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with the surface reflectance of the image (Benny & Daw-
son, 1983; Bierwirth et al., 1993; Collet et al., 2000; Garlan, 
1989; Lyzenga, 1978; Provost et al., 1999; Sánchez-Carnero 
et  al., 2014; Sutherland et  al., 2004) using the single or 
quasi-single scattering theory (Sánchez-Carnero et  al., 
2014). 

In its application, marine remote sensing technol-
ogy cannot be separated from the propagation of elec-
tromagnetic energy that enters the water column (Dan-
oedoro, 2012). This energy will be absorbed by the water 
column’s optical properties, which are influenced by the 
water’s material and the angle of incidence of light. This 
phenomenon will cause electromagnetic waves to hit the 
water column. Consequently, the waves will be scattered 
or absorbed, so-called attenuation (Misra et  al., 2018). 
Attenuation causes electromagnetic waves to experience 
many interactions when received by satellite sensors. The 
interactions also make light intensity in the water column 
decrease exponentially. Further, the attenuation process 
causes light penetration to have different abilities in pen-
etrating the water column. Thus, attenuation is needed to 
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Abstract. This research aims to estimate shallow water depth using Worldview 3 satellite imagery and dual-channel mod-
els in Karimunjawa waters, Central Java – Indonesia. To build dual-channel models, we used spectral data that had been 
validated in the field. Twenty-three depth data were recorded synchronous to the spectral data used in forming the semi-
analytical dual-channel models. Twelve models were tested using 633 depth data with a non-linear model using multiple 
polynomial regression analysis degrees 1 and 2. This research has shown that the proposed model has been confirmed to 
improve depth accuracy. Models using blue and green channels of Worldview 3 image result in good accuracies especially 
for estimating depths with interval from 5 to 20 meters with RMSE of 1,592 meters (5–10 meters), 2,099 meters (10–15 
meters), and  1,239 meters (15–20 meters). The wavelengths of two channels have a low absorption rate to penetrate deeper 
waters than other wavelengths. The research also finds out that there are still models that meet the IHO standard criteria. 
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Introduction

Integrated coastal management requires a variety of hy-
drographic information such as bathymetry, currents, 
waves and tides in order to make it optimal and effective 
in its management. Such management is essential because 
most industries are located in coastal areas. As a result, 
the areas experience reasonably fast economic growth (Hi-
dayah et al., 2018). In coastal management, the need for 
water depth information (bathymetry) is critical (Prayogo 
& Basith, 2020) because the data can be used for various 
purposes in hydrography, such as coastal engineering and 
shipping trajectory (Gao, 2009; Jupp, 1989; Leu & Chang, 
2005). 

A trend of passive remote sensing can provide water 
depth information using the Satellite-Derived Bathymetry 
(SDB) technique  (Karimi et  al., 2016; Lyzenga, 1985; 
Stumpf et al., 2003a). SDB is a remote sensing technique 
that is often used in marine field to obtain the depth infor-
mation of seas or oceans. This technique is carried out by 
using satellite imagery by correlating the measured depth 
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determine the waters’ characteristics (Misra et al., 2018). 
The visible remote sensing is a remote sensing tech-

nique that uses visible waves in its application (Martin, 
2014). Visible rays can penetrate the water column quite 
well that is connected with marine remote sensing or well-
known as marine optics. Marine optics are the optical 
properties of marine waters, which are used as the basis 
to develop marine remote sensing. 

Nowadays, the trend of using dual-channel in the SDB 
technique focuses on empirical methods. This method re-
lies on the relationship between the spectral value in the 
image and the measured depth, band ratios with differ-
ent wavelengths (Bramante et  al., 2013; Dierssen et  al., 
2003; Sánchez-Carnero et al., 2014; Stumpf et al., 2003b), 
and the application of the Lyzenga algorithm (Sánchez-
Carnero et al., 2014; Sutherland et al., 2004). This method 
is widely used to estimate sea depth.

Nevertheless, new research using dual-channel algo-
rithms needs to be carried out, especially those that utilize 
methods other than empirical methods. This research then 
chooses to use a semi-analytical method. The semi-analyt-
ical model formed using the field size’s surface reflectance 
and measured depth data were then applied to estimate 
the depth in the image. One of the consideration is be-
cause the satellite sensors that record water surface objects 
is not the same as when measuring the physical properties 
of water in the field to produce different values (Lafon 
et al., 2002). These conditions allow the SDB analysis to 
use the semi-analytical method.

Therefore, this research aims to estimate shallow water 
depth using dual-channel and field parameters, known as 
the SDB semi-analytical method in Karimunjawa waters, 
Central Java, Indonesia. Dual-channel is chosen because 
it will support each other in estimating waters where weak 
channels with high absorption will be covered with solid 
channels with low absorption rates.

1. Materials and methods

1.1. Materials

1.1.1. Worldview-3 imagery
In this research, Worldview-3 imagery was acquired on 
February 21, 2018, calibrated by AComp Radiometric, 
Level ORStandart2A. According to Basith and Prastyani 
(2020), the AComp correction produced a better depth 

estimation than the QUAC and FLAASH radiometric cor-
rections. The Worldview-3 had a spatial resolution of 31 
centimeters on the Panchromatic Band and 1.24 meters 
on the Multispectral Band. The Ground Sampling Distance 
(GSD) generated from this image was 1 meter <1.0 day. 
The imagery had a high revisit time capability of 4.5 days 
at 20o off-nadir. Bands in this image were divided into 
three groups “Panchromatic, Multispectral, and SWIR”. 
Table 1 shows the wavelength specification in the World-
view 3 imagery:

Table 1. Worldview-3 imagery specifications  
(source: Satellite Imaging Corporation, 2020)

Primary Use/ Band Wavelength (nm)

Panchromatic 450–800
8 Multispectral (Red, red edge, coastal, 
blue, green, yellow, near-IR1, and near-
IR2)

400–1040

8 SWIR 1195–2365

1.1.2. Bathymetry data

Bathymetry data in the present research were collected 
using the Single Beam Echo Sounder (SBES) Bathy-2010 
SyQwest instrument from March 20 to March 22, 2019 
(Figure 1). Real-time positioning utilized the Global Nav-
igation Satellite System  (GNSS) Trimble NET R9 with a 
simple method. The data were acquired at the beginning 
of the survey. The main lane width was 20 meters and then 
subsequently adjusted to 50 m depending on the survey 
area and time. Figure 1 presents a ship route map for ba-
thymetric survey and field documentation in Karimun-
jawa waters, Central Java.

This research employed data with a depth of 0 to 20 
meters. The depth was then grouped into four groups, 
ranging from 0–5 meters, 5–10 meters, 10–15 meters, 
and 15–20 meters (Table 2). When acquiring depth data 
in shallow waters and water areas with lots of coral reefs, 
the vessel’s limitation means that the depth of <2 meters 
is not well acquired. It is represented by the range of 
0–5 meters. In this research, the depth data that was 
used for modeling were corrected due to tidal effect at 
first. The acquisition process was carried out during the 
day because the tides could affect the measured depth. 
Depth data were also corrected for transducer offset. 

Figure 1. Ship route map for bathymetric survey and field documentation (source: Basith & Prastyani, 2020)
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Table 2. The sample depth in this research

Depth (meters) Total Average 
(meters)

Standard Deviation
(meters)

0–5 61 3,359 0,831
5–10 161 7,618 1,387

10–15 207 12,975 1,403
15–20 204 16,488 1,095

1.1.3. Field data
a) Spectral field
This research uses validated data using field spectral data 
that has been conducted by (Nuha, 2019). The measure-
ment used the TriOS Ramses Spectrometer and its position 
was determined using GNSS with the absolute method. 
TriOS Ramses has a relatively small size and low power 
consumption. Therefore, the device is deemed very flexible 
to acquire data in the field. The device combines hyper-
spectral light measurement with maximum flexibility with 
its modular system. It was carried out at four stations/re-
search locations. The location represented different water 
conditions, such as clear and cloudy. Table 3 provides the 
coordinate point of the location for water attenuation in 
Karimunjawa waters, Central Java (Nuha, 2019). 

Table 3. Location of field spectral station (water attenuation) 
(source: Nuha, 2019)

Station λ j Water Condition

Station 1 –5.885740 110.439960 Cloudy
Station 2 –5.879454 110.428316 Cloudy
Station 3  –5.864106 110.420920 Clear
Station 4 –5.864106 110.413442 Clear

Nuha (2019) has been processing and combining 48 
depth data were recorded synchronous to the spectral 
data, both positive and negative. It should be noted that 
the SDB Semi-Analytical model only uses data with posi-
tive values  . Data with negative values   cannot be used for 
model building. Having sorted, the research found 25 
negative values . Thus, the formation of a semi-analytical 
model in this research used 23 positive data. 

b) Water constituent
Supporting data for water constituents were obtained dur-
ing the bathymetry survey from March 20 to March 22, 
2019 by Nuha (2019). This data is additional one that de-
scribes the condition of the waters in the SDB analysis. 
The measurement of water constituents includes Chlo-
rophyll, Color Dissolved Organic Matter (CDOM), Total 
Suspended Solid (TSS), and Total Organic Matter (TOM). 
Chlorophyll, CDOM, TSS, and TOM data were analyzed 
in the laboratory in 2019 by (Nuha, 2019).

Table 4  shows that the highest TSS contents were lo-
cated at locations 2 and 4. These locations had a higher 
level of turbidity than other sampling locations. Mean-
while, the highest chlorophyll content was documented at 

location 3, followed by the relative TOM, CDOM, and TSS 
content. This location is located near the Karimunjawa 
port so that community activity on land might affect the 
turbidity level and water content. In the SDB technique, 
the condition of the waters’ optical properties can affect 
the weakening process of electromagnetic waves. The fol-
lowing table presents the results of the water constituent 
content at four stations in the southern waters of Kari-
munjawa, Central Java (Nuha, 2019). 

Table 4. Constituent content at four locations (source: Nuha, 
2019)

Location TOM (%) CDOM Chlo ro phyll 
(µg/l)

TSS 
(mg/ l)

Location 1 99.71 0.001 0.192 5.2
Location 2 99.69 0.001 0.116 10.0
Location 3 99.76 0.002 0.510 9.6
Location 4 99.77 0.002 0.273 12.0

1.2. Methods

1.2.1. Semi-analytical method
The semi-analytical method is the development of an ana-
lytical method. In this method, estimating the depth value 
and field parameters are considered in the measurement. 
Dual-channel equations are formed using two wavelengths 
contained in the image. Benny and Dawson (1983), Su et al. 
(2008) illustrate Dual-channel equations as follows:
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 (1)

where: k1  – diffusion coefficient of 1st channel attenu-
ation; k2  – diffusion coefficient of 2nd channel attenua-
tion; C1 – solar radiation constant, atmosphere, and water 
transmittance of channel 1; C2 – solar radiation constant, 
atmosphere, and water transmittance of channel 2; Rb1 – 
1st channel reflectance substrate; Rb2 – 2nd channel reflec-
tance substrate; L1  – 1st channel light; L2  – 2nd channel 
light; Ls1 – 1st channel light in the water; Ls2 – 2nd channel 
light in the water.

Then, Equation (1) can be simplified into the following 
equation (Benny & Dawson, 1983; Su et al., 2008): 

0 1 1 2 2 ,Z A A X A X= + +  (2)

where: Z – the estimated value of the water depth of the 
1st and 2nd channel combinations; X1 – 1st channel pixel 
value; X2 – 2nd channel pixel value; A0 – constant; A1 – 
channel gradient coefficient to 1; A2 – 2nd channel gradi-
ent coefficient.

1.2.2. Polynomial regression
Regression is a statistical analysis that aims to see the re-
lationship between the depth value of pixel extraction and 
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the measured depth value. The SDB technique generally 
uses this analysis to see the best correlation between the 
linked variables in model building. Polynomial regres-
sion was used if the field spectral data was not linear with 
measured depth data, usually marked with a curve (Nuha, 
2019). The Polynomial regression can be mathematically 
expressed by the following equation (Mishra et al., 2006):

2 3 ...,y a bx cx dx= + + + +  (3)

where: y – the value of the depth of the SBES measure-
ment (a = m1, b = m2, c = m3); x – the SDB value up to 
the next order point.

1.2.3. Accuracy test
a) The Root Mean Square Error (RMSE)
Ghilani (2010) stated that every measurement must have 
an error. For that reason, an accuracy test is necessary. 
As this research employed the semi-analytical method, a 
spectral measurement was performed to form a model, 
which was then applied to satellite images. The Root Mean 
Square Error (RMSE) equation is calculated as follows 
(Manessa et al., 2017; Walpole, 1968):  

2
1
( )

 ,
n
t

At Ft
RMSE

n
=

−
=
∑  (4)

where: At – the estimated value of the depth from the im-
age pixel value extraction; Ft – the measured depth of the 
survey results with the SBES; N  – the number of depth 
points measured.

b) Total Vertical Uncertainty (TVU)
The use of the SDB method to estimate the depth of shal-
low seas requires a precision test with a predetermined 
standard. It commonly refers to the International Hydro-
graphic Organization (IHO). The following is an equation 
for the TVU accuracy test (Gao, 2010; Mather, 2004): 

( ) 2 2
max   (   ) ,TVU d a b d= + ×  (5)

where: a – represents that portion of the uncertainty that 
does not vary with the depth; b – a coefficient which rep-
resents that portion of the uncertainty that varies with the 
depth; d – the depth.

2. Results and discussion

2.1. Dual-Channel modelling

The model is formed using the relationship between the 
reflectance value of the field measurement results and the 
measured depth data. The reflectance parameters were 
symbolized as B2, B3, and B5 representing Blue, Green, 
and Red channels. The input data involved 23 positive data 
where the depth recording time and the water attenuation 
(spectral field) were synchronous (Nuha, 2019). 

All input data created a non-linear function, as evi-
denced by a warped curve. Therefore, the formation of a 

dual-channel model used Multiple Polynomial Regression 
analysis degrees 1 and 2. The dual-channel method pro-
duces 12 models using visible spectrum red, green, and 
blue. The following table of models resulted from a com-
bination of the Worldview 3 visible spectrum.

Table 5. The combinations of blue and green channels

Model Std. Error of 
the Estimate Model Equations

Model 1 2.77446978 β0 + β1 Blue + β2 Green + ε
Model 2 2.55291434 β0 + β1 Blue + β2 Green + β3 Blue2 +ε
Model 3 2.43523371 β0 + β1 Blue + β2 Green + β3 Green2 +ε

Model 4 2.37743011 β0 + β1 Blue + β2 Green + β3 Blue2 + 
β4 Green2 + ε

The Table 5 shows that the combination of blue and 
green channels produces the value of Std. Error of the Es-
timate is smaller than other channel combinations. Table 5 
shows that model 4 is the best model with the equation 
β0 + β1 Blue + β2 Green + β3 Blue2 + β4 Green2 + ε. The 
blue and green channels have a lower light spectrum 
absorption rate than other channels in water objects so 
that the light penetration can penetrate the water column 
deeper. At the same time, model 1 in Table 5 with the 
equation β0 + β1 Blue + β2 Green + ε produces the value 
of Std. Error of the Estimate is bigger than others.

Table 6. The combinations of blue and red channels

Model Std. Error of 
the Estimate Model Equations

Model 1 3.38308383 β0 + β1 Blue + β2 Red + ε
Model 2 3.03117469 β0 + β1 Blue + β2 Red + β3 Blue2 +ε
Model 3 2.92896824 β0 + β1 Blue + β2 Red + β3 Red2 +ε

Model 4 2.99276336 β0 + β1 Blue + β2 Red + β3 Blue2 +  
β4 Red2 + ε

Table 6 shows that the combination of blue and red 
channels produces Std. The error of the Estimate is bigger 
than the blue and green channels. The spectrum in the red 
channel has a high absorption rate in water objects so that 
the spectrum is completely absorbed. These factors make 
the dual-channel model not optimal when using the red 
channel. Then the channel combination in Table 7 shows 
the value of Std. The error of the Estimate is bigger than 
the blue and green channels. The model with the red chan-
nel produces low accuracy.

Table 7. The combinations of green and red channels

Model Std. Error of 
the Estimate Model Equations

Model 1 3.29494874 β0 + β1 Green + β2  Red + ε
Model 2 2.69256753 β0 + β1 Green + β2 Red + β3 Green2 +ε
Model 3 2.87074069 β0 + β1 Green + β2 Red + β3 Red2 +ε
Model 4 2.76392781 β0 + β1 Green + β2   Red + β3 Green2 + 

β4 Red2 + ε
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Twelve models were generated using the two-channel 
method, the three best models were applied to World-
view  3 imagery for depth estimation using 0–20 meter 
depth sample data. Determination of the best model was 
done by examining the value of Standard Error of the Es-
timate resulting from statistical analysis. The smaller the 
value of Standard  Error of the Estimate, the better the 
resulting model.

The first best model was the equation β0 + β1 Blue + 
β2 Green + β3 Blue2 + β4 Green2 + ε with the value of 
Std. Error of the Estimate is 2.377 meters. Table 8 shows 
the results of coefficients values generated from the re-
gression analysis, the above equation can be rewritten as 
6.334 + 1649.644 blue – 1624.194 green – 17 788.594 blue2 
+ 15069.410 green2 + ε. Then, for depth estimation, the 
model was applied to the image using the band match 
feature in the ENVI software. The definition of the 
model above can be written as 6.334 + 1649.644 × B2 – 
1624.194 × B3 – 17788.594 × B2^2 + 15069.410 × B3^2, 
where B2 denotes Blue and B3 is Green.

The second best model constituted the equation β0 + 
β1 Blue + β2 Green + β3 Green2 +ε with the value of Std. 
Error of the Estimate is 2,435 meters. Table 8 shows the 
results of coefficients values generated from the regression 
analysis, the above equation can be expressed by 8.534 + 
866.573 blue – 1130.525 green + 4751.793 green2 + ε. For 
depth estimation, the model was then applied to the image 
using the same feature from the ENVI software. Further, 
the definition of the model can be illustrated as 8.534 + 
866.573 × B2 – 1130.525 × B3 + 4751.793 × B3^2,  where 
B2 indicates Blue and B3 is Green. 

The third best model was the equation β0 + β1 Blue + 
β2 Green + β3 Blue2 +ε with the value of Std. Error of 
the Estimate is 2,553 meters. Table 8 shows the results 
of coefficients values from the regression analysis, the 
above equation can be rewritten as 8.797 + 585.464 
Blue  – 905.041 Green + 6809.984 Blue2 + ε. Then,  for 
depth estimation, the model was applied to the image us-
ing the same software feature as above. The definition of 
the model can be expressed by 8.797 + 585.464 × B2  – 
905.041 × B3+ 6809.984 × B2^2 + ε, where B2 is Blue and 
B3 represents Green. 

Table 8. Coefficients values of the best regression models

Model Model 1
(B)

Model 2
(B)

Model 3
(B)

(Constant) 6.334 8.534 8.797
Blue 1649.644 866.573 585.464
Green –1624.194 –1130.525 –905.041
Blue2 –17788.594 – 6809.984
Green2 15069.410 4751.793 –

2.2. Depth estimation results

First, at a depth of 0 to 5 meter, the model with the equa-
tion β0 + β1 Blue + β2 Green + β3 Blue2 + β4 Green2 + ε 

were reported to produce an RMSE value of  2,102 meters. 
At a depth of 0–5 meters, the RMSE generated using the 
Semi-Analytical method tends to be large. It was reported 
that one data were included in the particular order class 
IHO, one data were included in the order of class 1A / 1B, 
and two data were included in the order of class 2. At that 
depth, only a few depth data that meet IHO standards.

Second, the accuracy-test was carried out at a depth 
of 5–10 meters. The model with the equation β0 + β1 Blue 
+ β2 Green + β3 Blue2 + β4 Green2 + ε produced the best 
depth estimation that was indicated by the RMSE value of 
1,592 meters. The model generated a depth estimate value 
that was included in the IHO standards. It was reported 
that 12 data (8.39%) were included in the particular order 
class, 17 data (11.89%) were included in the order of class 
1A / 1B, and 27 data (18.88%) were included in the order 
of class 2. 

Third, the accuracy-test was also performed at a depth 
of 10–15 meters. The best model with the equation β0 + β1 
Blue + β2 Green + β3 Green2 +ε produced an RMSE value 
of 2,099 meters. The model generated a depth estimation 
value that was included in the IHO standard, covering 
12 data (5.80%) included in the particular order, 16 data 
(7.73%) included in the order of class 1A / 1B, and 23 data 
(11.11%) fell into the second-order class IHO. Fourth, the 
accuracy-test was conducted at a depth of 15–20 meters. 
The model with the equation β0 + β1 Blue + β2 Green + 
β3 Green2 +ε yielded the best depth estimation as shown 
by the RMSE value of 1,239 meters. The model produced 
a depth value following the IHO standard. The results re-
vealed that 44 data (21.57%) were categorized in the par-
ticular order class, 64 data (31.37%) fell into the order of 
class 1A / 1B, and 90 data (44.12%) were included in the 
order of class 2.

In short, this research shows that the dual-channel, 
semi-analytical method is better in estimating the depth 
value at the depth interval 5 to 20 meters. Meanwhile, at 
a depth of 0 to5 meters, the two-channel semi-analyt-
ical model produces a sizeable RMSE value. The use of 
dual-channel is effective in water depth of 5 to 20 me-
ters  because, in estimating the depth, the light spectrum 
with a high absorption will be covered with a low ab-
sorption rate spectrum. The research also finds out that 
there are still models that meet the IHO standard criteria 
([6.334  + 1649.644×B2  – 1624.194 × B3  – 17788.594 × 
B2^2 + 15069.410 × B3^2 at a depth of 5–10 meters], and  
[8.534 + 866.573 × B2 – 1130.525 × B3 + 4751.793 × B3^2 
at a depth of 10 to 20 meters]). 

The research using semi-analytical methods was con-
ducted by Nuha (2019) using the one-channel model. The 
study showed the yellow channel with the exponential 
model produces 39.59% data were categorized in the par-
ticular order class, 47.72% data fell into the order of class 
1A/1B, and 54.31% data were included in the order of 
class 2. The semi-analytical method’s dual-channel model 
produces a better depth estimate than the single-channel, 
especially at a depth of 5 to 20 meters.  



Geodesy and Cartography, 2022, 48(3): 170–176 175

Conclusions

In conclusion, this research has shown that the pro-
posed model ([6.334+1649.644×B2  – 1624.194×B3  – 
17788.594×B2^2 + 15069.410×B3^2] and  [8.534 + 
866.573×B2  – 1130.525×B3 + 4751.793×B3^2]) has been 
confirmed to improve the depth accuracy. The spectral 
value of the waters which are measured directly in the 
field (water attenuation) and used in the formation of 
semi-analytical models has been shown to increase the 
depth estimation results. The research also indicates that 
the use of dual-channel can complement each other in the 
estimation process. Channels with high absorption rates 
in the water column will be covered with channels that 
have low absorption rates. The blue and green channels 
in the Worldview 3 image are the best models, especially 
for estimating depths with interval from 5 to 20 meters. 
The wavelengths in the two channels have a low absorp-
tion rate to penetrate deeper waters compared to other 
wavelengths.
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