
Copyright © 2022 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Geodesy and Cartography
ISSN 2029-6991 / eISSN 2029-7009

2022 Volume 48 Issue 3: 124–133

https://doi.org/10.3846/gac.2022.14854

*Corresponding author. E-mail: aaabeshr@mans.edu.eg

points situated on its axis (Charco et al., 2007). The cone 
is also limited in terms of space and location gravitating 
cone (Hilst, 2004; Mazurov & Pankrushin, 2006). The 
study of a complex nature of the system as the changing 
of Earth’s surface with time self-organizing is a very urgent 
and important task for geodynamic studies. It needs for a 
successful solution comprehensive observations of various 
kinds with the mathematical treatment. A number of ana-
lytical and numerical mathematical models, available in 
the literature, can be used to fit ground deformation and 
gravity data to infer source location, depth and density as 
found in (Shandarin & Sathyaprakash, 1996; Battaglia & 
Hill, 2009).

Understanding the local gravitational field and its ac-
counting is important for monitoring the dynamic earth 
activity (like, volcanic) and correct interpretation of geo-
detic observations of various kinds (Stepanova et al., 2021; 
Mazurov & Pankrushin, 2006; Charco et  al., 2007). De-
termination of the gravity field and its transforms are not 
trivial task, and often, to achieve the goal of the gravity 
should be make a combination of analytical descriptions 
of some elementary spatial bodies with subsequent finite 
element partition of a complex element of relief. Many 
bodies of simple shape and a constant density have an ef-
fect on the force of gravity, expressed analytically in closed 
form. For a sphere of radius R with a constant density or 
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Introduction

Historically, gravity has played a central role in the studies 
of dynamic processes in geodetic applications and Earth’s 
interior or surface motion and is also important in explo-
ration geophysics (Yin & Sneeuw, 2021; Hilst, 2004; Al-
Garni, 2011). Therefore, the correct interpretation of the 
desired dynamic geodetic observations is needed to build 
the scientific basis for the study of solid Earth processes. 
Redistribution of large amounts of rocks and ores is a sig-
nificant change in the gravity field, and underestimation 
of the impact of movable weight by leveling which can be 
the cause of the misconception about the picture and the 
vertical movements influence on the results of geodetic 
measurements (Charco et al., 2007). 

The modern finite element of earth shapes generally 
uses dynamical models which consists of gravitational 
field of larger bodies and often includes self-gravitation 
between elements. If bodies are gravitating to represent 
as an infinitely extended in a horizontal plane then the 
simplified formula are needed. It is possible in the case 
of the horizontal dimensions of the body twice its depth. 
This allows the use of analytical model expressed “infinite” 
flat layer. There are examples of an analytical approach to 
analysis the influence of gravitating bodies in simple form, 
for example vertical cylinder. But formula works only for 
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consists of concentric layers, the known Equation as fol-
lows:

3
2 2 2 3/2

4 ,
3 ( )

Zg G R
x y z

∆ = π× × × ∆ρ×
+ +

 (1)

where: ∆ρ is the difference between the density of the per-
turbing body and the density of its environment; G is the 
gravitational constant; and x, y, z are the coordinates of 
the center of the sphere, often these are called point body 
gravitating masses.

When interpreting the results of observations of Earth’s 
surface movements, it should take into consideration the 
changes in the gravity field and the approximation gravi-
tating in the study area. To achieve the goal of modeling, 
the complexity of the model selection should be based on 
the accuracy of the experimental data. A model that ap-
proximates the gravitational influence of a relief to high-
precision geodetic and gravimetric measurements at their 
complex mathematical treatment should be consistent 
with the chosen model of a gravitating body. In solving 
the direct problems in the results of geodetic measure-
ments (leveling, angular measurement), the observations 
must be corrected for deviation of the plumb line. For this 
purpose, most researchers consider gravitating body set as 
a collection of elementary bodies such as cubes. The net 
effect of all gravitating body made up of the sum effects 
of each elementary cube. However, the main objective of 
this paper is to present two analytical models to simplify 
the gravitation calculations which can be used to estimate 
the Earth’s surface motion.

1. Analysis models 

The analysis of various analytical models and approxi-
mation calculation are mostly used to describe the local 
gravitating objects. To determine the gravitational charac-
teristics of objects, several analytical models of elementary 
spatial bodies are applied such as: homogeneous sphere, 
two-dimensional horizontal layer, spherical polyhedron, 
cuboids, spherical prisms, cylindrical prisms and others. 

Researches (Mazurov et  al., 2004a; Mazurov, 2007) 
have examples of the solution of inverse problems as a 
result of joint mathematical processing of multiple geo-
detic and gravimetric observations on the Earth’s surface 

and are evaluating not only the coordinates of points and 
their displacements, but also the masses gravitating bod-
ies, as well as changes of these masses. The incorrectness 
of inverse problems is the inability to find the unique solu-
tion of the integral equation. These examples are given in 
relation of the volcanic eruption and the preparation for 
it. Gravitating bodies were spherical deep chamber of the 
center of volcano and its cone surface.

Suffice typical elementary, which forms the body to 
the earth’s surface, is a relief cone or generally a truncated 
cone. In addition to the natural environment of volcanoes, 
it may be individual components of mountain ranges. In 
the field of man-made, we have not only the cone-shaped 
elevation, but also tapered recess (Mazurov, 2007). Open 
mining space of rocks is generated conical that are, for 
example, kimberlitic deposits. Development of the dia-
mond deposit Mir (Yakutia) has led to the formation of 
a cone-shaped quarry depth of 520 meters. Mould boards 
are often truncated cones.

1.1. Sphere models 

Cone gravitating body was approximated by a sphere (one 
dot weight) (Mazurov et al., 2004b). It will be quite rea-
sonable to clarify approximating cone model by increasing 
the number of point masses. But it is desirable that the 
number of estimated parameters remains the minimum 
required. This will meet the requirements of larger redun-
dancy measurement, which is required during mathemati-
cal treatment. For example, suppose that the estimated pa-
rameters will be the total mass of the cone, but dispersed 
in space in a certain way (five points) (Figure 1).

It is necessary to divide a cone into five coextensive 
parts to find the coordinates of the gravity center. The 
number of coextensive parts may not be five coextensive 
parts only, but it can be divided more than five based on 
the calculations area and the required accuracy. 

The steps of this model can be divided as follows: 
Step 1. Horizontal plane clipped the top truncated 

cone volume of one-fifth of the total volume of the cone 
as shown in Figures 1 and 2; 

Step 2. Lower truncated cone was divided into four 
quadrants by two vertical mutually perpendicular planes 
as shown in Figure 2b. 

Figure 1. Truncated cone and the approximation model of its gravitational influence:  
a – a truncated cone; b – a single point model; c – five point model

a) b) c)
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Assume: R1 is the radius of the lower base, r is radius 
of the upper base and h1 is height of the cone.

From Figure 2, it can be calculated the radius R2 of 
the horizontal section and elevation of the upper cone, as 
shown on the following steps. Also, we can be used the 
Eqs (2) to (3) to calculate the volume of a truncated cone 
for the source V1, and upper V2 , respectively, after cutting 
a horizontal plane as represented in Eqs (2) and (3):

1 2 2
1 1 1( );

3
h

V R r R r
π

= + +  (2)

2 2 2
2 2 2( ).

3
h

V R r R r
π

= + +  (3)

In this study, the cone was divided into five bodies 
of equal volume. Taking into account that 2 1(1/ 5) .V V=  
Therefore, If we consider the image of the cone section 
vertical plane as shown in Figure 3, the sides of the tri-
angle relationship can be calculated based on the follow-
ing equation:

Figure 3. Cross-section of the cone vertically
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Therefore, the volumes of truncated cones can also be 
submitted via the difference between the radiuses of the 
cubes. Making the substitution h2 into the Eq. (3), then 
the volume V2 can be calculated as follows:
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(6)

Then:

3 3 3 3
2 1

1 ( ).
5

R r R r− = −

Hence:

3 3 332 1
1 ( ) .
5

R R r r= − +   (7)

Now, it is possible to determine analytically the coor-
dinates of the gravity center of the upper truncated cone. 
For this purpose, we are used the classical approaches of 
the strength theory of materials to the amount of such 
calculations through the static moments of elementary 
geometric shapes (rectangle, triangle, circle sector). The 
vertical section of the truncated cone is trapezoid, which 
can be divided into two symmetric rectangular trapezi-
ums. A rectangular trapezoid can be represented by a 
combination of rectangle and triangle. From the result of 
dividing, the sum of the static moments of the figures for 
the amount of space will be coordinates of the center of 
the gravity. From the trapeze center of gravity, the z direc-
tion coordinates can be calculated as follows:

In case of x = 0, therefore:
2 2
2 2 2

2 2
2

( )
2 6 .

( )
2

rh R r h

Z
R r h

rh

−
+

=
−

+
 (8)

While with four lower volume sectors, the process of 
coordinates calculation will be proceed as follows: for a 
90-degree sector of the symmetry, plane will be held at 
an angle of 45°. The cross-section of the plane will be a 
rectangular trapezoid; we can present a combination of 
a rectangle and a triangle to compute the area of figures 
S1 – rectangle, S2 – triangle as follows:

1 2 1 2( )S R h h= −  and

2 1 2 1 20.5 ( ) ( ).S h h R R= × − × −  (9)

Therefore, the coordinates of the center of gravity of 
the whole trapeze can be calculated as follows:

Figure 2. Truncated cone and its volume division into five equal parts 

a) b)
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The radius of the horizontal section of the cone at a 
height equal Z′  is determined as:

3 1 1 2
1 2

( ) .zR R R R
h h

′
= − −

−
     (12)

Let’s find coordinates of the centre of gravity from a 
quarter of this section. It is a quarter of a circle with ra-
dius R3. Taking into account the equation of a circle, the 
coordinates can be calculated as follows:

2 2
33
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4
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−

= = =
ππ

∫ ∫
  (13)

Table 1 presents the formula calculating the coordi-
nates of the centers of gravity of all five equals gravitating 
mass of a truncated cone in the coordinate system with 
the origin at the center of the lower base.

Table 1. The coordinates of the centers of gravity point masses

Mass 1 Mass 2 Mass 3 Mass 4 Mass 5

X 0 xc –xc –xc xc

Y 0 yc yc –yc –yc

Z h1 – h2 + Z z′ z′ z′ z′

Therefore, the gravity can be calculated after deter-
mining the coordinates of gravity point masses based on 
Eq. (1), and the next section represents an example for the 
gravity calculation based on these formulas. 

Observations analysis
Figure 4 illustrates the experimental works for the leveling 
observations of cone model. On a flat surface (local por-
tion) with the value of the force of gravity 0 980g =  Gal 
appears anomalous gravitating mass M in the shape 
of a truncated cone with the lower base of radius R, 
the radius r of the upper base and a height h, a density 

3.2.63 g/cmδ = This causes a change to the gravity vec-
tor 0g n the surrounding space. At each point, the grav-
ity change is different 1, , .A B

M M Mg g g The consequence of 
the appearance of abnormal mass M is also a plumb line 

1
Mμ  at the state leveling, which, in turn, causes the dis-

placement of the bubble level of the device. After bringing 
it into the center of the sighting axis leveling will show 
a report Ma  on the back staff and Mb  front staff. The 

excess ,A B
M MMh a b= −  will be different from the excess 

measured ,
0 0 0
A Bh a b= −  before the abnormal mass M by 

the amount , , ,
0 .A B A B A B

M Mh h hδ = −

Figure 4. The first station leveling

Procedure and results of the numerical experiment are 
presented as follows:

For a truncated cone with the geometrical character-
istics of R = 500 m, r = 200 m, h = 500 m, its volume (V) 
will equal 0.204 km3, with homogeneity of rocks with a 
density δ = 2.63 g / cm3 mass (M) = 5.37×108 Tones. It was 
modeled leveling line from the base of the truncated cone, 
1  km in length consisting of ten stations in 100 meters 
from each other. Staff distances 50 meters. Figure 4 shows 
the first station with differences between staff position at 
A and staff position at B was 100 m. in addition, at the in-
stallation site leveling, but not at the height of the device, 
and in the XY plane. Simulated procedure was assumed 
to be carried out for determining the absolute values of 
the force of gravity. 

In this example, the random errors are not introduced 
only methodological errors are evaluated. The results of 
differences of the gravity from one to five point’s approxi-
mation models are illustrated in Table 2. 

This data for comparison was obtained after a com-
putational experiment using the classic formula of 
physical geodesy and gravimetric Hofmann & Moritz, 
2006).

From Table 2, it can be seen that the difference be-
tween the single-point and five-point model in deter-
mining the gravity are up to 0.1 μGal. In addition, the 
difference in close proximity to the cone on the leveling 
of excess are estimated up to 0.2 mm at 1 km. This 
difference is insignificant for the horizontal angle. The 
difference in the plumb line is 0.1′′, it is for the cone 
with the above geometric parameters. For the rare larger 
cone gravitating bodies, the differences between single-
point and five-point models are shown on a large scale. 
From these results, it can be concluded that the descrip-
tion of the local gravitational field is improved com-
pared with existing methods by about 3–4% for local 
objects with dimensions of territory about 20–100 km2 
and mountain and foothill terrain.
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1.2. Cone sector model 

Based on the analysis of the material to determine the 
Earth’s gravitational field, gravitational potential, normal 
building components plumb lines by reducing the meas-
ured gravitational field and gravity anomalies, conclusions 
are required about the need to consider the characteristics 
of gravity when performing high-precision geodetic and 
gravimetric work as their the effect is comparable with the 
accumulated measurement errors. For the unambiguous 
interpretation of the observed changes of gravity, heights 
are needing to be measured, at least in some of the control 
points to detect changes in gravity at local scales associ-
ated with geodynamic and technological processes in the 
subsurface layers of the lead re-gravimetric observations, 
with which you can identify the influence of gravity of the 
masses on the geodetic measurements. The advantage of 
using the box model is methodically improved the defi-
nition of gravitational characteristics of the natural and 
man-made objects. The basis for this improvement is its 
use of more precise analytical mathematical patterns for 
gravity that explicitly take into account the influence of 
the characteristics of each of the box analytic integral for-
mula, which excludes some methodological errors.

Determination of gravitational characteristics of lo-
cal natural and man-made objects on the finite element 
model of the surface topography allows more detailed ac-
count in the design of geodetic networks, organization of 
field work and the subsequent interpretation of the results 
of geodetic and gravimetric observations. In this paper, we 
analyzed the influence of the gravitational model of ap-
proximation cone-shaped relief, shown developed method 
of determining the characteristics of gravity and made it 
to the approbation of the simulated and real objects. De-
velopment of methods for determining the characteristics 
of gravity based on the model of a circular cone with a 
base radius R, height H (Figure 5), the density of rocks 
Δρ. This was considered a local area of the earth surface, 
which has a conical gravitating mass height of 750 m, the 
radius of the base reserves of 450 m and density of rocks 
is 2.63 g/cm3. These values of the gravitational potential, 
gravity, plumb lines around a cone are using for a trun-
cated cone space. The truncated cone is divided into six 
layers in height, and the cone  – 10 layers. Each of the 
layers is divided into 60 degree sectors. Then, each sec-
tor is divided into a cone 20, 18, 16, 14, 12, 10, 8, 6, 4, 2 
zones and a truncated cone  20, 18, 16, 14, 12, 10 zones as 

Table 2. Differences in the plumb line, gravity and leveling excesses, one-point and five-point  
approximated model of the cone for the leveling

Station number  (i) 1 2 3 4 5 6 7 8 9 10

Coordinate X (m) 550 650 750 850 950 1050 1150 1250 1350 1450
Deflection of the vertical
(5 point) – (1 point)″ –0.10 –0.08 –0.05 –0.04 –0.02 –0.02 –0.01 –0.01 –0.01 –0.00

g (5 point) – (1 point) μGal –75 –24 –52 –54 –48 –41 –35 –29 –24 –20
h (1 point) mm 0.98 0.74 0.58 0.46 0.38 0.31 0.26 0.22 0.19 0.17
h (5 point) mm 1.03 0.78 0.60 0.48 0.39 0.32 0.27 0.23 0.20 0.17
h (5 point) – h (1 point) mm 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.00 0.00 0.00

Figure 5. Vertical section of the cone
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elevation of each layer other (Figure 6). The computational 
experiment gravitational potential approximated cone sys-
tem comprising 6600 material points, and the potential of 
a truncated cone  5400 system of material points as shown 
in Figure 5. Then, the value of the gravitational potential 

C
KT ()aused by these cones at any point C of the surround-

ing space will be found.
The following steps are proposed for computing the 

local gravity based of cone model:
1. Cone horizontal planes are divided by K bodies with 

base radius, starting from the bottom, r1, r2, …, rK. The 
height of each cone is h = H/K. Figure 5 shows a vertical 
section of the cone to K = 10.

2. Each k-th layer is tapered with a radius ri and the 
lower base of the upper base radius ri+1 is replaced by 
its approximating the k-th layer of the same cylindrical 
height h under the condition that their volumes:

1( ; ) ( )k i i cylinder kV r r V r+ =     (14)
or

2 2
1 1

1 ( ) .3 i i i i kh r r r r hr+ +π + + = π    (15)

Therefore, the radius of the base of the approximating 
cylinder is calculated by the formula:

2 2
1 1

1 ( ).3k i i i ir r r r r+ += + +   (16)

3. Each cylindrical layer is divided into concentric 
rings Jk at equal distance dr = rk/Jk, where Jk = 2×(11 – k). 
Each ring is divided into N circumferential sectors (cur-
vilinear parallelepiped) with a pitch angle α = 360/N. Fig-
ure 6 shows an example of a finite element partition with 
k = 1, 2, ..., 10; α = 6°.

4. To replace each volumetric finite element mass point 
are the coordinates of its center of mass. For each ring 
sector k-th layer cylindrical coordinate z (vertical) is cal-
culated by the formula:

( 1).2k
hZ h k= + −      (17)

Coordinates x, y center of mass of each finite element 
are determined using methods known in the theory of 
strength of materials of the formulas for the annular sec-
tor and its symmetry properties.

For sector angle value α to the inner radius rk,j, outer 
radius rk,j+1 is the distance 

( ), , 1K j jmr +
rom the center of the 

ring О forming the center of mass of the ring sector m 
(Figure 7) by the formula:

( ) ( )
( )

3 3
, 1 ,

,( ; 1) 2 2
, 1 ,

sin 24 .3
k j k j

k j j
k j k j

r r
rm

r r

+
+

+

α −
=

α −
 (18)

Figure 7. Finding the center of mass of the ring sector

5. Upon receiving the distance value ,( ; 1)k j jrm + , the 
coordinates x, y center of mass of each finite element can 
be calculated as following:

,( ; 1), ,( ; 1) cos ;k j j n k j j nx rm+ += β     (19)

,( ; 1), ,( ; 1) sin ,k j j n k j j ny rm+ += β     (20)

where:

( 1).2n nαβ = + α× − , 1,2,...,n N= .

6. The volume of each ring sector is defined as:

2 2
,( ; 1) , 1 ,( ) .k j j k j k jV r r h+ += α −    (21)

Taking into account the density of breed’s Δρ, the weight 
of sector of j-th ring of k-th layer can be calculated as:

,( ; 1) ,( ; 1) .k j j k j jm V+ += δ    (22)

7. The gravitational potential at the point C of the sur-
rounding space, called a point mass quantity ,( ; 1)k j jm +  
with coordinates, ,( ; 1),k j j nx + ,

 ,( ; 1),k j j ny + , ( 1)2k
hz h k= + −  

is defined as:
,( , 1),

,( ; 1),
,( ; 1),

,k j j nC
k j j n C

k j j n

m
T G

r
+

+
+

=   (23)

where: G is gravitational constant; ,( ; 1),
C
k j j nr +  is a dis-

tance from the center of mass of the final element to 
point C.

The total gravitational potential at the point C of the 
surrounding space, called a cone, is calculated as the sum 
of the potentials of the point masses:

,( , 1),

1 1 1 ,( ; 1),
.

K J N k j j nC
K C

k j n k j j n

m
T G

r
+

= = = +

= ∑∑∑    (24)

8. The final value of the potential Wс given height 
above the ellipsoid and gravitating cone defined by the 
sum of the perturbing potential Tс normal potential U, the 
value of which on the surface level of the ellipsoid U0 = 
62636861.074 m2с–2. Figure 6. Finite element partition of the cone
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9. Components of the gravity vector at the point C de-
fined by the formulas:

1

1

3
1

;

; ,

( );

n

cx i
i
n

cy i
i
n

c i
cz i

ii

g G m

g G m

z z
g G m

r

=

=

=


= 


= 

− =


∑

∑

∑

 (25)

where xi, yi, zi are the coordinates of the center of gravity 
of the elementary volume of gravitating mass mi, and xс, 
yс, zс are coordinates of the point C. In the calculation, 
you must take into account the components gz gravitating 
influence of the Earth at a height Hс ellipsoidal:

980 000 0.3086 .H
CCg H= −     (26)

The resulting value of the force of gravity at the point 
C is defined by square root sum of squares of the compo-
nents of the gravity vector.

10. Getting the value plumb line along the x axis.
11. Calculation height anomaly (the difference geodes-

ic and normal height) by perturbing potential Tс formula 
Bruns.

A refined technique detail gravitating objects finite 
element method. When replacing a ball cube (Figure 8), 
there is methodological errors, the essence of which is as 
follows: cube replaced sphere of the same volume with a 
radius:

2
3 3 .

4
aRj =
π

  (27)

For a = 1 (the distance from the center to the edge 
of the cube perpendicular equal to 0.5), the value of Rj 
is 0.62.

In the analysis of local areas with arbitrary relief, it 
is offered to perform finite element approximation of 
Parallelepiped of different heights, and then the ultimate 
gravity is obtained by summing the analytical calcula-
tions of gravitational influences of each element. The ad-
vantage presented by the technological approach to the 

calculation of gravitational characteristics of the natural 
and man-made objects is to improve the quality assess-
ments of their determination through a more precise cal-
culation of the gravitational influence of each of the box’s 
integral formula, excluding some methodological errors. 
Technologically optimize the process of calculating the 
gravitational characteristics contribute to a well-developed 
system using digital elevation model (DEM). Technique 
and the subsequent creation of technology account the 
gravitational influence of natural and man-made objects 
have been used digital models of some really existing local 
objects. For the subsequent determination of the values   
of gravity and its principal transforming at points located 
close to the model under the ground surface, the experi-
mental studies were performed.

2. The experimental studies

The initial data for the determination of gravitational 
characteristics of objects using real DEM St. Helens vol-
cano site (Mount St. Helens), located in Skamania coun-
ty Washington State (USA), as well as a real DEM hilly 
coastal area on the Kamchatka Peninsula and DEM, built 
on the basis of modeling a local area of the seabed off the 
coast of the peninsula. Test natural local objects are shown 
in Figures 8, 9 and 10. 

DEM can be created according to various sources sur-
face coordinates. In the first experiment, the DEM is built 
on the results of a vectoring of topographic map. Figure 
10 shows a section of DEM volcano St. Helena coordinate 
with sections 30×30 m in the x and y respectively. For 
detailed definitions of gravitational characteristics of the 
whole area around the cone of the volcano below the total 
number of finite elements processed were 51 051. Height 
of the box to the size of the base 30×30 m reach more than 
1 km. The total area of   the territory around the cone of the 
volcano to determine its characteristics of gravity is 45.54 
km2. Initial coordinates X, Y, Z points DEM converted to 
coordinates X′, Y′, Z′ as the beginning of item coordinate 
system, which calculates the gravitational characteristics. 
In the experiment, the example of St. Helens volcano, 
these characteristics were determined for ten different 

Figure 8. The 3D surface of volcano Saint Helena (Dimension in meter)
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points. The Figures 8, 9, 10 and 11 are produced using 
Matlab programming and Surfer’s extensive modeling 
tools and programming. 

The second investigated the natural local object was 
the site of hilly coast of the Kamchatka Peninsula. In the 
experiment, it takes account of different density of coastal 
areas and adjacent water masses of the sea area. Sushi 
adopted average density of 2.63 g/cm3, and the density of 

sea water 1.1 g/cm3. GRID Network seafloor contains 8300 
elements, the surface of the land. the size of the 8000 el-
ements grounds along the axes x, y 160×160  m. Grav-
ity characteristics were determined for the four points of 
a natural object. The total area of   land hilly coast of the 
Kamchatka Peninsula to determine its gravitational char-
acteristics of 205.4 km2, and modeled the coastal area of   
the seabed is 197.8 km2. As the finite element used box, 
during mathematical processing was determined by the 
value of gravity of the entire object as a set of finite ele-
ments; uniform elongated parallelepiped with their sub-
sequent summation. The normal force of gravity to the 
accepted model of the earth (ellipsoid) can be calculated 
by the formula:

2 2
0 1(1 sin sin 2 ).eγ = γ + β× φ − β × φ  (28)

In which the coefficients are taken for option geodetic 
reference system Moritz. The result is a value γ0, equal to 
9.807290173 m/с2. Furthermore, to calculate the value of 
the disturbing potential T across the surface under study 
found the box for each value of the volume V, mass M and 
radius characterizing the position of the center of the base 
of the box. After determining the values Тi for all paral-
lelepiped calculated their total potential U and the height 

Figure 9. Simulated coastal area of the seabed

Figure 10. The surface of the coastal territory of the Kamchatka Peninsula

Figure 11. A wire frame view of the volcano area DEM  
St. Helena
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anomaly ζ, the formula Bruns. For components plumb line 
in the meridian plane ξ (“), and the first vertical plane η 
(“) use the following formula:

1 1, ,x yT Tξ = − η = −
γ γ

  (29)

where:
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At the last stage value determined gravity ten points 
selected in the experiment, according to the following 
formula:

g = γ0 св.в + Δg,  (30)

where: 

γ0 св.в = γ0 – 0.3086Н, 

Н is height gravimetric points whose characteristics were 
calculated. 

An experiment was carried out to determine the gravi-
tational characteristics of a ten-point area of the volcano 
St. Helens volcano site (Mount St. Helens), located in Ska-
mania county Washington State (USA). The results showed 
that the minimum value of the gravity = 980.0428 Gal and 
maximum = 980.3847 Gal values plumb line in the me-
ridian plane and the plane of the first vertical are: ξmin = 
–3.8 , ξmax = 4.7, ηmin = –5.0, ηmax = 4.8, respectively. The 
calculated height anomaly has the following values ζmin = 
6.6 m, ζmax = 28.1 m.

As a result of experiments are calculated gravity val-
ues of four points a simulated local coastal area of the 
sea bed located both in the valley and at higher eleva-
tions. These minimum and maximum values of gravity 
totaled 980.6770 Gal and 980.7365 Gal, respectively. The 
calculated values of plumb line in the meridian plane and 
the plane made the first vertical ξmin= –0.24, ξmax = 0.34, 
ηmin = –0.91, ηmax= 0.11, equal to the height anomaly 
ζ min = 0.7 m, ζmax = 7.1 m. The minimum and maximum 
values of the four points of the force of gravity derived 
from the digital elevation model of coastal hilly area of 
the Kamchatka Peninsula are irrelevant 980.68729 Gal 
and 980.72830 Gal, respectively. The calculated values of 
plumb line in the meridian plane and the plane of the first 
vertical up: ξmin = –0.87, ξmax = 1.16, ηmin = –2.39, ηmax = 
0.26, equal to the height anomaly ζmin = 0.02 m, ζmax = 
0.10 m.

Conclusions 

This study presents five point models of gravitating trun-
cated cone to calculate the coordinates of the centers of 
gravity for five coextensive masses which are derived 
analytically rigorous mathematical formula. Gravimetric 
observations can be clarified using the derived formulas 
to approximate the conical body’s terrestrial relief (open 
mining, waste dumps, volcanoes, etc.). The experiments 
confirm the possibility of using the proposed methods 
with the use of analytical, finite element and numerical 
models to better determine the characteristics of the lo-
cal gravity of natural and man-made objects of sizes up 
to several tens of kilometers. In this case, the number of 
selected finite elements is significantly reduced compared 
to the cubic approximation.

The easiest option describing the gravitational influ-
ence of the local relief elements is using of the point mod-
el. For some applications, it may be sufficient. However, 
there are situations that require more accurate approxi-
mation. Our research results can improve the accuracy 
of the description of the local gravitational field in com-
parison with existing methods by about 3–4% for local 
objects from Table 2 with dimensions of territory about 
20–100 km2 with mountain and foothill terrain. The basis 
for improving the accuracy is a combination of analyti-
cal models, finite element method, and digital elevation 
models.
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