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biological invasions, in addition to their effect on biodi-
versity (Thébault & Loreau, 2005). Because of the exten-
sive availability of satellite data in recent years, one of the 
most sophisticated fields of environmental remote sensing 
is identifying abrupt changes in forest ecosystems. Over 
the past several decades, the improved availability of re-
mote sensing data in terms of spectral and high temporal, 
together with lower acquisition and processing costs, has 
resulted in greater use of these data’s enormous poten-
tial for studying the Earth’s surface (Cohen et  al., 2010; 
Kennedy et al., 2010; Tassi et al., 2021). Recent advance-
ments in satellite data processing have been enabled by 
cloud-based systems that provide users with free access to 
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Abstract. High-accuracy land use and land cover maps (LULC) are increasingly in demand for environmental manage-
ment and decision-making. Despite the limitation, Machine learning classifiers (MLC) fill the gap in any complex issue 
related to LULC data accuracy. Visualizing land-cover information is critical in mitigating Côte d’Ivoire’s deforestation 
and land use planning using the Google Earth Engine (GEE) software. This paper estimates the probability of RF clas-
sification in South Western Côte d’Ivoire. Landsat 8 Surface Reflectance Tiers 1 (L8OLI/TIRS) data with a resolution of 
30 mn for 2020 were used to classify the western and southwestern Forest areas of Côte d’Ivoire. The Random Forest 
(RF) learning classifier was calibrated using 80% training data and 20% testing data to assess GEE classification accuracy 
performance. The findings indicate that the Forest land class accounts for 39.48% of the entire study area, followed by 
the Bareland class, the Cultivated land class 21.28±0.90%, the Water class 1.94±0.27%, and the 0.96±0.60% Urban class 
respectively. The classification reliability test results show that 99.85%±1.95 is the overall training accuracy (OTA), and 
99.81±1.95% for the training kappa (TK). The overall validation accuracy (VOA) is 94.02±1.90%, while 92.25±1.88% 
validation kappa (VK) and 92.45±1.88% RF Accuracy. The different coefficients classification accuracy results obtained 
from the RF confusion matrix indicate that each class has three good performances. This is due to the cultivated land 
samples lower spatial resolution and smaller sample numbers, resulting in a lower PA for this class than for the other 
classes. All had producer accuracy (PA) and user accuracy (UA) more than 90% using the L8OLI/TIRS data. Using the 
RF-based classification method integrated into the GEE provides an efficient and high scores accuracy for classifying 
land use and land cover in the study area. 

Keywords: supervised classification, land-use/land-cover, Google Earth Engine, Random Forest, accuracy assessment, de-
forestation.

Introduction

LULC is essential in regional planning, environmental 
research, and understanding the environment (Foody 
2002; Parente & Ferreira, 2018). Land-use types have been 
found to have a substantial effect on runoff reactions in 
catchments (Cecchi et al., 2009). This impact is amplified 
much more in highly anthropogenic areas (crops, range-
lands, etc.). 

Furthermore, land use affects biogeochemical cycling, 
global warming, land erosion, and sustainable develop-
ment. Landscape changes have an increasing influence 
on climate change, atmospheric nitrogen deposition, and 
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extensive geospatial data and faster analysis through web-
site interfaces. Google Earth Engine (GEE) is now one of 
the most commonly utilized systems, providing remote 
sensing data’s main storage, compilation, processing, and 
analysis needs (Gorelick et al., 2017). 

This platform includes a variety of methods for LULC 
classification based on robust algorithms. Its consumer in-
terface and straightforward JavaScript language allow the 
developed script to be readily reproduced and exploited 
through the cloud platform. 

Therefore, land-use analysis information is always 
helpful in creating appropriate strategies for better man-
aging the land-use situation. Many methods have been 
devised and utilized to accomplish this objective, with 
varying degrees of success (Mas, 2000; Lu et al., 2006). 

Indeed, the implementation of RF in GEE has shown 
its capacity to provide outstanding results in various ap-
plications, including the processing of substantial long-
term global-scale datasets (Magidi et al., 2021). GEE has 
a reputation for analyzing the impact of land-use change 
on urban surface heat by leveraging an already established 
climate tool to extract massive land surface temperature 
data (Robinson et al., 2017; Ravanelli et al., 2018) and pre-
dicting vegetation phenology (Parente & Ferreira, 2018; 
Traganos et al., 2018). Many authors have employed this 
platform with RF in numerous areas of research, including 
forest change detection (Moore & Hansen, 2011; Hansen 
et al., 2013), habitat monitoring (Joshi et al., 2016), urban 
area mapping (Liu et al., 2018), and human activity detec-
tion (Benz et al., 2017). 

Land-cover change has been identified as the most 
critical anthropogenic disturbance of regional character 
regarding environmental implications for people (Walker, 
2004). Essentially, LULC changes result from dominant 
natural and anthropogenic processes interacting via hu-
man activities. As a consequence, changes in land use 
and cover, as well as deterioration, are all governed by the 
same fundamental reasons. 

Therefore, changes in land-use and land-cover and 
impact biogeochemical cycling and subsidence pathways 
(Verburg et al., 2006) and a wide range of socioeconomic 
and ecological processes (Desanker et al., 1997) are critical 
to understanding managing environmental mechanisms 
and management. Significant advances in remote sensing 
methods for LULC research have allowed the development 
of a massive dataset of collected and processed satellite im-
ages and a large number of machine learning algorithms 
for supervised image classification across a wide range of 
domains (Caruana & Niculescu-Mizil, 2006). 

As a result, it is widely accepted that among the vari-
ous measures available, overall accuracy (OA) is used to 
assess the performance of all classifiers as well as the ef-
fect of sampling designs through the implementation of 
one of the classifiers, namely RF, is used to used assess 
the performance of all classifiers in the production and 
exploitation of results (Mellor & Boukir, 2017). OA is the 
most often used measure since it is easy to comprehend 
and estimate in various scenarios (Plourde & Congalton, 

2003). It denotes the classifier’s rate of test data correctly 
classified using the classification method. As an additional 
benefit, OA is an indicator of classifier performance that 
may be used to assess a specific classifier’s performance at 
the class level (Gorelick et al., 2017).

The collecting and processing of primary data with 
RF in GEE enable the user to quickly develop a multi-
temporal filtered data set, which is essential for computing 
a more accurate classification of LULCs (Griffiths et  al., 
2013). For example, at an atmospheric surface reflectance 
(SR) processing level, 30 m L8 bands are now accessible in 
GEE (Gorelick et al., 2017). Many studies have employed 
the RF method in GEE to enhance the pixel-based clas-
sification of LULC (Xiong et al., 2017; Mahdianpari et al., 
2019; Ghorbanian et al., 2020). RF is the most widely used 
machine learning method in the GEE application and, in 
general, for the classification of satellite data because of 
its non-parametric nature, ability to handle dimension-
ality and overfitting, and overall superior performance 
compared to other classifiers (Mountrakis et  al., 2011; 
Rodriguez-Galiano et al., 2012a, 2012b; Belgiu & Drăguţ, 
2016; Nery et al., 2016; Amani et al., 2020; Naboureh et al., 
2020). The RF is built on numerous Classification And Re-
gression Trees (CART), with the prediction model based 
on the average of all these CARTs (Athey et al., 2019). RF 
has been employed successfully in GEE in several LULC 
studies (Corona et  al., 2012; Rodriguez-Galiano et  al., 
2012a; Adelabu et al., 2015; Meher et al., 2016; Probst & 
Boulesteix, 2017; Phan et al., 2020; Luo et al., 2021; Magidi 
et al., 2021; Tassi et al., 2021). 

RF classification techniques for surface reflectance im-
ages based on cloud, shadow, and pixel removal utilizing 
Function of Mask (FMASK) and metric-based composites 
in GEE, for example, have been evaluated with an over-
all accuracy of more than 85% to identify farmland from 
non-cropland (Azzari & Lobell, 2017).

RF improves LULC mapping accuracy compared to 
other prominent comparable methods (Zeferino et  al., 
2020). When the class size distribution is imbalanced, it 
preserves the classification error balancing (Hatwell et al., 
2020; Magidi et al., 2021). Because it derives the data char-
acteristics autonomously, the RF classifier needs little or 
no user involvement, simplifying its design process (Toosi 
et al., 2019). Even though the RF method offers various 
data characterizations, it has a relatively fast processing 
speed (Schmidt et al., 2019; Gudmann et al., 2020). Barlett 
et al. (1998) demonstrated that RF may substitute the mis-
sing values with a variable that often occurs in a particular 
node in data loss. Because of its capacity to increase map-
ping accuracy, RF has been applied in various research 
fields (Magidi et al., 2021).

Additionally, GEE provides methods to evaluate the 
accuracy of different classifiers, such as error matrices 
(Stehman, 2009). Previous land-use and land-cover map-
ping investigations in the southwest area of the Côte 
d’Ivoire related significant human pressures due to the 
conversion of large expanses of the forest into agricultural 
land (Barima et al., 2016, 2020; Kouassi et al., 2021). This 
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region is dominated by export crop production, account-
ing for over half of total cocoa output in the nation (Ruf 
& Zadi 1998; Koua et al., 2020). Each year, hundreds of 
hectares of forests are taken from national parks and pro-
tected areas, a process known as deforestation (Ruf et al., 
2015; Koua et al., 2020). This is an important finding since 
it suggests that forest destruction is rising at a nearly ex-
ponential pace. 

Given this situation and the expansion of unplanned 
urban infrastructure zones, industrial and artisanal min-
ing, and its environmental effect, it is critical to conduct 
an inventory of this critical zone, which contains more 
than two-thirds of Upper Gunea’s endemic forests (Chat-
elain-Ponroy, 2010; Bitty et al., 2015). Numerous applica-
tions depend on precise and up-to-date land cover change 
information, which is challenging to get specialized exper-
tise. In light of environmental issues and problems, there 
is a significant need for information on the accuracy of 

maps as a result. Many people now consider the evalua-
tion of the precision of maps to be a critical component 
of many cartographic projects of maps to be a vital com-
ponent of any cartographic project they are involved in 
(Cihlar, 2000; Strahler et al., 2006). 

The study aims to assess and classify the land-use land-
cover of the country’s southern-western region using the 
GEE Application Programming Interface (API) to map 
land-cover using the RF approach based on high spatial 
and temporal resolution pixels the southwestern part of 
Côte d’Ivoire. 

1. Methods
1.1. Study area

Côte d’Ivoire is a West African nation on the Atlantic 
Ocean (Figure 1). It covers 322 462 km2 of land. The flora 
of Côte d’Ivoire is divided into four types: dense tropical 

Figure 1. Map of the study area: a – World map with Côte d’Ivoire; b – Côte d’Ivoire map with study area 
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forest, semi-deciduous forest, evergreen rainforest, and 
wooded to grassland savannah. The southwest of Côte 
d’Ivoire is notable for its unique species and biodiversity. 
The country’s first ecological zone lies in the south. There 
was a dense, humid forest covering this area, but it was se-
verely destroyed. Côte d’Ivoire has a sub-equatorial climate 
with four seasons and 1200–1500 mm annual rainfall.  A 
dense west forest covers the southern part of the middle 
half of the Guinean-Congolese/Sudanese region transition 
(White, 1983). The study area has a network of forest clas-
sifications and national parks, the most notable being Tai 
National Park (TNP). The TNP is the remnant of ¾ of the 
hyper ombrophilic forest of Côte d’Ivoire. This represents 
about 25% of the Ivorian rainforest. TNP also constitutes 
more than half of the mammal species of the West African 
forest zone. This exceptional richness has justified the clas-
sification of TNP by UNESCO as a biosphere reserve and 
world heritage site (Chatelain et al., 2004). 

1.2. Data processing in GEE

The classification and accuracy validation methods 
were implemented in a single GEE script and verified 
based on the classification and accuracy evaluation pro-
cesses. The former comprises a Pixel-Based technique, 
utilizing the same training data and the RF algorithm 
to get their results. The confusion matrix is generated 
by applying the RF classifier to the same training and 
validation data. These methods are based on pixels, ob-
jects, or a combination of the two, and they use either 
a supervised classification technique like RF (Gislason 
et al., 2006; Tatsumi et al., 2015; Wang et al., 2015) that 
we use (Figure 2).

1.3. Random Forest Method

The RF approach is a very well non-parametric machine 
learning technique. RF was selected for this study because 
it produced almost as accurate quality results for land use 
classification even when no hyperparameters were used. It 
is appropriate for both classification and regression tasks. 
Furthermore, the RF classifier provides higher classifica-
tion accuracy (Qu et al., 2021). Its use in remote sensing 
has various benefits, including improved accuracy of land 
use and land cover mapping compared to other prominent 
algorithms (Zeferino et al., 2020). The RF technique sta-
bilizes the classification error balance when skewed class 
size distribution (Toosi et al., 2019). 

The RF classifier eliminates data characteristics. 
When utilized in its operational mode, the RF method 
has a quick execution time in terms of processing time 
(Forghani-Zadeh & Rincón-Mora, 2007). GEE’s RF ex-
ecution method is pixel-based because it is resistant to 
data noise and overfitting (Belgiu & Csillik, 2018). Its 
low sensitivity to overfitting is helpful for satellite data 
categorization (Keyport et  al., 2018). RF is an ensemble 
learning approach that employs many individual decision 
trees (Fonseka et al., 2019). Each decision tree has numer-
ous nodes, and a majority vote determines the ultimate 
conclusion among those who participated. The benefit of 
utilizing this classifier is that it may offer a highly accurate 
classifier capable of handling hundreds of input variables 
(Ge et al., 2019). 

According to Breinam (2001) RF has many classifiers 
defined by the following (Equation (1)) (Breiman, 2001). 

{ }1( , ) ,T
iDT y i =σ    (1)

where y is the input vector and σi is a random vector 
sampled independently but with the same distribution as 
the preceding σi, …, σi – 1. T booststrat provides from 
training data. Each bootstrap sample yields a no-pruned 
classification, and a regression tree is drawn for each boot-
strap sample β with just one of M randomly selected char-
acteristics chosen for the split at each point of the CART. 

The RF is more robust to minor changes in input data 
and improves LULC classification performance by stabi-
lizing the classifier. Bootstrap selection retrieves i samples 
from the training sample set, each equal size. For each 
sample, i trees were created, producing i classification 
results. The final LULC classification was determined by 
classifying accuracy utilizing each record. The RF classifier 
enhances classification accuracy using object-based pro-
cessing approaches (Gislason et al., 2006). 

1.4. Accuracy Assessment

The confusion matrix (CM) is crucial in the map classifi-
cation validation process.

It compares the anticipated class label to the ground 
reference. Accuracy measures such as overall accuracy, 
Kappa, and user precision may be calculated using the 
confusion matrix (Foody, 2002). The Kappa, user accu-
racy, and producer accuracy score are calculated for each 
class. The proportion of pixels with the correct label is 
referred to as overall precision. It is frequently referred 
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Figure 2. The flow chart of the methodology implemented in GEE
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to as an indicator of general agreement between the clas-
sification and the ground reference (Foody, 2002). If the 
operator wants to concentrate on a specific precision class, 
both the user and the manufacturer must be precise. “User 
accuracy” refers to the proportion of erroneously catego-
rized pixels into a recognized category. 

A CM included in GEE is used to determine the ac-
curacy of the study area LULC categorization. The LULC 
linked with the validation point is statistically compared 
with the output classifications. To evaluate the classifica-
tion’s performance, the kappa coefficient and the values of 
the confusion matrix’s overall user, producer, and accu-
racy coefficients were compared for each class (Forghani-
Zadeh & Rincón-Mora, 2007). The image classification 
accuracy was assessed using RF’s confusion matrix (Con-
galton & Green, 2019).

1.5. Training and validation sample data     

We used cloud computing for the pixel-based RF machine 
learning technique implemented in GEE cloud comput-
ing to categorize the study area based on pixels to clas-
sify LULC. This research’s training and validation samples 
were gathered via manual visual interpretation of high-
definition images from Google Earth. We selected training 
and validation point. Finally, we were awarded 874 points 
for training and validation. We utilized 80% of the pieces 
for training and 20% of the testing to assess accuracy. The 
algorithm used 690 points for training and 184 for testing. 
The RF model was constructed using 300 trees and five 
predictors chosen at random from a vast pool of candi-
dates (such as “B3”, “B4”, “B5”, “B6”, and “B7”). Table  1 
shows the number of training points in the study area for 
the selected classes. 

Table 1. Number of validation for each land-use and  
land-cover class

Classes Validation training point

Forest 261
Water 181
Urban 214
Cultivated 79
Bare land 139

1.6. Data

For this study, we used the Landsat-8 Operational Land 
Imager (OLI)/Thermal Infrared Sensor (TIRS) surface 
reflectance (SR) 30 m T1 dataset immediately accessible 
year is 2020. We utilized the method provided in the lit-
erature to evaluate the overall dependability of the pro-
cess, as suggested by (Hansen et al., 2008) and (Bwangoy 
et al., 2010). To gather training data, only 50 points from 
each class were identified utilizing the GEE interface, the 
composite Red-Green-Blue (RGB) and infrared layers, and 
the high-resolution layer of Google Maps. A total of 874 
validation points were generated at random and manually 

labeled using visual interpretation of the experiment’s 
identical base layers. Rodriguez-Galiano et al. (Rodriguez-
Galiano et  al., 2012b) and Pareeth et  al. (Pareeth et  al., 
2019) show that the main band components may increase 
LULC classification accuracy. As a result, the red, green, 
blue, near-infrared (NIR), and shortwave infrared (SWIR-
1 and SWIR-2) bands were considered in this Landsat-8 
OLI image analysis.

1.7. Landsat data

Operational Land Imager (OLI) mission, the most recent 
phase of this paper, relied heavily on Landsat 8 surface 
reflectance (SR)/OLI 30 m satellite data. Indeed, the Land-
sat-8 (L8) Operational Land Imager (OLI) mission, the 
most recent phase of the National Aeronautics and Space 
Administration (NASA) Landsat Data Continuity Mission 
(LCDM), is effective of delivering datasets that are spec-
trally, spatially, and temporally compatible with primary 
Landsat missions (Irons et al., 2012). Landsat is the only 
medium-resolution land-use dataset that can be used to 
investigate changes in LULC throughout any period and 
terrain type, according to LCDM (Pareeth et al., 2019)). 
L8SR/OLI sensor characteristic has to revisit 16 times. It 
can provide multispectral images with 30  m resolution, 
including its five visible and near-infrared (VNIR) bands, 
two infrared and two shortwave infrared (SWIR) bands. 

1.8. Processing

We first uploaded the L8SR images into GEE and then 
used the L8 SR data to build a cloud mask function from 
the pixel quality attributes “Pixel_QA” band C Function of 
Mask (CFMaskAlgorithm). Cloud may be removed from 
the L8SR using the “Pixel-QA” band, a bitmask band con-
taining a quality indicator generated using the CFMASK 
technique (Foga et al., 2017). The cloud shadow is indi-
cated by bits 3 and 5 when viewing the L8SR image. We 
performed data filtering using the “CloudshadowBitMask” 
technique for bands B3: (Cloud Shadow) and B5: (Cloud 
Shadow). We created a Mask function on the L8SR im-
age collection to display the pixel’s precise conditions on 
the mask image. We applied it to the L8SR image collec-
tion, using the B3: (CloudShadow Pixel 3) and B5: (pixel), 
each pixel equal = 0. To be utilized with the clouds, a new 
variable “bitwise and” was created and put on the bends 
B3: “CloudShadowBitMask” and B5: “CloudMask”. We 
designed a “updateMask” function by dividing the bands 
from 0 to 9 by ten thousand. After modifying a year list to 
filter out the bands from the photo collection, we masked 
out the clouds and reduced the size of the images. 

GEE achieved cloud masking for L8SR by combining 
the Pixel Quality Attribute (PQA) band with the L8SR 
data after image processing and before any pre-processing 
(Lu et al., 2006). 

According to Nyland et al. (2018), the cloud masking 
step should be carried out in line with their recommen-
dations, which include, among other things, picking the 
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input photographs with the highest degree of cloud cover 
and three perimeters to construct an exceptionally effi-
cient composite image.

Foga et al. (2017), suggest that GEE classification be 
conducted using supervised classification, which considers 
the collection of training points and the kind of classifi-
cation performed in general while making the classifica-
tion (Foga et al., 2017). Consequently, to assess whether 
or not the model is accurate, the validation points were 
generated at random and manually labeled with the same 
LULC code.

The land cover categorization of the study area was 
achieved using a pixel-based supervised classification ap-
proach combined with an RF machine learning algorithm. 
Following an assessment of the composite images, it was 
concluded that the Google Earth images should generate 
training and test polygons as a starting point. Five land 
classifications were defined based on land use information 
acquired for the study area: Forest, Water, Urban, Culti-
vated, and Bareland. The land classes identified were for-
est, water, urban, cultivated, and bare land (Table 2). The 
acquired samples were then used for RF training with the 
assistance of GEE.

For the use of RF models in GEE, two parameters 
were defined: the number of decision trees (“(300,5)”) to 
be produced per class (number of trees) and the random 
selection of 5 predictors per class (number of trees). A 
last morphological operation (based on a focused mode) 
is performed on the output classification to clean up the 
whole output and decrease the “salt and pepper” impact. 
The training was carried out using bands and the land 
cover property, followed by the extraction of the land 
cover property of the various classes. This classifier was 
developed using training data from the feature collection 
new feature collection (Newfc)  attribute “LULC,” which 
was collected from the feature collection “Newfc.” Conse-
quently, the bands [“B3”, “B4”, “B5”, “B6”, and “B7”] were 
used as prediction bands for the LULC classification, and 
the LULC classification was formed from them.

Some samples were randomly separated and utilized 
in testing to assess the model’s accuracy, while others were 
used in training. Approximately 80% of the samples were 
used in training, whereas 20% were used in testing.

We evaluated whether the classification model was ac-
curate based on the matrix confusion formed by RF inte-
grated into the GEE. The LULCs linked with the validation 
points are statistically compared to the output classifica-
tions.

2. Results

To categorize the study area using LULC, a modified ver-
sion of GEE’s integrated automatic classification system 
was used. The error-based accuracy assessment assesses 
the image’s quality generated using the RF model. The pro-
cessing results show that the Training Overall Accuracy 
(TOA) is 99.85%±1.85, and the TK is 99.81±1.95, in that 
order. Similarly, the OVA RF model received 94.02%±1.90 
against VK and 92.25%±1.88 against VK (Figure 3).

The finding revealed confusion between Forest, Water, 
Urban, Cultivated, and Bare land classifications. It is fol-
lowed by forest land, which covers 22870.53 km2, or about 
39.62%±1.23. Forest land is more dispersed in the upper 
central region of the map, dominated by TNP, which cov-
ers a relatively significant area in terms of forest class, and 
farther north of the study area, scattered regions that host 
national reserves with neighboring states. The water-cov-
ered zone, which amounts to 951.97 km2 (1.64%±0.25 of 
the study area), is near the TNP and south of the study 
area. The urbanized aera comprises numerous developed 
regions scattered throughout the study area. In the south-
ern hemisphere, Urban accounted for about 555.06 km2 or 
0.96%±0.60 of the total land area. 

The Cultivated class will cover about 12284.66 km2 or 
21.28%±0.90 of the study area. It covers about 21056 km2 
or 36.48%±1.18 of the total Bareland area. The confusion 
matrix is the beginning point for examining the assess-
ment data (Story & Congalton, 1986). The GEE method 
produces separate sets of confusion and accuracy matrices 
depending on the number of included and non-included 
pixels in the splits samples, in line with the random train-
ing and testing procedures used for sample splitting (Ta-
ble 3). The confidence level was used for calculating the 
confidence intervals (95%). The 95% confidence intervals 
for all accuracy metrics were determined by multiplying 
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Table 2.  Land-use/land-cover classification

Land 
classification Description

Forest
*Forest, natural or planted forests, Deciduous 
forest land, evergreen forest land, mixed forest 
land

Water
*Lakes, rivers, marries, wetlands, reservoirs, 
streams and canals, reservoirs, bays, and 
estuaries

Urban *Built-up area of all settlements, including 
industrial zones and other artificial surfaces

Cultivated

*Cropland and pasture, perennial and annual 
crops, including various crops such as cereals, 
grain legumes, and horticultural plants, 
another agricultural land

Bareland
*Bareland, exposed rock, strip mines, quarries, 
gravel pits, transitional areas, mixed barren 
land Figure 3. Percentage of different coefficient obtained by RF
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the square root of the variance by 1.96 (Olofsson et  al., 
2014). Furthermore, the training and test set selection af-
fected the validation and classification accuracy for ran-
dom splitting.

For the RF performance calculations in GEE, the coef-
ficients of user accuracy Û  (Equation (3)), (Story & Con-
galton, 1986) as well as producer accuracy Pj  (Equation 
(4)) (Congalton & Green, 2019), were used to assess clas-
sification accuracy. In addition to the calculations of Ui  
and Pj  we calculated estimates of the accuracy of our fi-
nal change map by combining Equations (3) and (4). 

User accuracy Û
User’s accuracy is the proportion of the area class i that 

is also class i in the reference data (Equation (3)). It pro-
vides users with the probability that a particular class i is 
also that class on the ground.







 0,= ×
PiiUi
Pi

. (3)

Pj  is the estimated proportion of area in cell, j of the 
error matrix. i and j are the rows and columns of the con-
fusion matrix (Table 3). 

Pii  is the estimated proportion of area in cell, i of 
the error matrix. i and i are the rows and columns of the 
confusion matrix.

In the reference data, 205 of the 208 pixels categorized 
as Forest were recognized as Forest; 3 Cultivated were in-
cluded in the Forest categorization. 

Of the 151 pixels, all were identified as Water. 
In the reference data, 175 of the 184 pixels classed as 

Urban was recognized as urban; 9 Bareland areas were in-
cluded in the Urban categorization.

In the reference data, 60 of the 81 pixels classed as 
Cultivated were recognized as Cultivated, with 11 Forest, 
6 Urban, and 4 Bareland included in the Cultivated.

Of the 125 pixels classed as Bare land, 111 were recog-
nized in the reference data as Bare land, 11 Forest, 6 Ur-
ban, and 4 Bare land were included in the Cultivated data.

Producer’s accuracy Pj
Producer’s accuracy is the proportion of area reference 

class j and class j in the map (Equation (4)). It is the prob-
ability that class j on the ground is mapped as the same 
class.

ˆ
jjP the estimated proportion of area in cell jj of the 

error matrix (the error matrix of these estimated propor-
tions Table 3).

Of the 220 pixels referred to as Forest, 205 were ac-
curately categorized as Forest, 11 as Cultivated, and four 
as Bare land.

All 151 pixels referred to as Water was appropriately 
identified as such. 175 of the 189 pixels Urban were ac-
curately classed as Urban; 6 were classified as Cultivated, 
and eight as Bare land.

Of the 65 pixels cited as Cultivated, 60 were accurately 
identified as Cultivated, three as Forest, and 2 as Bare ground.

Of the 124 pixels cited as Bare land, 111 were accu-
rately classed as Bareland, 9 as Urban, and 4 as Cultivated.



.
0

ˆ

ˆ 1 0.= × jj

j

p
Pj

P
    (4)

Overall Accuracy (OA)
The overall accuracy is the proportion of area classi-

fied correctly, and thus refers to the probability that a ran-
domly selected j location on the map is classified correctly 
OA is calculated using Equation (5).

1
0ˆ 10n

j=
= ×∑ 

jjO y ;  (5)

92.45% 1.88.ˆ = ±O

Table 4 shows the PA and user UA coefficients for dif-
ferent classifiers as a function of pixel sample size. The 
classification coefficient’s performance is impacted by the 
sample pixel size (UA: Bareland: 88.7% vs. Forest land: 
93.18%) and the sample pixel size (UA: Bareland: 88.7% 
vs. Forest land: 93.18%), (PA: Cultivated land: 74.07% vs. 
Forest land: 98.55%). The RF model incorrectly classified 
47 pixels, or 5.54% of the total, whereas 827 pixels were 
allocated correctly.

The non-representative pixel size of Cultivated land 
class Training samples has a detrimental impact on accu-
racy for both the producer and the consumer. In contrast, 
the higher class pixel sizes (Forest land and Urban land) 
give excellent quality accuracy for both UA and PA (Fig-
ures 4 and 5). Results show that the bigger pixel classes 
contain more pixels. It demonstrates that the bigger pixel 
classes benefit more from utilizing the pixel-based tech-
nique.

Table 3. Global confusion matrix of RF classification results

Class Forest Water Urban Cultivated Bare land Total PA (%)

Forest 205 0 0 3 0 208 98.55±1.96
Water 0 151 0 0 0 151 100±1.96
Urban 0 0 175 0 9 184 95.1±1.91
Cultivated 11 0 6 60 4 81 74.07±1.68
Bare land 4 0 8 2 111 125 88.8±1.88
Total 220 151 189 65 124 749 –
UA (%) 93.18±1.89 100±1.96 92.59±1.88 92.3±1.88 88.7±1.84 – –
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Figure 4. User Accuracy for each sample classifiers size

Table  5 shows that forest cover covers a significant 
part of the study area, accounting for 39.62%±1.2 of the 
total. Forest has a big representative area that is followed 
by bare land, which accounts for 36.48%±1.18; cultivated 
class, which accounts for 21.28%±0.90; water class, which 
accounts for 1.64%±0.25; and lastly, Urban class, which 
accounts for 0.96%±0.60. According to the results, forest 
and bare land cover the bulk of the study area, accounting 
for 39.62%%±1.2 and 36.48%±1.18, respectively. Figure 6 
depicts the LULC study area map. 

Table 4. Accuracy of RF classification for pixels sample size 

  RF Classifier Parameters No. of Pixels/Class Accuracy

Class No. of Trees Predictors Training 80% Testing 20% Pixel misclassified UA (%) PA (%)

Forest 300 B3, B4, B5, B6, B7 209 25 15 93.18 98.55
Water 300 B3, B4, B5, B6, B7 145 36 0 100 100
Urban 300 B3, B4, B5, B6, B7 174 43 14 92.59 95.1
Cultivated 300 B3, B4, B5, B6, B7 63 16 5 92.3 74.07
Bareland 300 B3, B4, B5, B6, B7 111 28 13 88.7 88.8

Note: No. of Trees: Number of Trees; No. of Pixels/Class: Number of Pixel per class.

Table 5. Land-use land-cover class area

Classes Areas (km2)

Forest 22 870.53

Water 951.97

Urban 555.06

Cultivated 12 284.66

Bareland 21 056.04
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Figure 5. Producer accuracy for each sample classifiers size

Figure 6. Map of study area land-cover/land-use classes 2020
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3. Discussion

The classification results in this study were obtained at 
the pixel level with spatial resolutions of 30 m, the most 
significant degree of precision possible. The pixel-based 
RF classification technique yields acceptable results. This 
series of studies examines the efficacy of specific machine 
learning techniques, both aesthetically and statistically, 
against composite images. RF’s observations showed a high 
accuracy rate of 94.02%±1.90. VOA is considerably better 
than the VK coefficient of 92.25%±1.88 of the images clas-
sified during the study period, and TOA is 99.85%±1.95, 
and TK is 99.81%±1.95, respectively. The high kappa value 
of the RF classification model is highly acceptable, and 
the model’s accuracy performance is similar to a prior 
study that successfully distinguished LULC categories in 
diverse, realistic situations using RF (Rodriguez-Galiano 
et al., 2012b; Mellor et al., 2013). 

The GEE land cover classification resulting from the 
analysis of Landsat 8 images provided very accurately pro-
vided very accurate findings. It is conceivable to conclude 
that the study’s results are statistically acceptable. Aside 
from that, when the kappa value is more than 0.50, im-
age analysis may provide excellent and relevant outcomes 
(Pontius, 2001) defined as formalized. As a result, the pre-
sent classification with five classes is acceptable and ena-
bles the evaluation of land cover categorization through-
out the study. Confusion errors may be seen in Forest, 
Urban, Cultivated, and Bare land categories. It’s conceiv-
able that the difficulty in visually differentiating these 
groups is due to the similarity of their spectral signatures. 
This is why the word Cultivated and Forest is often used 
interchangeably. This class may be found throughout the 
north, center, and south throughout the study area. This 
category may also include old plantations (coffee, cocoa, 
rubber, oil palm, and so on) and is often confused with 
it. This explains why there is miscommunication between 
the two groups in the first place (Forest and Cultivated).

Furthermore, due to the barren landscape, confusion 
errors between the classes (Urban and Bare land) were 
identified, which were also similar. The reported amounts 
of these perplexing errors, on the other hand, were minor. 
According to (Landis & Koch, 1977) and (de Certau et al., 
1999), the findings obtained from the overall accuracy of 
the classifications are more significant than 95%, indicat-
ing that the results obtained from these classifications are 
excellent. The kappa coefficient is defined as the propor-
tion of the classification result greater than or equal to 
80%.

 According to serval research, a kappa coefficient in 
the range of 61 to 80% indicates a categorization result of 
“Good” or “Acceptable”. Our VK is more than 90% means 
that our classification is reasonable. Because of the sig-
nificant heterogeneity within LULC classes, RF in GEE 
identified soil classes based on their substantial hetero-
geneity, resulting in validation errors. The errors discov-
ered in the LULC classes may be ascribed to the terrain’s 
complexity and diversity, explained by (de Certau et al., 

1999). Classification errors will likely arise due to the chal-
lenges of selecting land-cover classes (Foody, 2002). After 
classification, the results show a significant percentage of 
cultivated land, indicating that this area is a central point 
of deforestation for developing and growing. 

Table 4 shows the number of pixels in the error matrix 
correctly detected and misclassified by the RF classifier. 
Water features and trees, for example, perform very well, 
with accuracy rates above 95%. There was a mistake in 
categorizing land types such as cultivated land and forest 
land. For example (11 pixels not recognized as forest were 
classified as Cultivated land, and 4 pixels were allocated 
to the class Bareland). This misclassification reduced the 
producer’s accuracy performance to 74.07% for Cultivated 
land and 88.8% for Bareland due to this inaccuracy. The 
classification errors in this experiment were most likely 
caused by the small number of collected training data. 
Indeed, several authors, such as Mellor et al. and Collin 
et al. (Mellor et al., 2015; Collins et al., 2020), have pre-
sented more significant evidence that the quality of the 
training samples causes these misclassifications gathered, 
overlapping classes, or the size of the study area (Foody 
et al., 2019).

Even though RF demonstrated superior classification 
performance in the other soil classes, a counter-perfor-
mance was observed in classifying 14 pixels in the Urban 
land class, with 6 pixels assigned to the cultivated land 
class and 8 pixels assigned to the barren land class, respec-
tively. Shetty et al. (Shetty, 2019) also made these results 
in his 2019 study in the Netherlands, where he uncovered 
categorization errors that resulted in low-performance 
producer accuracy coefficients.

Aside from the negative influence of the training site 
samples on the quality of the producer accuracy perfor-
mance, another explanation for reducing the coefficients 
might be the low spatial resolution of the image data 
(30 m). This is because the study area is a tropical forest 
setting with a lot of cloud cover and darkness, making 
visibility challenging. The satellite data used in the study 
area, with a spatial resolution of 30 m, makes reliable dif-
ferentiation between the various land use classes in the 
study area difficult without adding mistakes into the cat-
egorization.

Indeed, the classifiers vary the user accuracy and pro-
ducer accuracy coefficients trend when the sample size 
changes. When we analyze the classification performanc-
es obtained, we see that the larger the sample size of the 
pixel/class, the better the RF performs in classification and 
provides excellent classification accuracies at the UA and 
PA levels of above 90%.

With a total of pixels in the five classes, we may con-
sider the OA value of 92.45% obtained by RF during clas-
sification to be good, despite some classification errors. 
The OA and kappa coefficient values are roughly the same 
range as the multi-class image classification results ob-
tained by Pal and Mather (2005) using the support vector 
machine classifier. A small sample set of 2700 pixels for 
seven crop types provided an accuracy of 87%.
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Using the same RF method implemented in GEE, Wa-
hap and Shafri (2020) obtained in his study, our results are 
slightly closer to theirs in terms of kappa accuracy (90.9%) 
and overall accuracy (94.8%). In comparison, theirs are 
somewhat closer in terms of OA (92.45%) and Kappa ac-
curacy (90.9%). The matrix shows a precise categorization 
of the major forest kinds and a combination of cultivated 
and forest land.

Indeed, the minimal number of training samples col-
lected at the Bareland and Cultivated land classes certainly 
hampered accuracy performance at the level of the pro-
ducer accuracy coefficient values in this study. This con-
clusion is also likely attributable to the lower temporal 
and spectral resolution of the dataset utilized, which gave 
insufficient information to adequately separate the vari-
ous agricultural types. Some authors recognized that to get 
improved performance in LULC classification; exception-
ally high-quality training data are required (Song et  al., 
2016; Zhu et al., 2016; Shetty et al., 2021). 

Conclusions 

Remote sensing has shown to be pretty effective in differ-
ent mapping types of LULC. In this study, Landsat 8OLI/
TIRS data from 2020 were used to create a land-use map 
at the scale of the study area with a spatial resolution of 
30 m. In this case, the GEE platform was used to develop 
the improved 2020 time-series dataset across the study 
area. The L8OLI/TIRS images were fed into a Pixel-based 
radiofrequency algorithm to finish building the LULC 
map of the study area. The obtained OA of 92.45%, TK 
of 99.81%, VK of 92.25%, OVA of 94.25%, and OTA of 
99.85%, among other findings, show the remarkable abil-
ity of the proposed GEE technique to categorize the pro-
vided classes. Except for one class, the values of the PA 
and UA coefficients are much more than 90% in all but 
one of the other classes. Pure land makes up 88.88%, while 
cultivated land is 74.07%. The number of trees (300) and 
the five bands (B3, B4, B5, B6, B7) were significant predic-
tors of the experiment’s result. The small size of the train-
ing samples obtained and the minimal number of train-
ing samples collected affected the accuracy performance 
of the Cultivated land class. The classification method 
based on the Pixel Based approach could not provide a 
very high PA of the cultivated land class with the L8OLI/
TIRS data because of the reduced spatial resolution. How-
ever, it would be fascinating to combine the pixel and ob-
ject-based approaches with other auxiliary data, such as 
spectral obtained during different phenological seasons, 
to considerably improve the classification accuracy of the 
findings in a future study. The results of the categoriza-
tion evaluation and map accuracy utilizing the pixel-based 
RF approach in GEE should assist policymakers in Côte 
d’Ivoire in appropriately managing and preserving biodi-
versity in the study area. In addition to monitoring for-
est areas and halting deforestation caused by agricultural 
operations.

Finally, the LULC map created as a result of this re-
search will be useful in a variety of ways, notably in the 
development of a monitoring program for tracking long-
term changes.
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