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The method of bundle adjustment makes use of the 
collinearity condition (Tommaselli & Junior, 2012; Ghosh, 
2005; El-Ashmawy, 1999) or coplanarity condition (El-
Ashmawy & Azmi, 2003). The desired parameters (which 
include object space coordinates of pass and/or tie points, 
and camera exterior orientation parameters) are adjusted 
as a result of one simultaneous least squares solution of all 
the photographs by an iterative method. The iterations are 
necessary because of the fact that the associated condition 
equations are non-linear. The results of the bundle adjust-
ment of the block of photographs are camera exterior ori-
entation parameters of each photograph and a listing of 
the object space coordinates of the measured pass and/or 
tie points as well as their statistical precision. 

The fundamental requirements in bundle adjustment 
are the estimates of the camera interior and exterior ori-
entations parameters. Furthermore, depending on the 
specific approach taken, the estimates for object space co-
ordinates of all pass and/or tie points may also be needed. 
Thus, a bundle procedure should include a feasible method 
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Abstract. DLT has gained a wide popularity in close range photogrammetry, computer vision, robotics, and biomechan-
ics. The wide popularity of the DLT is due to the linear formulation of the relationship between image and object space 
coordinates.
This paper aims to develop a simple mathematical model in the form of self calibration direct linear transformation for 
aerial photogrammetry applications. Software based on the derived mathematical model has been developed and tested 
using mathematical photogrammetric data.
The effects of block size, number and location of control points, and random and lens distortion errors on self calibration 
block adjustments using the derived mathematical model and collinearity equations have been studied. It was found that 
the accuracy of the results of self calibration block adjustment using the derived mathematical model is, to some extent, 
comparable to the results with collinearity model.
The developed mathematical model widens the application areas of DLT method to include aerial photogrammetry appli-
cations especially when the camera interior and exterior orientations are unknown.
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Introduction

In topographical photogrammetry, photogrammetrists 
think most naturally in terms of models produced by pairs 
of photographs. However, undoubtedly the most flexible 
approach to block formation and adjustment and to pho-
togrammetry in general is through the use of the bundles 
of rays produced by individual photographs. In close-
range photogrammetry, where multi-station and conver-
gent configurations are possible, the bundle approach can 
be seen in its most powerful form. The bundle approach 
is still the most flexible available approach and one that 
should give the best results.

The adjustment of the bundles in a block of pho-
tographs involves the rotation and translation of each 
bundle in space into such a position that all rays pass-
ing through the photographic positions of each control 
point will intersect at its correct object space position. 
Furthermore, all rays representing other points, such as 
a pass point, must intersect at their respective position 
in the object space.
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of obtaining the necessary estimated (approximate) values 
initially. The importance of initial values being close to 
most probable values of unknowns needs no emphasis. 
Not only it reduces the number of iterations but ensures 
fast and accurate results.

Determination of the initial values of camera exterior 
orientation parameters and the object space coordinates of 
pass and/or tie points depends mainly on the number of 
the control points (El-Ashmawy, 1999). Two cases as fol-
lows, different in their principles, which have been found 
in common uses in photogrammetry are:

 – CASE A: when the number of the control points is 
three or more per photograph. This case is a general 
occurrence in close range photogrammetry. The steps 
for this method are based on space resection for ob-
taining the camera exterior orientation parameters 
for each photo followed by space intersection for ob-
taining the object space coordinates of new points, 
points rather than control points. This method de-
pends mainly on using collinearity equations. 

 – CASE B: when the number of control points is three 
or more per photogrammetric block. This, generally, 
occurs in aerial photogrammetry applications. This 
method is based on an approach similar to analogical 
procedure for determining the initial values of object 
space coordinates of pass and/or tie points and using 
these to determine the initial values of exterior orien-
tation parameters. Coplanarity equation, collinearity 
equations and seven parameters coordinate transfor-
mation are widely used in this method.

The prerequisites for the two above mentioned meth-
ods are the prior knowledge of camera interior orientation 
parameters.

The Direct Linear Transformation (DLT) method 
was introduced to the photogrammetric community by 
(Abdel-Aziz & Karara, 1971). DLT method models the 
transformation between the comparator or image pixel 
coordinate system and the object coordinate system as a 
linear function. DLT can be derived from the standard 
collinearity equations. The basic equations of DLT are ex-
pressed as follows (Abdel-Aziz & Karara, 2015):
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where ,x y are the image coordinates, 1 11,...,L L are the 
transformation coefficients and , ,X Y Z  are the object 
space coordinates of point.

The values of camera interior and exterior orientations 
are then computed by:
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where ω φ κ0 0 0, , , , ,X Y Z  are camera exterior orienta-
tion parameters, 0 0,x y  image coordinates of the prin-
cipal point and f is the camera focal length.

DLT has gained a wide popularity in close range pho-
togrammetry, computer vision, robotics, and biomechan-
ics. The wide popularity of the DLT is due to the linear 
formulation of the relationship between image and object 
coordinates. Namely the following characteristics are as-
sociated with the DLT model: image coordinates can be 
expressed in a non-orthogonal system with unequal scales, 
the position of the coordinate system is arbitrary, and the 
principal distance can be unknown and vary from image 
to image.

This paper aims to:
 – Derive a mathematical formulation based on DLT 
method for aerial photogrammetry applications;

 – Investigate the accuracy of the derived mathematical 
formulation; and

 – Compare between the results of the derived math-
ematical formulation with the results of collinearity 
equations for self calibration block adjustment.

1. The mathematical formulation

1.1. The mathematical model for self calibration 
block adjustment

The standard DLT equations (Equations (1, 2)) actually 
contain 10 independent unknown parameters. In other 
word one of the DLT parameters must be redundant and 
it is needed to add a non-linear constraint to the system 
to solve this problem. In this case, the method is called 
modified direct linear transformation (MDLT) method. 
In MDLT, one of the parameters is expressed in terms of 
the other 10 parameters and gives a non-linear constraint 
which is as follows:
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Removing 1L from Equations (1, 2) leads to:
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In Equation (6), the observations are the photo coordi-
nates on an object point. Considering the case of camera 
calibration, the &p px y corrected photo coordinates can 
be obtained by (Ghosh, 2005):
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where ,x y  are the observed photo coordinates; 
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η = − 0 ;y y

= ξ + η2 2 2 ;r

= + +2 4 6
12 13 14( )F k L r L r L r         (8)

= function of symmetrical radial lens distortion and 
12 13 14, ,L L L  are its correction coefficients;

D D( ), ( )x p y p are the decentering lens distortion cor-
rections for x and y photo coordinates, and can be ob-
tained by:
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in which 15 16,L L  are correction coefficients for decenter-
ing lens distortion.

Merging Equations (6, 7, 8, 9) leads to:
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The linearized form of Equation (10), for least squares 
method solution, can be given by:

V + B · D = ε,       (11)

where D  is the correction vector to the current values 
set for the unknowns (the 15 MDLT parameters for each 
photo and object space coordinates of the new points) in 
the iterative solution; B  is the matrix of the partial de-
rivatives of Equation (10) with respect to the unknowns; 
V  is the residual vector, i.e., the correction vector to the 
observations; and ε  is the discrepancy vector. 

Moreover, additional constraints are suggested to con-
sider supplemental observation equations (El-Ashmawy, 
1999; El-Ashmawy & Azmi, 2003; Ghosh, 2005) arising 
from a priori knowledge regarding the object space coor-
dinates of the control points in Equation (11). Such sup-
plemental equations can be written as follows:

− D = εc c cV ,        (12)

where Dc is the vector of observational corrections to the 
object space coordinates of the control points; and εc is 
the discrepancy vector, between observed values and cur-
rent (in iterative solution) values of the object space coor-
dinates of the control points.

Observation equations can be obtained by merging 
Equations (11) and (12) as:

+ D = ε 
− D = ε 

·
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V
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in which D  is the correction vector to the current values 
set for the unknowns which are the MDLT parameters for 
each photo and object space coordinates of all points. The 
other matrices are as defined earlier.

The principle of the least squares method requires the 
minimizing of the quadratic form · · ,tV W V  where W is 
the weight matrix whose elements are the weights associ-
ated with each of the observations. The least squares solu-
tion of an equation similar to Equation (13) can be given 
as (Mikhail, 1976; Ghosh, 2005):
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Variance of unit weight can be computed as:

σ = −2
0ˆ · · / ( )tV W V N U ,        (16)

where σ2
0ˆ  is the variance of unit weight; N is the number 

of observations and evaluated from:

= +13 2N n l
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in which 1n  is the number of control points; and l is the 
number of image points; U is the number of unknown and 
evaluated from:

U = 3n + 15m,

in which n is the number of object points (control, pass, 
etc.); and m is the number of photographs.

−( )N U = Degree of freedom.

1.2. Computation of the approximate values of DLT 
parameters and object space coordinates of new 
points

For starting the iterative solution of Equation (13) ap-
proximate values of unknowns should be known. These 
unknowns are the object space coordinates of new points 
and the MDLT parameters for each photo. As has been 
mentioned earlier, the importance of initial values being 

close to most probable values of unknowns reduces the 
number of iterations and ensures fast and accurate re-
sults. The suggested method for estimating the values of 
unknowns is illustrated in Figure 1.

The estimation method of the values of object space 
coordinates of new points is outlined earlier and explained 
in (El-Ashmawy, 1999).

Finding the approximate MDTL parameters is an itera-
tive approach. In the first iteration, 16 DTL parameters 
are solved using the conventional DLT method. Eight 
control, or known object space coordinates, points are 
required for each photograph. This is not restricted con-
dition after computing the object space coordinates of all 
points, as explained in the previous step. From the second 
iteration, 1L  can be removed by using the value obtained 
from the previous iteration and the system is reduced to 
15 parameters. The system is solved for 15 parameters. The 
parameter removed earlier ( 1L ) is computed based on the 

Figure 1. Computation of the initial values of object space coordinates of points,  
MDLT parameters and camera interior and exterior orientations
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10 estimated parameters using Equation (5). At this stage, 
the camera exterior and interior orientations parameters 
can be computed. The second step is repeated till a stable 
(converged) set of solution is obtained. 

Computing the camera focal length is also an iterative 
solution. After computing the DLT parameters, the camera 
focal length is determined using Equation (3). The new 
value of camera focal length is used to determine a new 
set of object space coordinates of new points, DLT param-
eters and camera focal length. The solution is repeated till 
the difference in the values of camera focal length can be 
neglected.

2. Developing the necessary software

The current research includes the development of software 
for aerotriangulation application utilizing DLT method 
named as AerDLT software.

The software provides an access to major computa-
tional phases of analytical block triangulation. The main 
functions of the developed software are:

1. Data preparation: It performs the necessary tasks for 
preparing the data to start block adjustment such as:

 – Testing the geometry of the input data: It includes 
testing the availability of each point in at least two 
photographs and giving complete information 
about the block adjustment parameters such as 
number of observations and unknowns, degree of 
freedom, etc.

 – Computation of the initial values of unknowns: It 
includes the computation of the initial values of 
DLT parameters and/or object space coordinates 
of points which are essential for starting the it-
erative solution. Moreover, the software is able to 
compute the camera interior and exterior orienta-
tions parameters. 

2. Iterative least squares method solution for perform-
ing the specified task. This includes the computa-
tions of the adjusted values of unknowns, residuals 
of photo and object space coordinates of control 
points and variance of unit weight.

3. Computation of statistical data: It includes the com-
putation of the necessary data for statistical analysis 
and error detection (El-Ashmawy, 1999) such as 
variance of unit weight, adjusted photo coordinates, 
residuals of photo coordinates, etc. 

For automatic processing and representation of the data 
and results, the software utilises efficient techniques of Data 
Structuring, Random File Access and Dynamic Memory 
Allocations (Malik, 2010). The software has been designed 
to make use of efficient user interfaces (window-driven) for 
facilitating its execution to the user (Gregory, 1998).

3. Testing the developed software

Testing a photogrammetric system is a complex task. It in-
volves, for example, availability of suitable data for testing, 
decision regarding number and type of tests to be carried 

out, photogrammetric tasks for which test may be carried 
out, and many other considerations.

After the completion of the development stages, the 
software was subjected to a series of tests. These tests 
presented an opportunity to verify that the developed 
software satisfies general performance requirements, es-
pecially with regard to efficiency, flexibility and feasibility 
of processing the photogrammetric data.

Mathematical photogrammetric data can be advanta-
geously used for testing of photogrammetric methodolo-
gies and systems since in this case error free input data 
and end results are both known. Testing the developed 
software, therefore, was carried out by using the math-
ematically generated blocks of photographs of MATHP 
software (El-Ashmawy, 1999).

Out of the various mathematical photogrammetric 
blocks generated, the block having following specifications 
was used for testing AerDLT:

a.  Photograph scale: 1:1.
b.  Camera format: 230.0 mm × 230.0 mm. 
c.  Camera focal length: 150.00 mm.
d.  Longitudinal and Lateral overlaps: 65% and 30% 

respectively.
e.  Total number of points available per model: 18.
f.  Terrain configuration: hilly type with height varia-

tion of 25% of the flying height.
Five different block sizes were generated. The size of 

the blocks ranged from one model to a size of 5 strips each 
of 5 photographs.

Since in each photograph, several control points were 
available, a suitable number with different well distribu-
tion pattern were used for testing the methodology of the 
developed software. In particular the following control 
point distributions have been used for various determina-
tions:

Pattern I:  4 control points/block.
Pattern II:  9 control points/block.
Pattern III:  6 control points/strip.
Pattern IV:  6 control points/photograph.
For comparing the results of the derived mathematical 

model, Col_Cal_Consts software (El-Ashmawy & Azmi, 
2003) was used. The mathematical foundation for develop-
ing Col_Cal_Consts is based on the collinearity equations 
with adding constraints to the control points coordinates.

The objectives set for the testing phase were:
 – Testing the system error; and
 – Testing the feasibility of camera focal length deter-
mination method.

3.1. Testing the system error

Self calibration block adjustments involve extensive com-
putations and the various steps of which are subjected 
to computational system error. System error consists of 
two parts (El-Ashmawy, 1999). The first part of this er-
ror is due to rounding off of values during intermediate 
computations. This part of error may be minimised by us-
ing double precision computations as far as possible. The 
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second part of the system error occurs due to truncation 
of higher order terms while forming the linearized obser-
vation equations from the non linear condition equations. 

To reduce the effect of the number and location of the 
control points during the testing phase of the system error, 
Pattern IV was used. The block size was 5 strips each of 
five photographs. In this case, the block contained 66 and 
132 control and check points respectively.

In order to ascertain the accuracy of the results, the 
root mean square error (RMSE) was computed using the 
well known formulation:

  =
= −∑ 2

1
(   ) / .

n

i
i

RMSE known value computed value n
 

(17)

The RMSE values for ground coordinates of check 
points have been obtained. The results showed that the 
maximum RMSE value is 0.0001 mm, at photo scale 1:1, 
which is negligible. From above, it is seen that the de-
veloped software is free from system error and that it is 
functional.

3.2. Testing the feasibility of camera focal length 
determination method

Camera focal length is only required for the determination 
of approximate object space coordinates of new points. In 
fact the derived mathematical model (Equation (10)) does 
not need any knowledge of camera interior or exterior ori-
entation parameters.

Elimination of the need of accurate value of camera 
focal length is the aim of this test. Different tests were car-
ried out by using different values of camera focal length 
and recording the computed focal length by the software 
(Figure 1). The tests showed that the software is able to 
compute the accurate value of the focal length (150 mm) 
when the starting value of focal length is within 150 ±
15 mm. This means that the developed methodology is 
powerful for computing the accurate value of camera focal 
length from a rough value.

4. Applications of the developed software for self 
calibration block adjustment

The objectives of these applications were:
 – Testing the geometric error;
 – Studying the effect of the random errors on block 
adjustment;

 – Studying the effect of the lens distortion errors on 
block adjustment; and

 – Studying the effect of random and lens distortion er-
rors on block adjustment.

4.1. Testing the geometric error

This error is a result of the effect of the block size, the 
number and location of the control points and the geo-
metric solution which is provided by the mathematical 

model itself. The five control points patterns were used 
for this purpose. The results of the block adjustment for 
this test are shown in Table 1.

From Table 1 it can be concluded that:
 – DLT method is suitable for self calibration block ad-
justment for a block of photographs of any size.

 – The geometric error decreases with the increasing of 
the number of control points.

 – Generally, using 6 control points/strip or more is 
necessary for overcoming the effects of the geomet-
ric error.

4.2. Studying the effect of the random errors on 
block adjustment

The effect of the random errors was tested by numerical 
simulation as following:

 – Generating error free photogrammetric data of blocks 
of different sizes using MATHP software as explained 
earlier.

 – Generating normally distributed error(s) with arbi-
trary mean(s) and standard deviation(s) as presented 
in (El-Ashmawy & Azmi, 2003). The obtained errors 
were then applied to the error free photo coordinates 
and ground coordinates of control points of the gen-
erated blocks. The configurations of the used blocks 
are shown in Table 2.

 – To reduce the effect of the geometric error, control 
points Pattern IV was used in this test.

 – Finally, self calibration block adjustments using the 
derived mathematical model for DLT method and 
collinearity equations were performed to adjust the 
available blocks and the results, in the form of stand-
ard deviation of unit weight ( σ0ˆ ) and RMSE values 
at control and check points, were obtained and tabu-
lated in Table 3.

From Table 3, the following conclusions can be ob-
tained:

 – There is no significant difference between the poste-
rior standard deviation ( σ0ˆ ) and the a priori stand-
ard deviation ( σ0 ) and hence that the correct simu-
lation assumptions and block adjustment have been 
achieved.

 – The results of DLT method for control points are 
much better than the results of the collinearity equa-
tions especially for the Z coordinates determination.

 – Furthermore, there is slight improvement for the ac-
curacy of check points coordinates determination us-
ing collinearity equations rather than DLT method.

4.3. Studying the effect of the lens distortion errors 
on block adjustment

As has been mentioned, lens distortion consists of two 
components: symmetric lens distortion and asymmetric 
lens distortion. The adopted mathematical model for sym-
metric lens distortion is given by Equation (8). The asym-
metrical lens distortion is due to the lenses decentering 
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Table 1. Results of testing the geometric error

Block
Size

Control 
Points 
Pattern

Control 
Points

Check
Points

Image
Points

Degree
of

Freedom

RMSE Values (mm)*

Control Points Check Points

X Y Z X Y Z

Model
I 4 14 36 0 0.0 0.0 0.0 3.0 3.0 5.0

III 6 12 36 6 0.0 0.0 0.0 0.0 0.0 0.0

1 Strip

I 4 41 117 36 0.0 0.0 0.0 7.0 2.0 11.0
II 9 36 117 51 0.0 0.0 0.0 0.0 0.0 0.0
III 6 39 117 42 0.0 0.0 0.0 0.0 0.0 0.0
IV 15 30 117 69 0.0 0.0 0.0 0.0 0.0 0.0

2 Strip

I 4 77 246 111 0.0 0.0 0.0 1.0 1.0 2.0
II 9 72 246 126 0.0 0.0 0.0 0.0 0.0 0.0
III 9 72 246 126 0.0 0.0 0.0 0.0 0.0 0.0
IV 27 54 246 180 0.0 0.0 0.0 0.0 0.0 0.0

3 Strip

I 4 113 375 186 0.0 0.0 0.0 1.0 3.0 3.0
II 9 108 375 201 0.0 0.0 0.0 1.0 1.0 1.0
III 12 105 375 210 0.0 0.0 0.0 0.0 0.0 0.0
IV 39 78 375 291 0.0 0.0 0.0 0.0 0.0 0.0

4 Strip

I 4 149 504 261 0.0 0.0 0.0 2.0 2.0 7.0
II 9 144 504 276 0.0 0.0 0.0 1.0 1.0 4.0
III 15 138 504 294 0.0 0.0 0.0 0.0 0.0 0.0
IV 51 102 504 402 0.0 0.0 0.0 0.0 0.0 0.0

5 Strip

I 4 185 633 336 0.0 0.0 0.0 2.0 2.0 4.0
II 9 180 633 351 0.0 0.0 0.0 1.0 5.0 3.0
III 18 171 633 378 0.0 0.0 0.0 0.0 0.0 0.0
IV 63 126 633 513 0.0 0.0 0.0 0.0 0.0 0.0

* Values at Photo Scale 1:1

Table 2. Configurations for mathematical photogrammetric blocks of photographs

 Block 
Title

Block Size Ground
 Points

N
o.

 o
f I

m
ag

e 
Po

in
ts

Random Errors (mm)*

 N
o.

 o
f S

tr
ip

s

N
o.

 o
f

Ph
ot

os
/S

tr
ip

N
o.

 o
f

Ph
ot

os
/b

lo
ck

C
on

tr
ol

 P
oi

nt
s

C
he

ck
 P

oi
nt

s

Photo
Coordinates Ground Coordinates of Control Points

Ra
ng

e

Si
gm

a

M
ea

n 

X Y Z

Ra
ng

e

Si
gm

a

M
ea

n

Ra
ng

e

Si
gm

a

M
ea

n

Ra
ng

e

Si
gm

a

M
ea

n

Model 1 2 2 6 12 36 +/−8 3.48 0.00 +/−5 3.56 0.00 +/−3 2.16 0.00 +/−8 4.80 0.00

1 Strip 1 5 5 15 30 117 +/−10 3.70 0.0 +/−6 3.70 –0.07 +/−7 3.67 −0.13 +/−10 6.581 −0.13

2 Strips 2 5 10 27 54 246 +/−7 2.16 0.0 +/−3 1.86 0.04 +/−6 3.41 −0.22 +/−6 3.37 0.15

3 Strips 3 5 15 39 78 375 +/−9 3.20 0.0 +/−5 2.54 −0.05 +/−5 2.78 −0.05 +/−6 3.97 –0.03

4 Strips 4 5 20 51 102 504 +/−9 3.28 0.0 +/−5 2.19 −0.06 +/−7 3.15 −0.02 +/−8 4.12 −0.08

5 Strips 5 5 25 63 126 633 +/−9 3.37 0.0 +/−6 1.89 −0.06 +/−8 3.50 −0.03 +/−9 4.53 0.00
* Values at Photo Scale 1:1
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and its modeling is given by Equation (9). The lens distor-
tion errors were introduced to the blocks of mathematical 
photographs as follows:

 – Generating error free photogrammetric data of 
blocks of different sizes using MATHP software.

 – Assigning values for the lens distortion coefficients 
and generating errors in the range of 50 mm using 
Equations (8) and (9).

 – Adding the generated errors to the error free photo 
coordinates

 – Reducing the effect of the geometric error by using 
control points Pattern IV.

The results of self calibration block adjustments are 
shown in Table 4. 

The following observations can be drawn from Table 4:
DLT method is suitable for compensating the lens dis-

tortion error for a block of photographs of any size.
The results of the collinearity equations are slightly 

better than the results of DLT method especially for the 
determination of Z coordinates of check points.

4.4. Studying the effect of random and lens 
distortion errors on block adjustment

In this case, error free photogrammetric data of blocks 
of different sizes using MATHP software were generated 
and random and lens distortion errors were generated and 
applied to the error free photo coordinates and ground 
coordinates of control points of the generated blocks as 
explained earlier. 

Table 5 illustrates the results of self calibration block 
adjustments for this case.

From Tables 3 and 5 the following conclusions can be 
drawn:

The results in both tables are identical. This means that 
the lens distortion errors are totally compensated.

Table 3. Results of self calibration block adjustment (Case of random errors only)

Method Block 
Title

Degree of 
Freedom σ0 σ0ˆ

RMSE Values for Ground Coordinates (mm)*

Control Points Check Points

X Y Z X Y Z

DLT

Model
1 Strip
2 Strip
3 Strip
4 Strip
5 Strip

006
069
168
267
366
465

1.00
1.00
1.00
1.00
1.00
1.00

0.92
1.11
1.00
0.98
0.98
0.97

0.30
1.90
0.80
1.10
0.90
0.70

0.20
1.90
2.10
1.70
2.10
1.90

0.20
3.00
0.80
1.40
1.40
1.90

8.50
6.40
3.20
3.10
3.40
3.60

11.6
5.80
3.70
4.10
4.40
4.00

19.70
13.00
7.70
8.80
9.30
9.30

Colli-
nearity 

Equa tion

Model
1 Strip
2 Strip
3 Strip
4 Strip
5 Strip

019
109
265
421
577
733

1.00
1.00
1.00
1.00
1.00
1.00

1.12
1.11
1.03
1.02
1.01
1.08

2.78
2.54
1.30
2.00
1.90
1.80

2.27
2.74
2.00
1.90
1.80
2.16

4.16
5.26
2.84
3.03
3.50
3.21

7.67
3.05
1.90
3.10
2.95
3.19

5.52
3.34
2.20
2.95
3.16
3.50

11.36
6.51
5.20
6.79
7.84
8.15

* Values at Photo Scale 1:1.

Table 4. Results of self calibration block adjustment (Case of lens distortions errors only)

Method Block Title Degree of 
Freedom

RMSE Values for Ground Coordinates (mm)*

Control Points Check Points

X Y Z X Y Z

DLT

Model
1 Strip
2 Strip
3 Strip
4 Strip
5 Strip

006
069
168
267
366
465

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.10
0.00
0.00
0.10
0.00
0.00

0.20
0.10
0.00
0.00
0.00
0.00

0.30
0.10
0.10
0.10
0.10
0.10

Collinearity 
Equation

Model
1 Strip
2 Strip
3 Strip
4 Strip
5 Strip

019
109
265
421
577
733

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.10
0.00
0.00
0.00
0.00
0.00

0.10
0.00
0.00
0.00
0.00
0.00

0.30
0.00
0.00
0.00
0.00
0.00

* Values at Photo Scale 1:1.
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The derived mathematical models are suitable for self 
calibration block adjustment for a block of photographs 
of any size.

The results of self calibration block adjustment using 
the collinearity equations with constraints are slightly bet-
ter than the results for using DLT method.

Conclusions

In this paper a simple mathematical model in the form 
of self calibration direct linear transformation for aerial 
photogrammetry applications has been derived. Unlike 
the conventional collinearity model, it does not need the 
known interior orientation nor the exterior orientation 
parameters. Therefore the derived mathematical model 
can be used when the necessary information for the col-
linearity model is not available.

The test results show that the aerotriangulation results 
with the derived mathematical model is, to some extent, 
comparable to the results with collinearity model.

The developed software is able to provide the conven-
tional aerotriangulation procedures with accurate/approx-
imate values of camera interior and exterior orientations 
parameters, and object space coordinates of points.

The developed software is a general purpose photo-
grammetric software which can be used for both aerial 
and close range photogrammetry applications.

This paper shows the necessity for the mathematical 
photogrammetric data for testing the photogrammetric 
methods and softwares.
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