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the global reconstruction of GRACE satellite data. Using 
GRACE reconstruction such as TWS, it has been shown 
that this type of data can be used to assess the proficiency 
of the decade-long prediction experiments available from 
various models of the Earth system. Khaki (2020) inves-
tigated the efficiency of GRACE TWS into hydrological 
models; the results showed that GRACE gaps could be 
filled by hydrological models. Sun et al. (2019) tested the 
combination of physical modeling and deep learning for 
a fusion of GRACE satellite data. The results show that 
the convolutional neural network models significantly im-
prove GRACE TWS compliance, with an average country 
correlation coefficient of 0.94 and an efficient Nash-Sutcliff 
improvement of 14%.

TWS research is need of intelligent clustering to de-
termine the water displacement behavior of global differ-
ent regions and to conduct analyzes and studies based on 
it. Due to a large amount of data and the complexity of 
the results, it is necessary to use a tool such as PCA-SOM 
to simplify the output to make the correct interpretation. 
SOM is a kind of artificial neural network that has found 
many applications in recent years in the fields of engineer-
ing to medicine, biology and economics (Acevedo-Acosta 
et  al., 2021; Sorkhabi et  al., 2022b; Sorkhabi & Milani, 
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Introduction

The GRACE mission was launched on March 17, 2002 
(Liu et  al., 2020). In more than 15 years, GRACE has 
provided groundbreaking observations of the world that 
have significantly contributed to our understanding of 
large-scale changes in polar ice, soil moisture, TWS and 
groundwater (Sasgen et al., 2020; Sorkhabi et al., 2022a). 
The GRACE-FO was launched on May 22, 2018, and its 
main mission goal is to continue tracking mass changes, 
especially water-related issues. One of the parameters ob-
tained from GRACE observations is TWS that makes it 
possible to study water displacement in Earth’s surface 
throughout the globe, which is of great importance in en-
vironmental and climate studies (Landerer et al., 2020).

Xu et  al. (2019) are investigated spatio-temporal 
changes in China’s groundwater storage from GRACE 
satellites and potential drivers. Six major TWS change re-
gions have been identified, including negative trends in 
northwest China, northern China and the southeastern 
Tibetan plateau, positive trends in western China, north-
eastern China, and southern China. Jensen et al. (2020) 
are examined the assessment TWS at the 10-year cou-
pled model intercomparison project phase 5 (CMIP5) by 
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2022). The SOM uses a competitive learning method for 
training and has been developed based on specific fea-
tures of the human brain (Tan et al., 2019). The novelty 
of this research is the use of PCA-SOM to cluster areas 
with similar behavior. These Outputs help to analyze the 
overall water displacement behavior of the region with 
the same behaviors. In this study, GRACE-FO data were 
used to estimate TWS and then PCA-SOM was utilized 
for clustering.

1. Methods

1.1. Gravity recovery and climate experiment follow 
on (GRACE-FO)

The GRACE-FO project, a satellite mission designed to 
determine the Earth’s gravitational field. The GRACE-FO 
mission was launched on May 22, 2018, with a SpaceX 
Falcon 9 rocket. GRACE-FO is a gravitational satellite and 
continuation of the GRACE mission and provides TWS 
information by measuring surface density changes that are 
mainly due to water displacement (Landerer et al., 2020). 
Principles of operation GRACE-FO satellite is a measure 
of the distance changes caused by the gravity of the front 
satellite with a laser. The TWS observed by GRACE-FO 
consists of the following formula.

TWS = Pe – Ev – Sr,        (1)

where Pe is perception, Ev is evaporation and Sr is surface 
runoff (Jiang et  al., 2014). GRACE-FO observations are 
used in hydrology and water resources management.

1.2. Principal component analysis (PCA)

PCA is simply a way to extract important variables (in 
the form of components) from a large set of variables in 
data. PCA extracts a low-dimensional set of features from 
a high-dimensional set to help record more information 
with fewer variables (Godah, 2019). In this way, data vis-
ualization also becomes more meaningful. PCA is more 
useful when dealing with data with three or more dimen-
sions. This method is always applied to the covariance or 
correlation matrix (Bryant et  al., 2020); this means that 
the data must be numerical and standardized. The first 
function of this method is to determine the factors di-
rectly from the correlation matrix without estimating the 
commonalities. 

In this research, the PCA method has been used for 
easier visual analysis and signal amplification and noise 
reduction. In this method, to explain the maximum 
amount of variance variables, their linear composition is 
estimated. Thus, the first component explains the great-
est variance of the variables (Godah, 2019). The second 
component then explains the maximum amount of vari-
ance remaining in the variables after the first component 
and so on. Another function of PCA is to provide a set of 
measured variables that converts orthogonal linear combi-
nations with maximum variance (Li et al., 2016).

1.3. Self organization map (SOM)

SOM is an efficient tool for data clustering and can turn 
nonlinear statistical relationships between input data into 
simple geometric relationships. The computations of this 
method are a non-parametric and non-variable regression 
process in which the specific set regression of model vec-
tors into observable vector space. In an algorithmic form, 
clusters are organized in a competitive learning process 
relative to the input variables (Tan et al., 2019).

In this study, using GRACE-FO observations, TWS 
values were calculated and then clustered by SOM into 
4 categories. SOM is an invariant regression relation that 
maps a set of m nm R∈  vectors to the space of nx R∈  
vectors through steps. At each stage of the training, an 
x-sample vector is randomly selected from the input data 
set, and the distances between x and all prototype vectors 
are calculated. Based on minimizing the distance between 
one sample and other samples, the best matching unit is 
calculated by Equation 2 (Gholami et al., 2020).

{ }– min – .b i ix m x m=  (2)

Therefore, SOM is like a topology map that allows the 
display, interpretation and arrangement of clustering and 
can map the space degree of the input data to the two-
dimensional network (Tan et al., 2019).

2. Results and discussion

In this study, to achieve TWS, the process of Liu et  al. 
(2020) has been used. Figure 1a shows the TWS trend 
from 1 June 2018 to 31 May 2020. According to TWS re-
sults in western and southern Greenland, parts of Ant-
arctica and Myanmar are trending around –0.2 m/year. 
Negative TWS trends in areas where there is ice, such as 
Greenland and Antarctica, indicate ice melting at rates of 
more than 0.20 m/year. TWS trends are around –0.04 m/
year in the Caspian Sea, Eastern Europe, Alaska, South 
America, Argentina, Western Australia, Eastern China, 
Uzbekistan, Kyrgyzstan, northern South Africa, parts 
of Antarctica and northeastern Russia. TWS trends are 
around 0.14 in the Amazon and south-central Africa.

Figure 1b shows the PCA of TWS with 3 components 
from 1 June 2018 to 31 May 2020. PCA has been able to 
amplify the signal and mitigate noise. The results of PCA 
are similar to the results of the annual trend, except that 
in some areas, such as Antarctica, the signal is amplified 
and the annual rate is increased. PCA has also detected a 
declining TWS signal in Central Africa.

Figure 2a shows architecture of SOM. Inputs are 23 
months PCA of TWS. The SOM output is selected as 4 
clusters. Figure 2b shows the cluster neighbor distance; 
the cluster with the dark color showing the long distance 
and the cluster with light color showing the short distance. 
According to the results of clusters 3 and 4 are long dis-
tances, clusters 1 and 2 are close distances and the rest 
of the clusters are medium distances. Figure 2c shows 
the SOM sample hits, with cluster 4 having the highest 
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Figure 1. a – TWS annual trend (m/year) from 1 June 2018 to 31 May 2020; b – PCA of TWS (m) with 3 components

Figure 2. a – Architecture of SOM; b – SOM neighbor distance; 
c – SOM sample hits; d – Percentage of each cluster

number and cluster 3 having the lowest number. Figure 
2d shows percentage of each cluster that the first cluster 
has the highest percentage. Table 1 shows the statistical 
characteristics of the results.

Table 1. Statistical characteristics of the results

Parameter Trend (m/year) PCA (m)

Minimum –0.204 –0.263
Maximum 0.141 0.318
Mean –0.001 –0.001
Standard deviation 0.036 0.051

Figure 3 shows the SOM cluster. According to the 
SOM clustering, the cluster 4 areas are marked in red, 
which are west of Greenland and part of Antarctica, which 

Figure 3. SOM cluster
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indicates the loss of TWS or melting ice. Cluster 3 areas 
are marked in orange as part of Alaska, Greenland, Ant-
arctica, North Pole, Caspian Sea, Turkey, Pakistan, North 
India, East China, East Africa and South Africa, and the 
TWS loss is secondary. Clusters 2 are marked in yellow as 
icy areas found in western Greenland, parts of Antarctica, 
and parts of Alaska, indicating TWS loss or melting ice. 
Cluster 2 is not much different from cluster 4, but it is less 
important. Cluster 1 is marked in blue, which represents 
more than 80% of all clusters, in which the TWS cluster 
has not changed much and is fixed. Since GRACE-FO data 
was used for two years, seasonal effects, noise, measure-
ment error were reduced and the main and identical water 
displacement behavior of the regions was identified. PCA-
SOM clustering provides an easy interpretation of regions 
that can identify regions with similar characteristics.

Figure 4 shows SOM Cluster for an important region. 
Western Greenland and parts of Antarctica have the most 
critical patterns. These areas are primarily sensitive to 
other regions due to ice melting in the GRACE-FO data. 
The pattern identified by SOM easily identifies insensitive 
areas and can inform macro decision makers about global 
conditions on a map. Melting ice is particularly important 
in western Greenland and parts of Antarctica due to rising 

sea levels in coastal areas. Other critical areas identified in 
Class 3 require further studies to determine the cause of 
the decline in TWS due to human or natural intervention.

One of the main applications of PCA is in dimension-
ality reduction operation. The PCA, as its name implies, 
can identify key components and help analyze a series of 
more valuable features rather than all the features. The 
PCA extracts those features that are more valuable. The 
basic premise in PCA is a linear relationship if nonlinear 
data is possible. The disadvantage of the SOM method is 
the weight of the neurons and the number of clusters in-
puts. The advantages of SOM-PCA are as follows:

 – A powerful way to reduce the size of the data without 
losing a lot of information.

 – It is a simple method and has a wide application in 
various fields of science.

 – The principal components are always perpendicular 
to each other, so the problem of the variables correla-
tion in this method does not matter.

 – The PCA-SOM method can tolerate up to 25% of 
missing data.

 – The PCA-SOM method provides a less dimensional 
view than larger dimensional data. It reveals the pat-
tern of multidimensional data in two dimensions. 

Conclusions

In this study, the biennial clustering of GRACE-FO TWS 
with PCA-SOM is investigated. West Greenland and Ant-
arctica are in the TWS critical category at rates of about 
–0.2 cm/year. In terms of climate change, studying multi-
year data can reveal the TWS behavior of areas like Green-
land. The results show that the complexity of interpreting 
outputs is facilitated by SOM. One of the interesting re-
sults of TWS is the Caspian Sea, which is highly consistent 
with research based on sea-level measurements (Medve-
dev et al., 2019; Memarian Sorkhabi et al., 2021). PCA has 
been able to amplify the signal in some areas of Antarctica 
and also reveal the declining rate of TWS in Central Af-
rica. The interpretation ease of complex observation out-
puts provides the tools to easily make global and regional 
decisions and planning. The PCA-SOM method has been 
able to identify areas where there have been few or con-
stant changes to the TWS (which is more than 80%) re-
ducing this concern. Critical areas are also easily detected 
with SOM. Further studies can be performed to predict 
changes in TWS with back propagations of artificial neu-
ral networks and deep learning.
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