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All geometrical parameters of installation of precision 
technological equipment are obtained from measurements 
of geodetic constructions with their subsequent process-
ing and evaluation. As a result of measurements we re-
ceive a number of measured sizes:
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where 1 2, , , nx x x  are the measured values; 
1 2, , , np p p – weights (probability distribution) of 

the measured values. The weights of the measured val-
ues are quite difficult to determine, but quite often the 
measured values, which are obtained under the same 
measurement conditions, are assigned weights equal to 
one, 1 2 1np p p= = = =  or equal to the given weights 

1 2 1np p p n= = = = , which most often distorts the 
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Abstract. Industrial equipment is a dynamic system and has deformations not only during installation but also during 
operation. Under the influence of variable load and displacement of the center of gravity, the soil under the foundation 
settles unevenly, and accordingly, the equipment deforms unevenly, which is a threat to the equipment, the greater the load 
corresponds to more subsidence.
Separation of partial deformations from full is important for determining the elements of straightening equipment for its 
uninterrupted and trouble-free operation. The presence of significant total deformation does not affect the performance of 
the equipment. The most critical deformations are partial deformations. Absolute vertical deformations are calculated as 
the difference in sediment between adjacent sediment marks, which are fixed on the equipment in the same measurement 
cycle.
Comparing the values of deformations with the allowable technical conditions, decide on the need for straightening and 
adjustment of equipment.
The accuracy of installation is characterized by a tolerance of 0.1÷0.5 mm on the relative position of the equipment, which 
is conjugate mounted at a distance of several tens or hundreds of meters. For installation of the equipment with such ac-
curacy carry out special geodetic works with use of methods and technical means of measurements specially developed for 
this purpose in geodesy, metrology and mechanical engineering. 

Keywords: deformation (full, general, partial), geodetic measurement, error distribution, installation of precision techno-
logical equipment.

Introduction 

There are fundamentally different schemes and methods 
of installing equipment, the choice of which depends on 
its layout, the nature of production and the accuracy of 
the relationship of individual elements of equipment that 
are part of a single technological complex, construction 
and installation conditions, as well as operating condi-
tions. Many installation schemes involve the use of known 
methods of geodetic marking: the method of polar coor-
dinates, rectangular coordinates, angular and linear serifs, 
creative measurements. High accuracy of these methods is 
achieved by creating a particularly accurate geodetic basis 
using high-precision tools for measuring angles and dis-
tances, which reduce the impact of various systematic and 
random measurement errors.

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0492-3510
https://orcid.org/ 0000-0001-5357-7493
https://orcid.org/0000-0001-5416-7680


Geodesy and Cartography, 2022, 48(2): 56–61 57

probability distribution of the measured values. To elimi-
nate these shortcomings, an algorithm for determining the 
probability density of the measured values is proposed. 
In geodetic constructions we will allocate such stages of 
processing of results of measurements (which are resulted 
in Figure 1).

1st Stage. Removal of information from the equipment 
which registers the measured values (theodolite, level, to-
tal station) or from the constant carrier and comparison of 
object of measurement with a working measure (direct de-
duction on scales or from a magnetic tape (magnetic disk, 
flash drive), its translation in numerical computer code 
and reference to computer memory during machining.

2nd Stage. Primary processing. Contains rationing of 
measurement data, reduction to a certain frame of refer-
ence, statistical processing with an assessment of the de-
gree of confidence, filtering, and rejection. The aim is to 
obtain the initial results (for example, the graph of the 
initial curve, the coordinates of the points to be deter-
mined, the deformation of structures and equipment) of 
the experiment.

3rd Stage. Interpretation of the obtained initial results, 
which is an assessment of the desired characteristics of 
the model of the physical object under study or process 
(horizontal and vertical displacements (deformations)). 
In geodetic measurements are often recorded not inter-
ested in the characteristics of the phenomena p, but only 
their functionally dependent or stochastic manifestations 
F Ap= , the problem of interpretation is reduced to solv-
ing the equation Ap F= , where F  – the measured values 
(with some error), A  – transformation operator (matrix 
in the case of algebraic equations), p  – the required val-
ues. To calculate the horizontal and vertical displacements 
and deformations of industrial equipment determine the 
coordinates of the points of this equipment by different 
methods (geodetic). In many cases, this task is incorrectly 
set (Tihonov & Arsenin, 1974). To calculate the accuracy 
of geodetic measurements in the design and alignment of 
geodetic networks and structures, evaluation of measured 
values, it is necessary to know the laws of probability den-
sity distribution and their characteristics. Currently, when 
calculating and estimating the accuracy of measurements 
use the law of normal distribution (Viduev & Kondra, 
1969), which is the limit to which the sum of other full-
scale distributions asymptotically approaches, which does 
not accurately reflect the structure of measured values, 
with a small amount of measurements. To correct this 
situation, the calculation must be performed taking into 
account the distribution structure. Estimates of measure-
ment results are:

 – mathematical expectation ( )M X ; 
 – dispersion ( )D X ; 
 – standard deviation ( )D Xσ = ; 
 – asymmetry ( )S X ; 
 – excess ( )E X . 

Mathematical expectation is always calculated, more 
often it is replaced by the arithmetic mean. The variance is 

a measure of the scattering of the measured values around 
the mathematical expectation (arithmetic mean, weight 
average, structural average). Asymmetry and excess are 
calculated less often and although they are quantitative 
characteristics of the distribution, but have no clarity and 
under the normal law of distribution the asymmetry is 
zero. The measured values do not always obey the nor-
mal distribution law, especially with a small number of 
measurements.

1. Methods

The problem of probability theory in geodetic measure-
ments can be described by the following scheme: the 
known composition of the sample and the law of prob-
ability distribution, it is necessary for a given experimental 
scheme to estimate the probability of obtaining the most 
plausible value of the experiment. Mathematical statistics 
solves the inverse problem: the results of measurements 
determine the properties of the distribution law. The com-
plete characteristic of the distribution law is the density 
distribution of probability. 

Each implementation t  of the sample T  of limited 
volume n  it is possible to put a correspondingly ordered 
sequence:

1 2 nt t t T< < < ∈ , (2)

which is obtained from the sample (1) by sorting the 
measured values in ascending order In accordance with 
the definition of the probability density function is a func-
tion ( )p τ , the integral of which is equal to the distribu-
tion function:

( ) ( ) ( )
2

1

en

en

t p d F tθ − τ τ τ =∫ . (3)

Thus, the probability density ( )p τ  is a solution of the 
Fredholm integral equation of the first kind, i.e.  to esti-
mate the density function by sampling a limited volume 
is to find an approximate solution of Equation (3). Find-
ing the exact solution can be in the presence of the exact 
right part – the distribution function ( )F t . In this case, 
the exact function ( )F t  is unknown, but there is only a 
sample of 1 2, , , nt t t , of limited volume n . We look for 
the solution ( )p τ  in the class of functions continuous on 
the segment 1; 2en en   , we will look for a truncated dis-
tribution, setting a sufficiently wide interval 1; 2en en   , 
which is given by the researcher.

The deviation of the right parts from each other is es-
timated in a quadratic metric:

( ) ( )
2 2

1 2
1

en

F
en

m F t F t dt = − ∫ , (4)

and the deviation of decisions – in a uniform metric:

( ) ( ) ( )1 2 1 2
1; 2

, maxp
t en en

m p p p p
 ∈ 

= τ − τ . (5)
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For each implementation t  of the sample T , the func-
tion ( )nF t  is uniquely defined and has all the capabilities 
of the distribution function: increases from 0 to 1 and is a 
continuous case, while it is piecewise linear and increases 
only at sequence points (2), with strict inequality (2) the 
function ( )nF t  is given by the relation:

( ) 1
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1 ,

1 ,
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if t t

F t if t t t
n

if t t

+
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>

 (6)

1, 2, , 1k n= − , that is the magnitude of the jumps is 
equal to 1 n .

In the general case, in accordance with the Glivenko-
Cantelli theorem, the empirical distribution function

( ) ( )
1

1 n

n i
i

F t t t
n =

= θ −∑  (7)

for a sufficiently large n it is as close to ( )F t as it pleases 
with a probability close to unity. 

In Equations (3) and (7) ( )tθ is a single jump function 
(Heaviside function):

( )
0 0,
1 0.

if t
t

if t
≤θ =  >

 (8)

But we have a sample of limited volume, so equa-
tion (3) is solved approximately. The problem of finding 
an approximate solution of the equation on the approxi-
mate right-hand side refers to incorrectly posed problems, 
because small changes in the argument can lead to signifi-
cant changes in the function. 

To find an approximate solution to an incorrect prob-
lem

( ) ( )Ap F tτ = , (9)

where A  is the transition operator from the differential 
distribution function to the integral distribution function 
in the case when the right-hand side is given at points 

1 2, , , lτ τ τ  to the point of a random independent error

( )i i iy F= τ + ξ . (10)

By the method of structural risk minimization, we find 
a minimum of N  and l  functional:

( )
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( ) ( ) ( ) ( )
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Measure at the points ( )( )2 1i i lτ = π + , 1, 2, ,i l=  , 
the value of the empirical distribution function ( )nF t  will 
be considered as ( )F t  plus some error and expression (10) 
will take the form:

( ) ( )i n i i iy F t F= = τ + ξ . (12)

In the functionality of empirical risk (11)
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the minimum of function (11) is searched for the most 
suitable confidence probability 0.9973η = , but for this it 
is necessary to have more than 730 measurements in ac-
cordance with Eq. (24).

Inverse covariance matrix 1Ry−  of the vector y :
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From expression (13) for the inverse covariance matrix it 
follows that its coefficients depend on the unknown function 
( )F t , the derivative of which is the probability density

( ) ( ) ( )
1

N
N

j j
j

p t t
=

= l ϕ∑ . (14)

The degree of complexity of the assessment, i.e. the 
number of members of the decomposition N  is selected 
depending on the sample size n , using the method of 
structural minimization of empirical risk in accordance 
with Eq. (11). The probability density is found in the form 
of expansion by basic functions ( )j tϕ  by the method of 
least squares (Gladilin, 1996). We look for the minimum 
of the functional (11) for each N  provided

( )
1

10

1
N

j j
j

t dt
=

 
 l ϕ =
  
∑∫ , (15)

that is, the area bounded by the distribution density curve 
must be equal to one. In Eq. (15), the basis function has 
the form:
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( ) ( )4 cos 2 1 ; 0; 1 ; 1,2, ,
2j t j t t j Nπ   ϕ = − ∈ =   π  

 . (16)

The resulting variation series (2) is reduced to the in-
terval [0; 1] by the Equation

( ) nt A
T n

B A
−

=
−

; (17)
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where 1en , 2en are the left and right coefficients of the 
distribution range around the mathematical expectation 
(arithmetic mean, structural mean); the density ( )p t  is 
calculated in the interval ;t A B ∈  , in the general case 
A B≠ . In fact, the distribution is in the range [–∞, ∞], 
but the values of the coefficients can be taken in the range 
0 1en< , 2 6en ≤ . In order to more accurately find the val-
ues of the coefficients 1en , 2en  define the left Lz  and right 

Rz  structural coefficients of the distribution intervals:

. .
0

. .
; ; 1str mean str mean L

L R
str mean str mean R

A t B t z
z z z ABS

z
 − −

= = = =  σ σ  
,

provided that the ratio 0 1z = . 
Assign 1 2 2en en= = ± , obtain 0 0.74609z = ; assign 

1 2 3en en= = ± , obtain 0 1.00879z = ; assign 1 2 4en en= = ± , ob-
tain 0 1.08156z = ; assign 1 2 5en en= = ± , obtain 0 1.13704z = . 

By the selection method we obtain: 621 3.en = − , 
 3.3592en += , thus 2.20398Lz = − ,  2.20012Rz =  and 

0 1.00175z = , which is closest to unity. For these val-
ues 621 3.en = − ,  3.3592en += , we calculated by the  
Equations (19) and (18): ( ) 07.8 6. .732 9 6841 ν = − − =  , 

6.2 3.62 0.73684  8.8674A − ⋅ = −= − , B = 7.8 + 3.359 · 
0.73684 = 10.2751.

The values of A  and B  and the intermediate values of 
t of expression (2) are listed in Table 2. 

The obtained values of the probability density are 
checked for the normal distribution law in accordance 
with the Pearson agreement criterion 2χ .

The process of geodetic measurements (Gladilin, 1996) 
is the receipt of a message, its transmission in the form of a 
signal (reading on the scale of the device), signal reception 
and processing. Measured signals differ from communica-
tion signals because when comparing the measured value 
with the working measure there are two signals – reference 
and measurable (which is compared with the reference). In 
the rings of the measuring circuit signal conversion occurs 
according to the laws of computer theory. In the process of 
measurements, the geodetic instrument is used to receive 
and/or process information, which is performed in three 
stages (Figure 1). The measuring device in the process of 

measurement is included in the circuit, which includes: 
the object of measurement, the device (apparatus, instru-
ment) that receives and analyzes the measurement results. 
The circuit includes the external environment, we consid-
er it from the standpoint of computer science theory as a 
ring of transmission of the measuring signal. The circuit 
for transmission and processing of the measuring signal 
is shown in Figure 1.

Figure 1. Generalized information transmission chain 
(measured signal)

The measured value by its size is a random value of the 
error of its measurement is also random (when eliminat-
ing the systematic component of the error; the study of 
systematic errors is considered, for example, in Tereshchuk 
et al., 2019). The random state of the object of measure-
ment and its errors leads to some uncertainty, but before 
the measurements it is known that the value measured 
is within certain limits, and its value must be obtained 
with some degree of accuracy, the preliminary informa-
tion about the size of the object reduces uncertainty and 
the expected error will show the limits of this uncertainty, 
i.e. the more accurate the measurement result, the more 
information about the object being measured.

For the amount of information, the determining meas-
ure of uncertainty is entropy. The amount of information 
obtained about the object reduces uncertainty. The degree 
of uncertainty does not depend on the specific values of 
the independent quantity and is related to the law of prob-
ability distribution. The measure of the uncertainty of an 
object with many states (measured values (1)) is the func-
tional that determines the entropy:

( ) ( )1 2, , , nH X H p p p=  . (20)

If the measurement states are equally probable, then 
the functional (16) will take the form

( ) ( )2logH X n= . (21)

To determine the shape of the distribution of errors 
of geodetic measurements, determine the value of the en-
tropy coefficient by the Equation:

1

1 lg
10

2

L

i i
i

n n
n

E
D nK =

−⋅
=

σ

∑
, (22)

where D  is the width of the histogram column; n  is sam-
ple size; σ  is the root mean square error of the measured 
values; L  is the number of columns of the histogram; 
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in  is the number of values that fall into the i  is column 
( 1, ,i L=  ). The counter excess is determined by the 
Equation:

( )
1

E X
ε = , (23)

which for any known distributions in which ( ) 1E X ≥  is 
in the range [0; 1]. The asymmetry for all centered meas-
ured values is zero, ( ) 0S X =  so it cannot structurally de-
termine the shape of the distribution of measured values. 

The confidence probability of determining the shape of 
the distribution of measured values was determined by a 
simplified Equation (excluding the left and right distribu-
tion intervals)

1
1

n
n
−

η =
+

. (24)

Estimation of the distribution density is performed by 
the Equation:

( ) ( ) ( )
1

, ;
N

N
j j

j
p t M M t A t A B

=

   = l ϕ − ∈  ∑ . (25)

According to the described algorithm and Equa-
tions (1)–(25) a program for calculating the probability 
density for any exponential DensProb distributions in 
the FORTRAN programming language is created, the 
input values are: n , 1en , 2en , t T∈  output: probability 
densities, root mean square deviation, asymmetry, ex-
cess, entropy, entropy coefficient, counter excess, mean 
probability.

In Figure 2 shows a diagram of the equipment in the 
coordinate system ( )0xy , which indicates the numbering 
of equipment points, their rectangular coordinates ( ),x y , 

small arrows indicate the directions of displacement (de-
formation) of these points relative to point 11, which is 
taken as the center of equipment. The scheme is taken 
from the work (Gladilin et al., 2019). 

Corrections to the position of the equipment points 
relative to point 11 are shown in Table 1.

The value for calculating the probability density (cor-
rections to geodetic measurements), which are taken from 
(Gladilin et al., 2019), are given in Table 1.

Table 1. Corrections (t) in measurements between point 11 
other points of equipment

Point 
numbers

Correc tions, 
mm

Point 
numbers

Correc tions, 
mm

11–10 –1.6 11–12 1.4
11–13 2.5 11–09 4.4
11–16 –3.0 11–06 –3.8
11–19 7.8 11–03 3.8
11–14 –6.2 11–08 –5.9
11–17 6.6 11–05 3.1
11–20 1.4 11–02 –1.8
11–21 –3.4 11–01 –5.0
11–18 4.5 11–04 4.7
11–15 –3.2 11–07 3.8

When processing the data from Table 1 according to 
the described algorithm according to Equations (3)–(25) 
the following results were obtained: arithmetic mean 

0.505meant = , standard deviation 4.3465σ = , structural 
mean . 0.712str meant = , which is calculated by the Equa-
tion:

1
.

1

n

i i
i

str mean n

i
i

t p
t

p

=

=

=
∑

∑
. (26)

Structural standard deviation is: . 4.4029str meanσ = .
Asymmetry ( ) 0.0488S X −= , excess ( ) 1.605E X = , coun-

ter excess 0.789ε =  (by Eq. (23)), confidence probability 
0.9048η =  (by Eq. (24)); entropy coefficient 1.4384EK =  

(by Eq. (22)), the entropy ( ) 4.2344H X bit=  indicates 
that the loss of information in the distribution does not oc-
cur; Pearson’s criterion 2 700400χ =  and, accordingly, the 
distribution of t  does not obey the normal, the minimum 
functional (11) is found at 5N = , there are no system-
atic errors in a number. The calculation of the probability 
density was performed in the range from 621 3.en = −  to 

3.3592en = , the scale factor 0.052240M =  is calculated 
by the Equation:

1M
B A

=
−

. (27)

Decomposition coefficients: 1 1.312137l = ; l2 = 
–0.724554; 3 0.2849023l = ; 4 0.2944348l = − ;  l5 = Figure 2. The scheme of placement of points on the equipment 

and directions of their deviation after deformation
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–0.7371129. Estimation of the distribution density is per-
formed by Equoation (25):

( ) ( ) ( )
5

5

1
, ;j j

j
p t M M t A t A B

=

   = l ϕ − ∈  ∑ .

In accordance with the calculated values of excess, en-
tropy coefficient and counter-excess, the distribution of 
the two modal (Novickij & Zograf, 1991), the calculated 
probability densities for the measured values (Table 1) in 
the interval ;   8.8674;  10.2751A B = −     are given in 
Table 2, according to which the graph of the probability 
density distribution, which is shown in Figure 3.

We will perform an interval estimate of the found 
(arithmetic and structural) mean values at a confidence 
level of 0.9048η =  using the Equations:

mean L mean mean mean R meant z t t z− ⋅σ ≤ ≤ + ⋅σ , (28)

. . . . .str mean L str mean str mean str mean R str meant z t t z− ⋅σ ≤ ≤ + ⋅σ . 

 
(29)

Substituting all values into Equations (28) and (29), 

we obtain:

.9.07460 10.06782; 8.87886 10.28646mean str meant t− ≤ ≤ − ≤ ≤

.9.07460 10.06782; 8.87886 10.28646mean str meant t− ≤ ≤ − ≤ ≤ ,

in Table 1: 6.2mint = − , 7.8maxt = .
The measured values given in Table 1 do not exceed 

the limits defined by (28) and (29), which means that the 
measurements were performed without gross errors and 
they are subject to further processing to identify dominant 
factors.

Conclusions

These calculations show that not all the results of geodetic 
measurements obey the normal distribution law, this is 
clearly seen from the graph in Figure 3, and therefore 
it is necessary to establish the distribution law for each 
geodetic measurement in accordance with the algorithm 
described above, and then calculate the measured values 
from taking into account the obtained distribution law.
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Figure 3. Type of the found distribution of density of 
probability of corrections. The graph is rotated by 90º
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