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Multiple-end member spectral mixture analysis (MESMA) 
(Roberts et al., 1998). However,  the obtained fractional 
cover representation from these methods to provide visual 
information for users is still a challenge  for the scientists.

1. Background and related works

1.1. Fuzzy boundaries

The boundary of geographical phenomena is in crisp and 
fuzzy forms. The crisp boundaries can be prepared with 
an arbitrary precision depending on the data acquisition 
techniques. Fuzzy boundaries, unlike the crisp bounda-
ries, are not accurate lines, but they are as a transition 
zone. Crisp boundaries are mostly used for displaying 
human-made phenomena such as building boundary; 
whereas, the fuzzy boundaries are mostly based on the 
natural phenomena. Geographical information (including 
remote sensing data) always faced with imprecision and 
two phenomena boundaries cannot be determined clearly, 
which is considered as fuzzy boundaries. 
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Introduction

Satellite imagery is considered as one of the major spatial 
data sources to extract information for users. However, 
since the available satellite images are unclassified, it has 
always been one of the expert’s challenges in this field. 
Band combination, different types of image enhancement 
(e.g., band rationing, indices, filters and principal com-
ponent analysis) and image fusion are existing methods 
developed for satellite images representation enhancement 
for better understanding and extract information easily. In 
some cases, the satellite images (e.g. Landsat (30×30 m)) 
has an average spatial resolution and the ground surface 
coverage (urban areas, fuzzy boundaries) has high com-
plexity, therefore the sensor recorded response for each 
pixel is weighted combination of pure spectrum for any 
material in the instantaneous field of view (IFOV) of pixel. 

There are different methods for sub-pixel extraction 
in mixed pixels. Some common methods are as follows: 
Spectral mixed analysis (SMA) (Adams et al., 1995), Nor-
malized spectral mixed analysis (NSMA) (Wu, 2004) and 
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In classical classification logic, a pixel can only be as-
signed to particular coverage. In this technique, all phe-
nomena (even phenomena are not measured) are only 
assigned to one class, while being aware that each pixel 
can have more than a single value and may include dif-
ferent phenomena (mixed pixels). In applying of the data 
with uncertainty, the fuzzy sets are suitable instruments. 
In fuzzy classification, “pixel membership” is defined with 
different membership value in one class (Jensen, 2005). 
Ambiguity and uncertainty are considered equivalent to 
being fuzzy. Being fuzzy is a type of imprecision in de-
scriptive classes which cannot have defined boundaries 
due to different reasons. These imprecisely defined classes 
are called fuzzy sets (Burrough & Frank, 1996). 

1.2. Fuzzy boundary visualization

Visualization is a computer-aided process to depict infor-
mation on the screen. Geographical data representation, a 
specific type of visualization on digital maps, is classified 
in two classes: certain and uncertain map visualization 
(Barré, 2013). Most of the developed visualization tech-
niques are based on a precise hypothesis from informa-
tion, and there is no ambiguous information in the im-
age, which has a certain result. Uncertainty is difficult to 
perceive in traditional maps; as they are not expressed in a 
clear method (Zhang, 2008). As a result, the object nature 
specifies the type of visualization method.

A fuzzy spatial object in GIS is often considered for 
spatial, non-spatial (attribute) and temporal elements. 
Multiple-membership maps (sub-pixel) display more 
details and can provide better vision for GIS modeling 
than polygon maps. Membership maps are applicable for 
generating colorful maps (Hengl et al., 2002). However, a 
major challenge for planners to correctly determine some 
features when continuous features represented by a crisp 
boundary (Zhang, 2008). The accuracy and uncertainty 
of fuzzy maps cannot be directly quantified with indices 
developed for crisp boundary categorizations (Zlinszky & 
Kania, 2016). Hengl et al. (Hengl, 2003; Hengl et al., 2002, 
2004) proposed a technique for map visualization with 
multiple-membership value (mixed pixels) and presented 
uncertainty situations with spatial predictions of continu-
ous and crisp variables. They utilized models based on the 
Hue-Saturation-Intensity (HSI) color model and calcula-
tions using the color mixture (CM) concept. In this re-
search, K-means clustering technique is used for six land-
form parameters in the study area. The legend unit called 
Fuzzy- metric circular color legend, and two-dimensional 
legend is suggested to display the maps. Zhang (2008) 
presented techniques for visualization of the fuzzy objects 
using various combination of graphics and dynamic visu-
alization variable. The results indicate that spatial planners 
can be more aware of the fuzzy objects and uncertainty 
positions by animated representation. In 2013, Barré pro-
posed techniques for visualization of uncertainty positions 
(a case study of coastal boundaries) in his dissertation. 
Techniques such as gradients, transparency, and random 

points are suggested for these positions. Zlinszky and Ka-
nia (2016) proposed new techniques for improving the 
visualization of fuzzy classification maps based on ran-
dom forest techniques. He applied the alternative method 
called Hue-preserving rendering, which avoids generating 
new colors.

Sub-pixel mapping which is mostly referred as map-
ping with high resolution is a technic for estimation of 
the spatial distribution of land cover classes in sub-pixel 
scale (Atkinson, 1997). Soft classification can assign maps, 
which display different classes of land cover in a mixed 
pixel. Sub-pixel mapping can be considered as a post-
processing of soft classification (Foody, 2002). The key is-
sue with sub-pixel mapping is how to explain the spatial 
and temporal dependency of land cover classes (Atkin-
son, 2009). The output of sub-pixel information extraction 
models is fractional cover maps of interested class (end-
member), with membership values between zero (mean-
ing lack of a particular cover in a pixel) and one (meaning 
there is a pure pixel of a particular coverage). The obtained 
fractional cover can be displayed separately in continuous 
or combinational maps (Powell et al., 2007). Gong et al. 
(2015) used a two-dimensional color ramp (red, white and 
cyan) to display two fractional covers (land and marine 
vegetation) simultaneously on a map. Based on this color 
scale, the pure red related to the dense marine vegetation 
while the pure cyan related to the dense land vegetation. 
A composite of the red and cyan tones indicates different 
vegetation density with different mixed variations. Re-
schke and Hüttich (2014) used pixels with membership 
value of 50% and higher to display four continuous covers 
of land (marshland, mudflats, rivers/channels and water 
bodies) in wetland regions in a map. 

2. Study area and data

The study area is mangrove forests in the northwest of 
the Qeshm island, Hormozgan, Iran (Figure 1). Man-
grove forests play an important role in coastal areas, 
biogeochemical cycle and economic activity such as 
aquaculture and fishing (Thu & Populus, 2007). Man-
groves islands are the unique vegetation of tropical and 
subtropical intertidal lands with ecological significance 
(Peng et al., 2009). Mangrove systems in the North West 
of Qeshm Island exclusively composed of mangrove 
growing in the intertidal zone above the 3–6 meters tree 
height. Mangrove floor completely flooded only during 
the spring tide (Shahraki et  al., 2016). The tides occur 
twice a day with an intertidal range of 1 to 3 meters 
at low tide and 3 to 4 meters in spring tide (Reynolds, 
2002). According to the features listed, mangrove is an 
appropriate area to show fuzzy boundaries and phenom-
ena. Figure 1 shows the position of the study area, man-
grove photos and infrared color composite of Landsat 
8 imagery. Landsat imagery (obtained on June 8, 2016, 
from 160 passes and 41 rows) were used to sub-pixel fea-
ture extraction in mangrove forests.
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3. Approach and methods

3.1. Spectral Mixture Analysis (SMA)

Before any professional processing, a series of pre-pro-
cessing such as geometric, radiometric and atmospheric 
correction should be applied on satellite images. After 
preprocessing, SMA methods including two steps. First, 
select the appropriate endmember and then implement 
the SMA.

3.1.1. Endmember selection
The most important step in applying SMA is the selec-
tion of appropriate endmembers. There are two types 
of endmembers; “reference endmember” which is col-
lected in a laboratory or field setting using an imag-
ing spectrometer; and “image endmembers” which is 
derived from the image itself or other images. There 
are several ways to select endmembers of the image. 
Most common method for endmember selection is to 
extract spectra of pixels from homogeneous areas of 
known materials using high-resolution images (Myint & 
Okin, 2009), select endmember using two-dimensional 
plots (Small, 2005) and using pixel purity index (PPI) 

(Franke et al., 2009). Typically, a principal component 
(PC) transformation is utilized to facilitate the selec-
tion of image endmembers in multi-spectral satellite 
data such as Landsat series (Wu, 2004). Here, we used 
PC analysis on landsat8 images for select endmembers.  
After the transformation, spectral scatterplots (feature 
spaces) are generated, and the vertices of these plots are 
typically chosen as endmembers after verification with 
reference data.

3.1.2. Implementation of the SMA method
Almost every pixel of satellite images (especially in low 
and middle-resolution images), the signal recorded by 
a sensor includes reflectance from multiple land-cover 
components. The digital number (DN) for each pixel is 
the weighted sum of the pure spectra of each cover in the 
pixel’s IFOV. SMA method calculates the proportion of 
each endmember in given mixed pixel; in general, these 
are assumed to be correlated with the area covered by 
each material present. The output of SMA is a set of im-
ages representing the fractional cover of each endmember, 
with DN values typically scaled between zero and 1 (i.e., 
zero representing “not present” and 1 representing 100% 

Figure 1. a – Location of the study area; b – in situ photos of mangrove forests;  
c – infrared color composite image from Landsat 8
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cover). For a given pixel, SMA can be described as follows 
(Adams et al., 1986; Roberts et al., 1990):
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where DNi is the measured value of a pixel in band i in 
DNs recorded by the sensor or in units of radiance or re-
flectance, Fj is the fraction of endmember j present in the 
pixel’s IFOV, DNij is the value of the endmember j in band 
i, and ei is the residual or the difference between observed 
and modeled DNs for bandi. There are N bands in the 
dataset and K endmembers in the mixture model.
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i.e., the fraction of endmembers for each pixel must sum 
to 1 (or 100% cover). Per-pixel RMS error is effectively the 
mean residual across all bands, given by:
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3.2. Display of sub-pixel using RGB color model 

Digital remote sensor data are usually displayed using a 
Red-Green-Blue (RGB) color coordinate system, which is 
based on additive color theory and three primary colors 
(Jensen, 2005; Westland & Cheung, 2012). In RGB color 
model each color appears as spectral components of 
red, green and blue. The RGB color model is an additive 
color model in which red, green and blue light are added 
together in various ways to reproduce a broad array of 
colors. If a mixed pixel is containing three classes (A, B 
and C), and create an RGB color composite image using 
the fractional cover of each class, the percentage of each 
class in RGB color composite is calculated from following 
equations and illustrated as a chart shown in Figure 2.

100RClass A
R G B

= ⋅
+ +

;

100GClass B
R G B

= ⋅
+ +

;

100BClassC
R G B

= ⋅
+ +

.

4. Results and discussion

Regarding the existing coverage of the mangrove forests 
(water, vegetation cover, soil), three end-members were 
selected for the extraction of sub-pixels. Figure 3 shows 
the reflection of three pure end-members with the reflec-
tion of mixed pixels. The percentage of each land cover in 
pixels is determined based on how similar the reflection of 
other pixels is to the reflection of the end-members’ pixels, 
which are entered to the SMA model by the user.

For example, if the reflection of pixel X is linearly 60 
percent similar to the reflection of pure soil, 30 percent 
similar to the reflection of pure vegetation cover, and 10 
percent similar to the reflection of pure water, then SMA 
model considers these percentages as a proportion of each 
coverage in that pixel.
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Figure 3. Spectral signatures of the three selected endmembers 
with reflection of mixed pixels

The output of SMA model is the images of fraction 
cover, equal to the number of presented input end-mem-
bers. Fraction images of a special coverage are a continu-
ous value between zero (meaning the absence of special 
coverage on one pixel) and one, which means a pure pixel 
of special coverage. 

In this study, three end-members, as representative of 
land covers present in the region were introduced to the 
model; and output is three images of fraction image with 
an image that shows the RMSE level of the model. Figure 4 
shows fraction vegetation cover (FVC), fraction soil cover 
(FSC), and fraction water cover (FWC) along with RMSE. 
To improve the readability and clarity, each pixel of the 
image in a pure coverage was shown as a percentage of 
that coverage.

5. Fuzzy display of mangrove forests

The boundaries of fuzzy phenomena cannot be clearly 
displayed because the border of any phenomenon is in 
the form of the transition area. One of the most common 

Figure 2. Graphical chart of transformation fractional images 
to RGB color component
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methods of displaying fuzzy borders is display with mem-
bership grade, in which each pixel is given a grade be-
tween 1 and 0. That means when we move from a special 
cover toward the borders, the membership grade of pixels 
to that cover reduces and tends to zero, while in a pixel 
with pure cover, membership grade equals one.

Figure 5 shows the fraction vegetation cover in the 
areas of mangrove forests and is displayed with a color 
range from green (100% membership grade) to purple 
(0% membership grade) which is a method to display con-
tinuous areas. In continuous areas, the values are variable, 
and each pixel has one value. Value changes are gradual. 
In this figure, transition areas are displayed continuously, 
and the changes are gradual from areas with high mem-
bership grade (100%) to low membership grades (zero). 

Fraction cover images can also be displayed with dis-
crete areas. In this respect, continuous areas are divided into 
a series of categories using different methods, and in each 
category, the values are equal and displayed with one color.

Figure 6 shows membership of pixels to fraction vege-
tation cover in discrete areas of mangrove forests at a class 
distance of 10 percent. According to this figure, member-
ship grade of 80 to 100% in some areas is not seen, and 
the width of transition areas is different in every category.

Figure 4. The images of output fraction cover of SMA model: a – fraction vegetation cover;  
b – fraction Soil; c – fraction Water; d – RMSE level of the model

Figure. 5. Display of continuous fraction  
vegetation cover
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Figure 6. Display of discrete fraction vegetation cover

Fuzzy borders’ displays with methods shown in Fig-
ures 5 and 6 can be used to display a fuzzy phenomenon 
using a raster-based method. But if we want to display 
more of a fuzzy phenomenon, or fuzzy areas altogether, 
another solution will be needed. One of these solutions is 
using the theory of additive colors mixing. In this theory, 
all colors are created by combining the three primary 

colors of red, green and blue. Therefore, two or three ras-
ter layers of fraction cover images can be displayed simul-
taneously on the map using this theory. Colors appeared 
in the final map represent a certain percentage of each 
cover in a particular pixel (relations 4 to 6). 

Figure 7 displays color combinations of two or three cov-
ers in the area on the same scale of Figures 5 and 6. Here, 
color images were created by assigning fraction cover images 
with grayscale to one of the colors red, green and blue in 
RGB color model (Figure 7a). In some images, only two cov-
ers were used to combine the output color (Figure 7b, c, and 
d). Colors seen in the output image represent a percentage 
of each of the three covers according to mentioned relations.

Also in discrete fields, RGB color combinations can be 
used for display. In discrete fields, every category defines 
the type of output color according to the value it bears; 
and the percentage of each cover in color images can be 
specified using relations 4 to 6. Figure 8 shows RGB color 
images from discrete fields.

An important issue here, also seen in the display of RGB 
color combination of sub-pixel images, is the map guide 
issue. In conventional displays of satellite images by RGB 
color combination method, different bands are combined 
for better visualization of the effects on the Earth’s surface. 

The outcome of this process gives a qualitatively good 
insight to the user to visually separate the objects on the 
Earth’s surface. But in showing fuzzy sub-pixel objects, 
our data is quantitative, and each data displays a percent-
age of a special cover on a pixel. So a guide is needed 
which can provide the user with both qualitative and 

Figure 7. RGB displays of (vegetation, water, and soil) cover 
in the continuous area: a – RGB color combination (soil: red, 

vegetation: green and water: blue); b – RGB color combination 
(soil: off, vegetation: green and water: blue); c – RGB color 

combination (soil: red, vegetation: green and water: off);  
d – RGB color combination (soil: red, vegetation:  

off and water: blue)

Figure 8. RGB displays of (vegetation, water, and soil) cover 
in the Discrete area: a – RGB color combination (soil: red, 

vegetation: green and water: blue); b – RGB color combination 
(soil: off, vegetation: green and water: blue); c – RGB color 

combination (soil: red, vegetation: green and water: off);  
d – RGB color combination (soil: red, vegetation:  

off and water: blue)
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quantitative information. That requires the color guide 
to be representative of the special cover (for example, the 
green color range for the vegetation cover), and to use a 
special number range for each color combination which 
would represent the percentage of different covers.

Figure 9 shows the Gradual changes of the primary 
color combinations. The numbers 0 to 255 of color com-
binations can be turned into number range of 0 to 100 
using relations 4 to 6 and can be used as a guide for color 
images resulting from mixed pixels.

Since the studied area in this research is mangrove 
forests, and in these areas, there are three covers of veg-
etation, soil, and water in mixed pixels, then RGB color 

cube was used as a guide. In this guide, primary colors of 
red, green and blue represent the membership grades of 
100% for soil, vegetation and water covers, respectively. 
Turquoise color shows pixels with 50 percent vegetation 
and 50 percent water cover. Purple and yellow colors show 
pixels with 50% water and 50% soil, and 50% soil with 
50% vegetation, respectively. White color shows pixels 
with a membership equal to 33 percent of each three cov-
ers, and since the sum of outputs of SMA model equals 
1, therefore there is no pixel which displays no color, and 
the black color does not exist in the created color image. 

Figure 10 shows the RGB color image of the three cov-
ers present in the entire region, as well as the RGB cube as 

Figure 9. Gradual changes in the combination of the primary colors

Figure 10. RGB color image from three covers in the entire region with RGB cube as a guide
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a guide. By looking at the map guide, the user not only can 
identify the present covers, but also can have an insight of 
the percentage of mixed pixels in the area.

Conclusions

This study aimed to provide a method for improving the 
visualization of satellite images with mixed pixels as well 
as a better display and understanding of the fuzzy phe-
nomena and different classes of ground cover. A com-
mon method of visualizing the digital satellite images is 
using RGB-color coordinates system based on additive 
color theory and the three primary colors red, green and 
blue.

In this method, images for different bands are placed 
on the banks of colors, red, blue and green, for a color 
image to be created for visual interpretation. Typical color 
combinations include true color combination, infrared 
color combination, and false color combinations. The re-
sulting color combinations contain qualitative information 
from a certain area and don’t provide the users with quan-
titative information. 

A method of extracting quantitative information from 
land covers, is the practice of sub-pixel methods on satel-
lite images, the output of which is continuous images from 
a special cover. Visualization of multiple fraction cover 
maps from one area is still challenging. 

As discussed earlier, borders of fuzzy phenomena 
cannot be clearly demonstrated. Thus, a continuous and 
discrete display of different covers on earth’s surface in 
areas of mangrove forests (water, soil and vegetation cov-
er) which are considered part of fuzzy phenomena was 
provided using the RGB color space and the membership 
grade of each class in a particular pixel.

Adopting additive RGB color combination theory, im-
ages of two or three raster classes from fraction cover im-
ages were displayed simultaneously on the map, and the 
obtained colors are a certain percentage of each cover in 
a specific pixel.

To fix and have a better visual perception of the ex-
tracted maps by users, a guide was used in the form of 
RGB color cube. One of the benefits of using this color 
cube in map legend is to shed more light on the available 
covers in images’ pixels, and the percentage of mixed pix-
els, which is perfectly tangible and visible for users.
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