is necessary to use finer imagery reso-
lution and more ground-truth due to the highly turbidity 
variation.

Turbidity1 model applied to the Sentinel-2 produces 
turbidity distribution maps (Figure 3). The maps show the 
high turbidity at Jeneberang estuary, area of the Makassar 
New Port, Tallo estuary and the northern coastal area of 
Tallo estuary. The high turbidity in the Jeneberang and 
Tallo estuary were due to a large flow of turbid water from 
the river into estuary. Turbidity around the Makassar New 
Port is caused by reclamation activities that adding piles 
of soil to coastal waters. The high turbidity in the north-
ern shallow coastal waters of Tallo estuary is mainly due 
to sediment re-suspension. Re-suspension is easy in this 
section because the waters are shallow, the beach profile 
is flat and the sediments are fine sand and very fine sand, 
so that even with small waves and slow currents it can 
stir up the sediment. The high turbidity in all four parts 

of the regions also illustrates the high concentration of 
suspended sediment in the waters. Suspended sediments 
are rich in nutrients and are considered to be the cause of 
eutrophication. So, it is very important to have a time se-
ries record of turbidity for a better understanding of land-
sea interactions because it negatively affects to aquaculture 
and is dangerous for benthic invertebrates.

Conclusions

This study produced a model to estimate turbidity using 
remote sensing data. A mathematical model has been de-
veloped in Sentinel-2 level-2A imagery and successfully 
applied to obtain coastal waters turbidity. Estimated tur-
bidity derived from Sentinel-2 imagery is very close to ob-
served turbidity. This indicates that the proposed model 
can be used to obtain turbidity of coastal waters. The re-
sults of this study can be used as a reference for monitor-
ing the pattern of turbidity distribution and can also be 
applied to similar coastal waters.
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