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geodetic and surveying applications, and they will be at 
the focus of this study. 

Measurements are the basis for the LS adjustment 
process. When measurements are made, for any reason, 
one or more measurements may contain a gross error. In 
the process of LS adjustment, a measurement with a gross 
error must be detected and eliminated from the data to 
prevent it from distorting the estimation of the adjustment 
parameters (Koch, 1999). There are two main approaches 
to detecting gross errors: statistical hypothesis testing and 
robust methods. Baarda (1968), in his pioneer work, cre-
ated the basis for outlier detection by statistical tests and 
by introducing the data snooping method. Pope (1976), 
Heck (1981), Koch (1985), and others based their outlier 
detection methodologies on statistical tests as well. Kra-
rup et al. (1980), Huber (1981), and others developed ro-
bust methods for gross error detection based on iterative 
reweighting of observations. In both, the LS adjustment 
plays an important role.

Reliability refers to the ability of an adjustment system 
to detect gross errors (blunders) and to estimate the effects 
that undetected errors may have on the adjusted solution. 
The reliability of a system is considered high when the sys-
tem can identify even small blunders. Following Baarda’s 
(1968) research, reliability theory has been extensively 
studied in geodesy and adjustment computations (e.g., 
Teunissen, 1985, 1998; Even-Tzur, 1999; Leick, 2004). The 
theory of Baarda’s reliability assumes the presence of a 
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Introduction

There are three main standard models of least squares 
(LS) adjustment: observation equation, condition equa-
tion, and mixed model. When the observations are ex-
plicitly related to the parameters, we can create observa-
tion equations in a way that =a aL (x ),F  while La is a 
vector of n adjusted observations and xa is a vector of 
u adjusted parameters. When there are no parameters 
at all–only conditions between the observations–we can 
create condition equations in such a way that =a(L ) 0.F  
In a  mixed adjustment model, both parameters xa  and 
observations La  are involved implicitly in a mixed ad-
justment model equation, as  =a a(x ,L ) 0F . The observa-
tion equation model is also known as the Gauss-Mar-
kov Model (GMM) and the mixed adjustment model is 
known as the Gauss-Helmert Model (GHM). The GHM 
may be regarded as a general model, and the other two 
models can be derived from it as special cases (Leick, 
2004). It is not forgotten that there are other LS mod-
els. For example, the observation equation model and 
the mixed model can be extended by adding constrains. 
Total least squares (TLS) model is also an alternative, 
although this kind of adjustment model can be described 
as an ordinary least squares solution (e.g., Neitzel, 2010). 
More than that, it is known that the observation equation 
model and the mixed model can be solved as a condi-
tion equation model (e.g., Mikhail & Ackermann, 1976). 
Nevertheless, the above three models are widely used in 
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single gross error in the data and is based on a hypothesis 
test theory, which decides between the null and a unique 
alternative hypothesis. Knight et al. (2010) extended the 
reliability theory in GMM for the case of multiple blun-
ders. Hypothesis tests with multiple alternative hypotheses 
have been intensively studied recently (e.g., Yang et  al., 
2013, 2017; Teunissen, 2018). An overview of the latest 
advances in the reliability theory for geodesy is presented 
in Rofatto et al. (2020).

The studies have mainly focused on LS adjustment 
based on the observation equation model (GMM) and its 
extensively reviewed in the geodetic literature. Recently 
there are efforts to expand the reliability concept also to 
GHM. Koch (2014) uses the expectation maximization 
(EM) algorithm to detect outliers in GHM. Wang et  al. 
(2020) applied Baarda’s data snooping algorithm for the 
equality constrained, nonlinear GHM while using sensi-
tivity analysis. Some aspects of minimum detectable bias 
(MDB) and statistical tests to identify outliers for the 
GHM are presented in Ettlinger and Neuner (2020). 

In the current study, we restrict ourselves to the origi-
nal Baarda concept of reliability and make a modest con-
tribution to the study of reliability. This study examines 
the reliability criteria in the mixed LS adjustment model, 
deriving from it the criteria for the condition equation and 
observation equation models.

1. Mixed adjustment model

The mathematical model of the mixed adjustment model 
(e.g., Mikhail & Ackermann, 1976) is given by

=a a(x ,L ) 0.F  (1)

We denote the number of equations in Eq. (1) by r.
Let us define 0x  as a vector of approximate values of 

the parameters. Therefore, the vector of parameter cor-
rections x is a 0x = x – x .  Let us define bL  as a vector of 
measurements, then the vector of residuals v is defined 
as a bv = L –L .  The mathematical model of mixed adjust-
ment can be written as

+ + =0 b(x x,L v) 0.F  (2)

When the mathematical model is nonlinear, we define 
 as a vector of approximate values of the measurements 

and the linearization of Eq.  (1) is done around 0x  and 
0L , while the ultimate solution is achieved by performing 

iterations (Pope, 1972). The linearization gives the funda-
mental form of condition equations for the adjustment of 
observations and parameters as

=Bv +Ax +w 0,  (3)

where the design matrix A is (r × u), the observation matrix 
B is (r × n), and the misclosure vector w is (r × 1), which is 
equal to = + −0 0 b 0w (x ,L ) B(L L )F  (e.g., Koch, 2014). The 
LS estimate of parameters is based on the minimization 
of the function Tv Pv  where P is the weight matrix of the 

measurements. When we perform iterations in the solu-
tion process, we set for the first iteration that L0 is equal to 
Lb and therefore the well-known solution of x and v (e.g., 
Mikhail & Ackermann, 1976; Leick, 2004) is

− − − − −= − = −T 1 1 T 1 1 T 1x (A M A) A M w N A M w;  (4)

− −= − +1 T 1v P B M (Ax w),  (5)

with the covariance matrices

−Σ = σ2 1
x 0 N ;  (6)

− − − − −Σ = σ −2 1 T 1 1 T 1 1
v 0 P B M (M AN A )M BP ,  (7)

while 2
0σ  is the variance of unit weight, –1 TM= BP B ,  and 

T –1N = A M A.

2. Hat matrix

The “hat matrix”, H, is the matrix that converts values 
from the observed variable into estimations obtained with 
the LS method. The square matrix H is called the hat ma-
trix as it puts a hat on L.

In a mixed adjustment model, the hat matrix defined 
by ABH  is 

− − − − − − −

≡ = + =

 − = 

a b

1 T 1 T 1 1 T 1 1 T 1 b

b
AB

L̂ L L v

I +P B M A(A M A) A M B P B M L

H L .

B  

 (8)

The square matrix ABH  is (n × n), and ABH  is idem-
potent. The eigenvalues of an idempotent matrix are either 
0 or 1 and the number of nonzero eigenvalues is equal to 
the rank of the matrix. The trace of an idempotent matrix 
equals the rank of the matrix. It is easy to notice that the 
trace of ABH  equals to n + u – r, therefore it has n + u – 
r eigenvalues equal to 1 and the remaining ones are 0. 
Matrix ABH  is not symmetrical except when the weight 
matrix P equals the unit matrix; P = I.

LS adjustment with weight matrix P, which in general 
does not have to be diagonal, can be presented as an ad-
justment without weights by normalization of matrices A, 
B and L. The additional significance of the normalization 
process is that it allows us to take into account correlations 
between the measurements. Thus, Eq. (8) can be normal-
ized by pre-multiplying matrix B by −1P  as −= 1B B P , 
and the vector L by P  as =b bL P L .  Since = TM B B  
and matrix A remains unchanged, we get the normalized 
form of Eq. (8):

− − − − − = − + = 
T 1 T 1 T 1 1 T 1 b

b
AB

L̂ I B M B B M A(A M A) A M B L

H L .
 

 (9)

https://en.wikipedia.org/wiki/Circumflex
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Rank_(linear_algebra)
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The normalized hat matrix ABH  is idempotent and 
symmetric and is called a projector. Let ih  be the i-th 
diagonal element of ABH . For a projector, the sum of the 
squares of the entries of each row is equal to the row di-
agonal entry: 2h hiikk

∑ =  (it is obtained only when the hat 
matrix is symmetric). The diagonal elements of matrix 

ABH  fulfill the inequality 0 h 1i≤ ≤  (Hoaglin & Welsch, 
1978).

The special cases of the hat matrix for the condition 
model and observation models can be obtained from 
Eq.  (8). Putting A = 0 in Eq.  (8), we get the hat matrix, 
HB, which relates to the condition equation model

− −= − 1 T 1
BH I P B M B . (10)

When B = –I and therefore M = P–1, we get the well-
known hat matrix HA, which relates to the observation 
equation model

−= T 1 T
AH A(A PA) A P.  (11)

Both HA and HB are not symmetrical matrices. Using 
the normalized form ensures their symmetricity. The nor-
malized form can be obtained as above by using Eq. (9). 
For the condition equation model, we get

−= − T 1
BH I B M B  (12)

and for the observation equation model we get

− −= =T 1 T T 1 T
AH P (A PA) A P A(A A) A .A  (13)

Sometimes, a specific adjustment problem can be per-
formed by observation model or a condition equation 
model. It is obvious in such a case that HA must be equal 
to HB. Let us multiply HA and HB  by B on the left and 
we get 

− − −= −T 1 T 1 T 1BA(A PA) A P B(I P B M B).  (14)

Since BA = 0 (e.g., Mikhail & Ackermann, 1976) and 
−1 TM= BP B , we can easily see that both sides of Eq. (14) 

are equal to zero; therefore A BH =H .  

3. Baarda’s data snooping for outlier 
identification in a mixed adjustment model

Data snooping is a method based on hypothesis testing 
for identification of a single outlier in LS adjustment, 
and it serves as a basis for understanding and develop-
ing tools in determining reliability. Data snooping is a 
very useful method for gross error identification and is 
routinely used in adjustment computations. Although 
data snooping was introduced as a testing procedure 
for use in geodetic networks, it is a generally applica-
ble method (Lehmann, 2012). The w test introduced by 
Baarda (1968) plays a major role in the data snooping 
algorithm. 

Let us define id̂  as the difference between observed 

( i ) and calculated ( ˆc
i ) values, such that = − i

ˆ ˆd c
i i  

with standard error ˆ
idσ . The i-th observed quantity is de-

noted as ˆc
i  of n observations   that are computed from 

the parameters following from the adjustment of all ob-
servations except i . We defined the test statistic ki for 
uncorrelated measurements as

k =
σ

i

i
i

d̂

d̂
. (15)

If k ≥ α ∞i F( ,1, ) , we reject the null hypothesis 0(H ) , 
which says that the measurement does not contain a gross 
error, and accept the alternative hypothesis 1(H )  that says 
the measurement contains a gross error with α  level of 
significance.

Since we are dealing with gross errors, it can be as-
sumed that their size is relatively large in relation to the 
linearization errors. Thus, we can concentrate on the so-
lution of the first iteration only. Therefore, if outliers are 
not present in the measurements, the misclosure vector 
w is equal to

= = +b 0 b 0w F(L ,x ) BL Ax . (16)

If the measurements contain gross errors, the physi-
cal relationship between the parameters and the obser-
vations is

+ + =w' Bv Ax 0 . (17)

Whereas if the i-th observation included a gross error 

i
∆


 then the misclosure vector w’ is equal to 

= + ∆ = + ∆ + = + ∆
  i i i

b 0 b 0
i i iw' F(L e ,x ) B(L e ) Ax w Be , 

 (18)

where ei is a unit vector with 1 at the i-th entry specify-
ing which measurement is disturbed by ∆

i
. Since the LS 

estimates are unbiased, taking the expectation of id̂  gives 
= = ∆

ii i
ˆE(d ) d  (Cross, 1983) where id  is the true value 

of di ; therefore, 

i iw' = w +Be d .
The linearization of Eq. (1) is now

=

i iBv +Ax +w +Be d 0 . (19)

The LS estimates of x, v, and id  which are defined as 
x̂ , v̂ , and id̂  are obtained by applying Lagrange’s method 
(e.g., Cross, 1983). By minimizing the function

Φ = + λ ⇒T T
i iv Pv 2 (Bv +Ax +w +Be d ) min  (20)

we can get the LS estimates in addition to the Lagrangian 
multipliers, λ̂ . Thus, we have

∂Φ
= + λ =

∂
T Tˆˆ2v P 2 B 0

v̂
 ⇒  λ =T ˆˆPv +B 0 ; (21)

∂Φ
= λ =

∂
Tˆ2 A 0

x
 ⇒  λ =T ˆA 0 ; (22)



54 G. Even-Tzur. On the reliability of mixed LS adjustment models

∂Φ
= =

∂λ
T T T T T T T T

i i
ˆˆ ˆ2(v B x A +w +d e B ) 0  ⇒

=i i
ˆˆ ˆBv +Ax +w +Be d 0 , (23)

∂Φ
= λ =

∂
T

i
i

ˆ2 Be 0
d

 ⇒  λ =T T
i

ˆe B 0 . (24)

From Eq. (21) we can get

−= − λ1 T ˆv̂ P B . (25)

Substituting Eq. (25) in Eq. (23) gives

−λ = 1
i i
ˆˆ ˆM (Ax +w +Be d ) . (26)

Substituting Eq. (26) in Eq. (22) gives

− −= − 1 T 1
i i
ˆx̂ N A M (w +Be d ) . (27)

Substituting Eq. (26) and Eq. (27) in Eq. (24) gives (af-
ter some manipulations)

− − − −

− − − −

− =

−

T T 1 T T 1 1 T 1
i i i i i
T T 1 1 T 1 T T 1
i i

ˆ(e B M Be e B M AN A M Be )d

(e B M AN A M e B M )w.
 

(28)
Since

  
− − − −− = −T 1 T 1 1 T 1

ABP(I H ) B M B B M AN A M B , (29)

using Eq. (4) and Eq. (5) we can rewrite Eq. (28) as

− =T T
i AB i i i

ˆ ˆe P(I H )e d e Pv . (30)

Therefore

−− =

−

T 1 T
i i AB i i

T
i

T
i AB i

d̂ = (e P(I H )e ) e Pv

e Pv
.

e P(I H )e

 
(31)

The covariance matrix of v, Σv , can be presented by 
ABH  as

−Σ = σ −2 1
v 0 AB(I H )P . (32)

Therefore, applying the propagation of error law gives

− −

− − −

−

σ = − Σ − =

σ − − − =/ /

σ − = σ −

i

2 T 1 T T 1
i AB i i v i i AB id̂

2 T 1 T 1 T 1
0 i AB i i AB i AB i
2 T 1 2 T
0 i AB i 0 i AB i

(e P(I H )e ) e P Pe (e P(I H )e )

(e P(I H )e ) e P(I H )P Pe (e P(I H )e )

(e P(I H )e ) / (e P(I H )e ).
i  

 (33)

In the normalized form we get

=
T
i i

i T
i AB i i

ˆ ˆe v v
d̂ =

e (I –H )e 1– h
. (34)

and
σ

σ = σ − =
−i

2
02 2 T

0 i AB id̂ i
/ (e (I H )e )

1 h
. (35)

Since σ = σ −
i 0 iv (1 h )  we get σ = σ −

i0 iv / 1 h ; 

therefore,
σ σ

σ = =
−− −

i i

i

v v

d̂ ii i
1 h1 h 1 h

. (36)

We see that σ
id̂

 can be presented as a function of ih .

The test statistic iw  as presented in Eq. (15) can be 
rewritten as 

k
σ

= = =
σ σ− −

i

ii

vi i i
i

ˆ i vd

ˆ ˆ ˆd v v
/

1 h 1 hi
. (37)

This means that in the mixed adjustment model, the 
statistic wi is the ratio of a LS residual to its standard error. 

Placing  A = 0 into Eq. (19) gives the condition model, 
and applying Lagrange’s method leads to the same result, 
k = σi i vv̂ / . As might be expected, in the mixed adjust-
ment model and the condition model we get the same ra-
tio as in the observation model for the statistic ki (Cross, 
1983). The use of the normalized form allowed us to 
present the test statistic ki even in cases of a non-diagonal 
weight matrix.

The data snooping method can be applied in the mixed 
adjustment model and condition model in a similar way as 
it is applied in the well-known observation model. Since 
data snooping allows detection of a single outlier, it can be 
applied in iterative mode (Teunissen, 2006).

4. Reliability concept in mixed adjustment model

Reliability is defined as the ability of an adjustment system 
to sense and identify gross errors in the measurements. 
Baarda (1968) distinguishes between internal reliability 
and external reliability. The internal reliability of a system 
“measures” the marginal undetectable gross errors in the 
measurements, while the external reliability “measures” 
the effect of undetected errors on the adjustment param-
eters and on quantities computed from them. 

4.1. Internal reliability

If the observations are without gross errors, Baarda dem-
onstrated that wi is normally distributed with zero mean 
and unit variance. In the case of a gross error in observa-
tion i, the mean of the normal distribution is

∆
δ =

σ
i

i

i
d̂

. (38)

We define the upper bound of δi  as δui  with probabil-
ity levels α and β (α being the level of significance and β 
being the test power). Therefore, the maximum size of a 
gross error that could contaminate the i-th observation is

∆ = δ σ
i

u u
ˆi i d

. (39)

As we see from Eq.  (35), σ
id̂

 can be presented as a 
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function of ih . Therefore, the maximum size of a gross 
error that could contaminate the i-th observation is

∆ = δ σ −u u
i i 0 i1 h . (40)

Since 0σ  is not a random variable for a particular ad-
justment and δui  is a constant that depends on α and β, 
the expression − i1 1 h  is an index for internal reliabil-
ity. As it decreases, the reliability increases and the abil-
ity of the adjustment system to identify outliers improves. 
Hence, the diagonal elements of ABH  serve as a primary 
tool in internal reliability analysis in the mixed adjustment 
model. It is obvious that the same is valid for matrixes 

AH  and BH , which can serve as a tool in internal reli-
ability analysis in the observation equation model and in 
the condition equation model, respectively.

From Eq. (34) we have

= −
−

 

i c
i i

i

v̂ ˆ
1 h

, (41)

and since = − i i i
ˆv̂  we can get

= − +  

c
i i i i i
ˆ ˆ(1 h ) h . (42)

The estimate of the adjusted measurement is a linear 
combination of the computed value and the observed val-
ue, with weights − i1 h  and ih , respectively. If =ih 0.5  
the influences of the calculated and observed values on 
the adjusted measurement are equal. For decreasing ih , 
the influence of the calculated value ci

ˆ  increases. In that 
case, the ability of the adjustment system to examine the 
measurement against gross error increases. Therefore, we 
should aim that the diagonal entries ih  be at least less 
than 0.5. Huber (1981), in his reference to the observation 
model, suggests that the size of ih  should be of the order 
of 0.2 to prevent the strong influence of a measurement on 
the evaluate solution. Let us define maxh  as the maximum 
value of ih , then

+AB
max i i

tr(H ) –h =max(h ) ³ ave(h ) = = n r u
n n

. (43)

For the condition model =Btr(H ) –n r ; therefore, 
≥maxh ( – ) /n r n . For the observation model =Atr(H ) u ; 

therefore, ≥maxh /u n . These expressions can give us a 
perspective on the expected diagonal values in any adjust-
ment problem. Furthermore, ih  converges to zero if the 
ratio (n – r +u)/n converges to zero in the mixed adjust-
ment model. If we decrease the level of ih  we should in-
crease the number of the measurements and the number 
of conditions or decrease the number of parameters.

4.2. External reliability

External reliability measures the influence of an un-
detected gross error on the estimation of parameters. 
Let an error in observation i be denoted as ∆u

i  and 

( )∆ = ∆
i

Tu
i0 0 . . . . 0 . For the undetected 

i
∆


 
we compute the changes ∆ iX̂  of the adjusted parameters:

− −∆ = − ∆
i

1 T 1
iX̂ N A M B . (44)

According to Baarda (1968) the global external relia-
bility denotes the impact of a single outlier on the adjusted 
parameters, measured by

−
∆λ = ∆ Σ ∆ = ∆ ∆

σi
2 T 1 T

i x i i ix̂ 2
0

1ˆ ˆ ˆ ˆ( X ) ( X ) ( X ) N( X ) . (45)

If we substitute Eq. (44) into Eq. (45) and consider that 
∆ = ∆
i

u
i ie  we get

− − −
∆

− − −

λ = ∆ ∆ =
σ

∆
σ

 i i i
2 T T 1 1 T 1
x̂ 2

0

u 2 T T 1 1 T 1
i i i2

0

1 B M AN A M B

1 ( ) e B M AN A M Be .
 

(46)

Eq. (46) can assist us to specify the impact of a single 
blunder on the adjusted parameters.

Since ∆ = δ σ −u u
i i 0 i1 h  as we get in Eq. (40), the 

normalized form of Eq. (46) is

− − −

∆λ = δ
−i

T T 1 1 T 1
i2 u 2

ix̂
i

e B M AN A M
( )

1 h
iBe

. (47)

The factor that multiplies δu 2
i( )  defines the external 

reliability of the i-th measurement.
The smaller the factor, the greater the external reliabil-

ity since the influence of the undetected gross error on the 
adjusted parameters decreases.

As = −B I  therefore −= 1B P  and − =1M P  so we 
get Baarda’s global external reliability, which relates to the 
observation equation model 

− − −
∆

−

δ
λ = =

−

δ
=

−

δ
= δ

−

i

u 2
i2 T 1 1 T 1

i ix̂
i

u 2
i T 1 T

i i
i

u 2
i iT u 2

i A i i
i i

( )
P PAN A P P e

1 h
( )

P AN A P e
1 h
( ) h

H e ( ) .
1 h 1–h

e

e

e

 

(48)

The result of the special case for an observation model 
as we get from the general case of a mixed adjustment 
model is expected. As presented by Even-Tzur (1999) both 
the internal and the external reliability are determined by 

ih , the i-th diagonal element of AH , for observation 
model. We can see that if <ih 0.5 , the term −i ih / (1 h )  
is smaller than 1 and the global external reliability fac-
tor also becomes small. Therefore, it is essential to avoid 
measurements with ih  greater than 0.5.

We notice that using a normalized hat matrix allows to 
use it in defining the internal and external reliability of an 
adjustment system in a simple and efficient way.
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5. Numerical example

Let us explore the proposed method on a numerical ex-
ample of two parameters’ transformation between two 
planar coordinate systems. The transformation of the co-
ordinates (x, y) of point i to corresponding coordinates 
(u, v) is given by 

i i iu = ax + by ,

i i iv = –bx + ay , (49)

where a and b are the transformation parameters. To esti-
mate the two parameters, four points of known coordinates 
in both systems are given. The data are provided in Table 1 
and shown in Figure 1. Every point in the (x, y) coordinate 
system has a variance of σ = σ = 2

xx yy (2 cm)  and covari-
ance of σ =xy 0 , and a variance of σ = σ = 2

uu vv (4 cm)  
and covariance of σ =uv 0 in the (u, v) coordinate system.

Table 1. The measured coordinates in both systems, in meters

Point # x y u v

1 521.48 115.38 529.76 69.57
2 58.37 445.36 96.94 438.68
3 153.69 567.13 202.62 551.75
4 532.18 501.12 574.00 452.96
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Figure 1. Location of the points in x, y coordinate system

Both sets of coordinates are observations with cova-
riance matrices; therefore, it would be sensible to write 
condition equations with parameters; i.e., make use of the 
mixed adjustment model. There are two unknown param-
eters, thus u = 2. Because four points are included in the 
transformation, there are 16 measurements, n = 16. Each 
point produces two condition equations and therefore r = 
8. There are 6 degrees of freedom. 

The linearized condition equations for the adjustment 
of observations and parameters for the i-th point is

=
(2×4)(4×1) (2×2)(2×1) (2×1)

i i i iB v + A x + w 0 , (50)

where
 −  

= =   
− −    

0 0
i i

i i0 0 i i

a b 1 0 x y
B ; A

y –xb a 0 1
 (51)

and

 
 
 =  
 
  

i

2500
2500

P
625

625

. (52)

Eq. (50) is written four times for the given four points, 
so

       
       
       
       
       
              

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

B v A w
B v A w

+ x + = 0
B v A w

B v A w

. (53)

If the approximate values of the transformation 
parameters are =0a 1  and =0b 0.1 , the solution is 

 = − − 
T

x 0.00349 0.01284  and Tv Pv 4.65 . Therefore, 
the adjusted parameters are =aa 0.9965  and =b 0.0872 . 

The diagonal elements of the hat matrix ABH  are pre-
sented in Table 2. The diagonal elements that refer to mea-
surements in the (x, y) coordinate system are absolutely 
high and also high relative to the elements referring to 
measurements in the (u, v) coordinate system. The dif-
ferences are due to the weight differences of the measure-
ments. When the weight of a measurement is high it is 
expected that its corresponding ih  is high, and vice versa: 
when the weight of a measurement is low it is expected 
that its corresponding ih  is low. If, for example, 0.05α =  
and 0.2β = , we obtain δ =u

i 2.80  and can calculate the 
internal reliability by Eq. (40). The marginal undetect-
able gross errors in the measurements are in Table 2. The 
global external reliability of the measurements is calcu-
lated by Eq. (47) and presented in Table 3. All parameters 
are smaller than one, meaning that the external reliability 
is reasonable. The influence of the undetected gross error 
in each measured point is the same. 

A look at Tables 2 and 3 shows that of the four partici-
pating points in the adjustment process of the transforma-
tion parameters, point number 4 has the strongest effect 
on the adjustment process. The internal reliability of point 
4 is the lowest and its external reliability is the highest. 
The impact of an undetected error in the coordinate com-
ponents of point number 4 on the adjusted parameters is 
high.

According to Eq. (43), ≥ +maxh ( – ) /n r u n ; therefore, 
four points are involved in the transformation ≥maxh 0.625  
indicating low internal reliability. In general, where q 
points are involved, ≥ + = +maxh 0.5 1/ (2q) 0.5 1/ r ; 
therefore, the maximum value of ih  converges to 0.5. This 
means that the ability to detect gross errors in the adjust-
ment process is low and the addition of points to the ad-
justment cannot greatly improve the internal reliability. 
If the (u, v) coordinates are considered as constants the 
internal reliability will greatly improve with each addition 
of points.
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Let us refer to the internal reliability in the adjustment 
of transformation parameters between two coordinate 
systems when both are considered as measurements. Let 
us define the dimension of the coordinate system as D, 
where =D 1,2,3. In all, there are 2Dq measurements and 
Dq conditions, n = 2Dq, and r = Dq, therefore,

≥ + = + =
+

maxh ( – ) / (Dq u) / 2Dq
1/ 2 u/ 2Dq.

n r u n
 

(54)

When we use the mixed adjustment model to esti-
mate the transformation parameters between two coor-
dinate systems, the diagonal elements of the hat matrix 
converge to 0.5. Therefore, the internal reliability in the 
adjustment of transformation parameters is not expected 
to be high.  

Let us consider the possibility of using data snooping 
for outlier identification. The least squares residual vector 
ˆ(v)  is estimated and Baarda’s w-test statistic is computed 

by Eq. (37). For 0.05α =  we obtain ∞ =F(0.05,1, ) 1.96 , 
so if | ki | > 1.96 we may reject 0H . We reject a measure-
ment when it ought to have been accepted in 5% of the 
measurements. The absolute value of the test statistic ki is 
presented in Table 4 for each of the measurements. Ob-
serving the test statistic ki does not raise the suspicion of 
gross errors in the measurements because all values are 
smaller than 1.96.

Let us simulate a gross error in point number 2. Each 
time we add an error of 0.15 meters to a single component 
of the point. On the left side of Table 5 we can see the test 
statistic wi when an error is added to the x component and 
on the right when an error is added to the y component. 
When there is an error in the x component of point 2, we 
notice that the statistic ki for this measurement is greater 
than 1.96, = >2x 4.26 1.96k  as well as w2u . An error in the 
x component is reflected in a high statistic ki for x and for 
u as well. We realize that there is a problem, but it is not 
possible to determine if it is due to a gross error in the x 
component or u. We get similar results when the error is in 
the y component. The test statistic ki when an error is added 
to the u and v components is presented in Table 6, which 
emphasizes the inability to distinguish between an error in 
x or u and y or v components.

Table 2. The internal reliability

Point # ih ∆u
i [m]

x y u v x y u v

1 0.84 0.84 0.37 0.37 0.140 0.140 0.141 0.141
2 0.83 0.83 0.32 0.32 0.135 0.135 0.136 0.136
3 0.85 0.85 0.40 0.40 0.144 0.144 0.145 0.145
4 0.88 0.88 0.51 0.51 0.160 0.160 0.161 0.161

Note: left: The diagonal elements, ih , of the hat matrix ABH , 
right: The maximum size of a gross error that could contaminate 

the observations in meter units with probability levels 0.05α =  
and 0.2β = .

Table 3. The global external reliability. The values displayed are 
without multiplication by a coefficient δu 2

i( )

Point # ∆λ
i

2
x̂

x y u v

1 0.26 0.26 0.26 0.26
2 0.17 0.17 0.17 0.17
3 0.34 0.34 0.34 0.34
4 0.64 0.64 0.64 0.64

Table 4. The absolute value of the test statistic wi for each of the 
measurements

Point #
wi

x y u v

1 1.00 1.24 –1.12 –1.13
2 –0.96 –1.00 1.06 0.90
3 0.93 –0.01 –0.92 0.10
4 0.11 –0.76 –0.04 0.76

Table 5. The absolute value of the test statistic wi for each of the 
measurements with gross error in the (x, y) coordinate system

Point 
#

wi

x y u v x y u v

1 1.25 0.57 1.30 0.44 1.62 1.46 1.76 1.29
2 4.26 1.05 4.34 0.62 0.92 4.10 1.32 3.99
3 1.73 0.11 1.71 0.28 1.03 0.73 1.10 0.62
4 0.96 1.42 0.82 1.51 0.75 0.08 0.75 0.00

Note: left when there is a gross error of 0.15 meters in point 2, in 
the x component, right, in the y component.

Table 6. The absolute value of the test statistic wi for each of the 
measurements with gross error in the (u, v) coordinate system

Point 
#

wi

x y u v x y u v

1 0.71 1.82 0.89 1.74 0.40 0.94 0.50 0.90
2 2.12 0.70 2.04 0.90 1.26 2.07 1.05 2.19
3 0.19 0.01 0.19 0.01 0.91 0.76 0.83 0.85
4 0.76 0.16 0.77 0.08 0.47 1.59 0.62 1.54

Note: left when there is a gross error of 0.15 meters in point 2, in 
the u component, right, in the v component.

We realize that it is not possible to separate the com-
ponents x – u or y – v in the process of identifying gross 
errors, which is also reflected by the similar values of 
internal and external reliability for those components as 
seen in Table 2 and Table 3.
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Conclusions and discussion 

LS adjustment can be implemented in three main forms: 
the mixed adjustment model (GHM) and the two ad-
ditional ones that can be derived from it, the condition 
equation model and the observation equation model 
(GMM). It is vital to identify and remove all outliers from 
the data used in the adjustment process, no matter which 
adjustment model is used. The concept of reliability is an 
important diagnostic tool for detecting outliers in the data 
and their influence on the adjusted parameters. We realize 
that the reliability concept is applicable to the mixed ad-
justment model. We can use reliability criteria not only in 
LS adjustment based on the observation equation model 
but also on the condition equation model and the mixed 
adjustment model.

For all adjustment models examined in this study, 
internal reliability can be defined by the diagonal ele-
ments of the hat matrix, as the diagonal elements reflect 
the reliability of the adjustment system. Large values of 

ih  should serve as a warning that the i-th measurement 
has a decisive influence on the adjustment process and 
it is difficult to check that measurement against outliers 
(Huber, 1981). Decreasing values of ih  cause increasing 
internal reliability of the adjustment system. The diagonal 
elements of the hat matrix play a rule in defining the ex-
ternal reliability as well, especially in determining the ex-
ternal reliability in the observation equation model. Since 
the estimate of the adjusted measurement is a linear com-
bination of the computed value and the observed value 
with weights − i1 h  and ih , respectively (see Eq. (42)) we 
should aim for diagonal entries less than 0.5 to ensure a 
reasonable level of reliability in the adjustment process. 
Therefore, it can be concluded that the reliability concept 
can serve efficiently in the mixed adjustment and condi-
tion equation models, in additional to its common use in 
the observation equation model.

The data snooping method for outlier identification 
serves as a basis for understanding and developing tools 
when determining the reliability of the adjustment pro-
cess. It turns out that data snooping can be applied in the 
mixed adjustment model and condition model similarly 
to how it is applied in the well-known observation model. 

Reliability in the observation equation model has been 
extensively researched and presented in geodetic literature 
but less has been regarding reliability criteria in the mixed 
and condition equation models. This paper has made a 
modest contribution to the study of reliability in other 
adjustment process models besides the observation equa-
tion model.

Data availability statement

All data, models, or code that support the findings of this 
study are available from the corresponding author upon 
reasonable request.
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