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studied, illustrated in Figures 1 and 2: the normal section, 
the mean normal section and the central section. The nor-
mal section is determined by the plane that contains the 
normal line at one of the points of interest ( 1P  to 1

0P  in 
Figure 1), in addition to the two points on the surface ( 1P  
and 2P ). Since normal lines at two points are not copla-
nar, there are two normal sections: one that includes the 
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Introduction

An elliptical section is the curve that results from the in-
tersection of a plane with the ellipsoid of revolution. For 
an Earth section path, that plane contains three points: 
two of them on the surface of the ellipsoid and the third 
is determined by the type of the section. Three cases are 

Figure 1. Schema of elliptical sections; on the left: the first (in blue) and second section (in red);  
on the right: the mean (in green) and central section (in black)
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normal line of 1P  and another that includes the normal 
line of 2P , ( 2P  to 2

0P  in Figure 1) with the exception of 
cases where the points are on the same meridian or paral-
lel. The mean normal section is between the previous two, 
the third point of the plane is located at a midpoint of the 
intersections of the two normal lines on the Z-axis ( 3

0P  
in Figure 1). This definition is different from that given 
by Gilbertson(2012); later, the topic will be addressed. 
Finally, in the central section or great ellipse, the plane 
contains the center of the ellipsoid, 1P  and 2P , being a 
unique case since the straight lines from the origin to the 
points are coplanar. In the event the points have latitudes 
of different signs, the central elliptical section is between 
the first and second normal sections.

Unlike geodesic lines, the elliptical sections are plane 
curves and can be easily solved. The geodesic line is the 
shortest path on the ellipsoid between two points. The 
most convenient approach for the solution of the direct 
and inverse problems for geodesics is given by Karney 
(2013). When the two points are on the equator or on a 
meridian, all the elliptical sections match with the path of 
the geodesic line; these are the only cases where there is 
a flat curve.

The simplicity of the geometric problem is the main 
advantage of solving paths that connect two points on the 
ellipsoid with elliptical sections instead of geodesic lines. 
The normal section is usually used in Geodesy because it’s 
easier to reduce a raw EDM (Electronic Distance Meas-
urement) distance to the normal section than to the geo-
desic line. These measurements must be corrected due to 
the vertical deflection and ellipsoidal height. The great el-
lipse is studied in navigation by analogy of the great circle, 
or orthodromic line in the terrestrial sphere; however, the 
path of the great ellipse differs more from the geodesic line 
than do normal sections, specially if the points are on the 
same hemisphere away from the equator.

The problem of elliptical terrestrial sections was ex-
tensively addressed both by Geodesy and Maritime Navi-
gation. Literature reviews and different solutions to the 
problems can be seen in Deakin (2009), Sjöberg (2012), 
Gilbertson (2012) and Tseng et al. (2013), among others. 
In all cases, they start with the intersection of a plane with 
the ellipsoid; the parameters of the resulting ellipse are 

found and the inverse and direct problems are solved. The 
inverse problem is to calculate the distance and azimuth of 
the elliptical section, given the coordinates of the points, 
and the direct problem to find the coordinates of a second 
point, given the coordinates of the first and the distance 
and azimuth of the section. Iterative processes are used 
in both the case of the direct problem and the search for 
equidistant points of the section path.

All the intersections of a plane with an ellipsoid of rev-
olution are circles or ellipses (Deakin, 2009, pp. 3–5). The 
flattening of the normal and central sections is equal to or 
less than the flattening of the ellipsoid. Therefore, it is pos-
sible to apply the same perturbed series used in the ter-
restrial ellipsoid. In particular, relationships between geo-
detic, parametric and equidistant latitudes can be obtained 
without resorting to the numerical resolution of integrals 
or iterative processes. The length of an elliptic arc is simply 
the product between its equidistant radius and the differ-
ence among the rectified latitudes. This technique is the 
one that will be used to solve the problems: first, calculate 
the elliptical section and rotate it into a plane coordinate 
system, then transform the ellipse to an equidistant cir-
cumference. Any direct or inverse problem of distance can 
be solved in this circumference, and then the coordinates 
are transformed again to the original system. The use of 
spherical trigonometry formulas is completely unneces-
sary; only algebra and plane trigonometry are necessary.

This work does not try to demonstrate that the ellipti-
cal sections can replace the geodesic line, but to obtain a 
“closed” solution to the elliptical sections, mainly in ob-
taining waypoints.The following paragraphs explain the 
method used and describe algorithms and formulas to 
solve the inverse problem, the direct problem and way-
points of the route. In addition, numerical examples are 
provided comparing the results obtained for the different 
elliptical sections.

1. Description of the method

In all cases, 1λ  is taken as central meridian. In the direct 
method and the construction of waypoints, 2λ  is correct-
ed by adding the original value of 1λ .

In the first three subsections(1.1 to 1.3) well-known 
formulas are described. In subsection 1.4, Gilbertson for-
mulas (2012) are used; from subsection 1.5, the formulas 
of the proposed method are developed.

This method fails when 1P  and 2P  are simultaneously 
on the equator; in this case, the problem is solved on a 
circle of radius a  using 1λ  and 2λ  as coordinates, both 

12α  and 2α  are equal to / 2±π .

1.1. Cartesian coordinates of the points

In order to find the elliptical section, we must first calcu-
late the ECEF coordinates of three points that belong to 
the plane.

Two points: 1P  and 2P , are the sites of interest on the 
surface of the ellipsoid,

Figure 2. Representation in a plate carrée projection of elliptical 
sections with coordinate points 1 =f 60°, 1 =λ 0° and 2 =f 30°, 

2 =λ 80°. From bottom to top: great ellipse, second normal 
section, mean normal section and first normal section. The 

ellipsoid flattening was exaggerated at =1/2f

 



Geodesy and Cartography, 2022, 48(1): 1–10 3

T
1 1 1 1P = , , ;X Y Z    (1)

T
2 2 2 2P = , , ,X Y Z    (2)

where

( )2

= cos cos ;
= cos sin ;

= 1 sin ,

N

N

N

X R
Y R

Z R e

f λ
f λ

− f

 (3)

f  is geodetic latitude, λ  is geodetic longitude, e  is first 
eccentricity of the ellipsoid and NR  is the radius of cur-
vature in the prime vertical.

The ellipsoid of revolution is determined by 
the semi-major axis a  and the first flattening 
f . For example, in ellipsoid GRS80, = 6 378137a  m and 
1/ = 298.2572221008827.f  The first eccentricity e  is de-
fined as

( )2 = 2 ,e f f−

and the radius of curvature in the prime vertical is cal-
culated as

22
= .

1 sin
N

aR
e− f

The position of the third point is determined by the 
intersection of the straight lines, passing through 1P  and 
2P , with the Z -axis,

T
0 0P = 0,0, ,Z    (4)

where 0Z  depends on the elliptical section we are con-
sidering:

1. First normal section,
2

0 1 1= sin .NZ e R− f

2. Second normal section,
2

0 2 2= sin .NZ e R− f

3. Mean normal section,

( )
2

0 1 21 2= sin sin .
2 N N
eZ R R−

f + f

Gilbertson (2012) defines the construction of the mean 
normal section through the average of unit vectors at 1P  
and 2P , instead of considering an average position of the 
intersections of the normals with the Z-axis. However, it 
is preferable to define the elliptic sections consistently tak-
ing into account three points, one of which will always 
be on the axis of rotation Z . In practice, the different 
ways of defining the meannormal section have very small 
inconsistencies,as discussed below.

4. Great ellipse,

0 = 0.Z

1.2. Plane of the elliptical section

Points 1P , 2P  and 0P  determine two unit vectors that be-
long to the plane of the elliptical section,

1 0

1 0

P P
û = ,

P P
−
−

 (5)

2 0

2 0

P P
v̂ = .

P P
−
−

 (6)

The unit vector perpendicular to the plane is calcu-
lated as

ˆ ˆu vn̂ = .
ˆ ˆu v
×
×

 (7)

The equation of the plane is determined by a point 
thereof and a perpendicular vector. Taking as a point be-
longing to plane 0P , according to the properties of the 
vector scalar product, and being T

1 2 3n̂ = , ,n n n    and 
T= , ,X Y Z  X  the coordinates of any other point be-

longing to the plane,

( )0 ˆP n = 0.− ⋅X

0ˆ ˆn = P n,⋅ ⋅X

expanding the formula,

1 2 3 = ,Xn Yn Zn d+ +  (8)

where

0 1 0 2 0 3= .d X n Y n Z n+ +  (9)

1.3. Azimuth of a point on the ellipse

At any point on the ellipsoid,
T

T

T

Ê = sin ,cos ,0 ,

N̂ = sin cos , sin sin ,cos ,

Û = cos cos ,cos sin ,sin ,

− λ λ  

− f λ − f λ f  

f λ f λ f  

 (10)

are unit vectors that point East, North and Up, respec-
tively. To find the azimuth, we require a vector tangent to 
the curve of the elliptical section. The tangent vector at 
any point can be calculated as

ˆˆt = n U,×


 (11)

where n̂  is the vector perpendicular to plane, formula (7). 
The East component of the tangent vector is ˆt E⋅



 and the 
North component ˆt N⋅



, then the azimuth is

( )ˆ ˆ= arg t N, t E .α ⋅ ⋅
 

 (12)

The function ( ) ( )arg , arg ix y x y= + ⋅  is equivalent to 
the Fortran function ( )atan2 ,y x .

The vector tangent to the elliptical section given an 
azimuth 1α  is

1 1
ˆ ˆt̂ = Ncos Esin .α + α  (13)
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1.4. Parameters of the elliptical section

The intersection of the plane with the ellipsoid always re-
sults in an ellipse that, in turn, represents the desired path. 
The values of the semi-axes and the coordinates of the 
center of this ellipse are required.

Gilbertson (2012, p. 2) proposes the following solution 
for the parameters of the ellipse:

Given

2 2
1 2= ,p n n+  (14)

( )2 2 2 2 2 2
3 3= , = ,C b n a p E dn p a b+ −

where 1n , 2n  and 3n  are the components of vector n̂. The 

base vectors of the rotated coordinate system are as fol-
lows: 

2 1 3

1 2 3

/ /
ˆˆ ˆ ˆi = / , j = / , k = n.

0

n p n n p
n p n n p

p

   
   −   
   −   

With this data, the coordinates of the center of the el-
lipse are 

0
ˆˆ= j k,E d

C
+x  (15)

and the semi-axes and derived parameters from the flat-
tening are calculated as

2
= 1 , = ,d ba a b a

C C
− 

   (16)

( )2= , = 2 , = ,
2

fa bf e f f n
a f
−

−
−





  

 





 (17)

where n  is the third flattening of the elliptical section.

1.5. Orientation of the ellipse in a plane coordinate 
system

ECEF coordinates are moved and rotated, so that semi-
axis b  matches a local y -axis, and semi-axis a  matches 
an x -axis. The rotation matrices are obtained with the pa-
rameters of the perpendicular vector to the plane in such 
way that it coincides with the xy  -plane.

First, the Z -axis is rotated according to the orientation 
of n̂ , plus an additional / 2π  rotation so that the X -axis 
points towards the local “North”. Being 2sin = /Z n pε  and 

1cos = /Z n pε ,

Figure 3. Elliptical section in a plane coordinate system xy  . 
Vertices, nodes and the parametric angles of points 1P  and 2P  

are indicated by 1V , 2V , 1N , 2N  and 1β  and 2β , respectively

Figure 4. First normal section in a Mercator chart. The same points of the example in Figure 2 are used.  
The nodes and vertices of the path are indicated. The flattening of the ellipsoid is the original of GRS80.  

The path is closed when one or more full turns of the ellipsoid are made
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1 2

2 1

2 1

1 2

0 1 0 / / 0
= 1 0 0 / 0 =

0 0 1 0 0 1

/ / 0
/ / 0 ,
0 0 1

Z

n p n p
n p n p

n p n p
n p n p

   
   − −   
      

 −
 − − 
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R

where p is from formula (14).
Then the X -axis is rotated to null the Z  coordinate. 

Being 3sin =X nε  and cos =X pε , 

3

3

1 0 0
= 0 .

0
X n p

p n

 
 
 
 − 

R

Finally, the conversion of ECEF coordinates to a plane 
system containing the ellipse is:

0

0

0

= .X Z

x X x
y Y y
z Z z

   −
   −   
   −   

R R






 (18)

The z  coordinate should always result in a null value.
This system is illustrated in Figure 3; the parametric 

angles of the points on the ellipse, 1β  and 2β , arise from 
the equations

= cos ,

= sin ,

x a

y b

β

β



 






thus

= arg , ,yx
a b

 
β  

 









 (19)

where −π < β ≤ π . As an example, the projection of the 
first normal section, along with vertices and nodes, is il-
lustrated in Figure 4.

1.6. Construction of the equidistant circumference

The equidistant circumference has an equidistant radius 
Rµ  and rectified angles µ  transformed from parametric 
angles β . This can be achieved by analogy to the para-
metric and rectified latitudes in the ellipsoid of revolution, 
using the same formulas.

( )
=6

=1
= sin 2 ,

j

j
j

D jµ β+ β∑ 

  (20)

where Rµ  and coefficients jD  are calculated according 
to Table 1, by replacing a  with a  and n  with n . To dif-
ferentiate this coordinate system with that of the ellipse, 
we rename it to ,ξ η .

Table 1. Formulas to calculate Rµ  and µ  based on the third flattening n  and the parametric latitude β  (Orihuela, 2013)

2 4 61 1 1= 1 .
1 4 64 256

aR n n n
nµ
 
+ + + +  

( )=6
=1 sin 2 ,j

jj D jµ = β+ β∑ ( )6
1 sin 2 ,j

jj D j=
=

′β = µ+ µ∑

3 5
1

2 4 6
2

3 5
3

4 6
4

5
5

6
6

1 3 1= ,
2 16 32
1 1 9= ,
16 32 2048
1 3= ,
48 256
5 3= ,
512 512
7= ,

1280
7= .

2048

D n n n

D n n n

D n n

D n n

D n

D n

− + −

− + −

− +

− +

−

−

3 5
1

2 4 6
2

3 5
3

4 6
4

5
5

6
6

1 9 205= ,
2 32 1536
5 37 1335= ,
16 96 4096
29 75= ,
96 128
539 2391= ,
1536 2560
3467= ,
7680
38081= .
61440

D n n n

D n n n

D n n

D n n

D n

D n

′ − +

′ − +

′ −

′ −

′

′

Figure 5. Equidistant circumference of the elliptical section of 
Figure 3
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The points of the nodes and vertices of the section 
path correspond to the quadrants of the circle (Figure 5).

Calculating the angular difference according to the 
relative position of the points on the circumference may 
require the use of conditional sentences. To avoid this and 
so that the difference is positive and below 2π , it is con-
venient to rotate the coordinate system according to the 
angle of the first point,

1 1

1 1

cos sin
R = ,

sin cos
µ µ 

 − µ µ 

 



 

applying this matrix, the following coordinate system is 
obtained (see Figure 6),

cos
= ,

sin
R
R
µ

µ

   µξ
  

η µ     
R














 (21)

( )= arg , .µ ξ η   (22)

The distance between any two points on the elliptical 
section is

( )12 2 1= .s Rµ µ −µ

   (23)

1.7. From the equidistant circumference to geodetic 
coordinates

The coordinate reversion depends solely on the formulas 
in subsections 2.5 and 2.6.

T
cos

= ;
sin

R
R
µ

µ

 µξ 
  η µ    

R










 (24)

( )= arg , ;µ ξ η  (25)

( )
=6

'

=1
= sin 2 ,

j

j
j

D jβ µ + µ∑

   (26)

where coefficients '
jD  are extracted from Table 1.

cos
= ;

sin

ax
y b

 β 
  

β    










 (27)

0
T T

0

0

= ,
0

XZ

X x x
Y y y
Z z

     
     +     
          

R R


  (28)

where T
0 0 0, ,x y z    are the coordinates of the center of 

the ellipse .

( )( )
( )

2= arg 1 , ;

= arg , ,

r e Z

X Y

f −

λ
 (29)

where = ,r X Y .

2. Inverse problem

2.1. Algorithm of the inverse problem

For any elliptical section:
1. Calculate the ECEF coordinates of 1P  and 2P , for-

mulas (1), (2) and (3).
2. Calculate the ECEF coordinates of 0P  which de-

pend on the type of elliptical section, formula (4).
3. Calculate the perpendicular vector to the plane of 

the elliptical section, n̂ , through û  and v̂ , formu-
las (5), (6) and (7).

4. Determine the equation of the plane with normal-
ized parameters, formulas (8) and (9).

5. Calculate the coordinates of the center of the ellipti-
cal section, 0x  and the parameters of the ellipse, a , 
b  and n , formulas (15), (16) and (17).

6. Calculate 12α  and 2α  using the ENU components 
of 1P  and 2P , formulas (10), (11) and (12).

7. Change the orientation of the ECEF system to 
a plane coordinate system, calculate ( )1 1,x y  , 
( )2 2,x y  , 1β , 2β , 1µ , 2µ  and Rµ , formulas (18), 
(19), (20) and Table 1.

8. Rotate the plane coordinate system according to 1µ ; 
calculate ( )1 1,ξ η

 , ( )2 2,ξ η

 , 1µ  and 2µ , formulas 
(21), (22).

9. Calculate the length of the elliptical section, 
( )12 2 1= .s Rµ µ −µ

 

2.2. Numerical examples

The inverse algorithm is applied to the cases in the Table 
2; the results are shown in Table 3 including, for compari-
son, the values corresponding to the geodetic line accord-
ing to Karney’s algorithm (2013). The numerical results 
presented in Table 3 are consistent in the order of mil-
limeters with those shown in Gilbertson (2012, p. 3), al-
though the mean normal section is defined differently; the 
ellipsoid used by Gilbertson (2012, p. 3) is not indicated. 

Figure 6. Rotated equidistant circumference that represents 
the elliptical section of Figure 3. Between 1P  and 2P , four 

waypoints are marked at equidistant angles
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Depending on the desired accuracy, the distances of the 
sections and the geodetic line are very similar; however, 
the path is very different when the points are close to the 
antipodes. This case, taken from Karney (2013, p. 51), is 
illustrated in Figure 7: here, the paths between the differ-
ent sections have the most notable differences.

3. Direct problem

Because we need to know 0Z  at the time of posing the 
direct problem, it is only applicable to the central section 
and the first normal section.

3.1. Algorithm of the direct problem

1. Calculate the ECEF coordinates of 1P , formulas  
(1) and (3).

2. Calculate the ECEF coordinates of 0P , which de-
pend on the central elliptical section or first nor-
mal section, formula (4).

3. Calculate the ENU components of 1P , formula 
(10).

4. Calculate the vector tangent to the elliptical sec-
tion, t̂ , formula (13).

5. Calculate the vector perpendicular to the plane of 
the elliptical section, n̂ , through û  and t̂ , formula 
(5), ˆˆn = u t×



 and n̂ = n / n
 

.

6. Determine the equation of the plane with normal-
ized parameters, formulas (8) and (9).

7. Calculate the coordinates of the center of the ellip-
tical section, 0x  and the parameters of the ellipse, 
a , b  and n , formulas (15), (16) and (17).

8. Change the orientation of the ECEF system to a 
plane coordinate system, calculate ( )1 1,x y  , 1β , 
1µ  and Rµ , formulas (18), (19), (20) and Table 1.

9. Rotate the plane coordinate system according to 
1µ , calculate ( )1 1,ξ η

  and 1µ , formulas (21), (22).

10. Calculate 2µ  according to the length of the ellipti-
cal section, 2 12 1= / .s Rµµ +µ

 

Table 2. Test cases: 1 to 7 are extracted from Gilbertson (2012, p. 3), 8 is the example of Figure 2 and case 9 is an example with 
points near the antipodes, extracted from Karney (2013, p. 51)

Case 1f 1λ 2f 2λ

1 37.331931575000 0 26.128566516700 41.476529802800
2 35.269791283300 0 67.370771216667 137.791198430600
3 1.000000000000 0 –0.998286322222 179.296674991700
4 1.000000000000 0 1.020885977778 179.771622900000
5 41.696077777800 0 41.696166666667 0.000155555600
6 30.000000000000 0 37.892351622222 116.321302341700
7 37.000000000000 0 28.260193152778 –2.627646994400
8 60.000000000000 0 30.000000000000 80.000000000000
9 –30.000000000000 0 29.900000000000 179.800000000000

Figure 7. Illustration of case 9, Table 3, in a Mercator chart 
(GRS80 ellipsoid). From South to North: geodesic line (dotted 

line), first normal section (in blue), mean (in green) and 
central section (in black; both paths are confused in the chart) 

and second normal section (in red)

11. Calculate ( )2 2,ξ η , 2µ  and 2β , formulas (24), (25) 
and (26).

12. Calculate ( )2 2,x y   and ECEF coordinates of 2P , 
formulas (27) and (28).

13. Calculate the geodetic coordinates f2 and 2λ , for-
mula (29).

14. Calculate 2α  using the ENU components of 2P , 
formulas (10), (11) and (12).

3.2. Consistency tests with the inverse algorithm

In Table 4, the application of the inverse algorithm is con-
trasted with the data in Table 2. The values are in deci-
mal degrees. The differences converted to radians are of 
the same order as the truncation errors of double type 

 



8 S. Orihuela. Earth section paths. Solution to the inverse and direct problems, and waypoints without iterations

Table 3. Inverse algorithm applied to Table 2, a) central section, b) first section, c) second section, d) mean section,  
e) geodesic (Karney, 2017). The GRS80 ellipsoid is used

Case 12α 2α 12s

1a 95.524334992059 118.048043737514 4085798.3231
1b 95.463168472388 118.109245795319 4085797.7189
1c 95.479913389005 118.092491115239 4085797.7343
1d 95.471538220679 118.100871163620 4085797.7125
1e 95.466906500992 118.100037749146 4085797.7105
2a 15.791303432383 144.869713292801 8084460.1567
2b 15.755076626803 144.905877052188 8084459.1586
2c 15.733449357830 144.927466667530 8084459.0171
2d 15.744248501486 144.916686326888 8084459.0453
2e 15.739863599959 144.927624307952 8084459.0129
3a 89.867403020768 90.144779253272 19959215.8296
3b 88.776954141822 91.235228165699 19959214.7524
3c 90.956084099565 89.056098200356 19959220.9103
3d 89.866468618648 90.145713655395 19959215.8270
3e 89.025504102167 90.976239608158 19959214.6263
4a 6.490942063115 173.509016585774 19779458.5035
4b 6.448311764271 173.551646882784 19779453.1247
4c 6.447427425187 173.552531221830 19779453.0147
4d 6.447869564525 173.552089082510 19779453.0697
4e 5.004745034151 174.995222922341 19779362.8384
5a 52.677183439521 52.677286524089 16.2833
5b 52.677183245480 52.677286717925 16.2833
5c 52.677183246422 52.677286718868 16.2833
5d 52.677183244462 52.677286716908 16.2833
5e 52.677183243912 52.677286716358 16.2833
6a 45.164346913679 128.964686405634 10002080.2789
6b 45.046799267671 129.082184042614 10002069.0165
6c 45.020017156451 129.108954727944 10002068.0591
6d 45.033402521686 129.095575074700 10002068.4630
6e 45.000084482765 129.136526168971 10002067.6835
7a –165.003783117715 –166.418217417802 999975.5090
7b –165.000014612863 –166.421987666777 999975.5084
7c –165.000818247941 –-166.421183659669 999975.5084
7d –165.000416336835 –166.421585756827 999975.5084
7e –165.000275690648 –166.421458799242 999975.5084
8a 82.019793359039 144.992678079506 6623533.0390
8b 81.925502050507 145.087127664755 6623530.9089
8c 81.965324405885 145.047238382836 6623531.1326
8d 81.945391051954 145.067205222509 6623530.8971
8e 81.931524668844 145.068561860824 6623530.8637
9a 119.812789089792 60.087865277484 20000645.1302
9b 158.110377040057 21.789943762226 19989954.9854
9c 36.661670419061 143.238521275916 20010302.0144
9d 119.938021390319 59.962632345348 20000597.4530
9e 161.890524809390 18.090737172758 19989832.8275
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numbers. Table 4 does not show the accuracy of the algo-
rithms but the consistency of the inverse-direct operations 
with the original data.

Table 4. Consistency of the inverse and direct problem.  
Values 12α , 2α  and 12s  are calculated with the inverse 
algorithm; 2′α , 2′f  and 2′λ  are calculated with the direct 

algorithm. The cases are taken from Table 2.  
The difference is in decimal degrees

Case ( ) 15
2 2 10′α −α × ( ) 15

2 2 10′f −f × ( ) 15
2 2 10′λ −λ ×

1a –25 –6 –32
1b 0 –6 6
2a –51 38 –25
2b –25 25 0
3a 0 0 0
3b 0 0 25
4a –51 –9 0
4b  0 –22 0
5a –6 –13 –7
5b –6 –13 –20
6a –25 –6 –25
6b –25 38 –25
7a 0 –10 5
7b 0 3 5
8a –25 6 13
8b 0 32 –13
9a 0 0 0
9b –13 0 0

4. Waypoints

Building waypoints is a combination of inverse and direct 
problems. The number of points includes the final and ini-
tial points. We drew Figures 2, 4 and 7 with the help of the 
following algorithm:

4.1. Algorithm to build waypoints

1. Complete steps 1 through 9 of the inverse algo-
rithm, (section “Inverse problem”).

2. Given a certain number of points k , calculate 
the equidistant angular increment of the points, 

( )12= / / ( 1)s R kµδµ −

 .
3. Find the rectified angle for each point, 1=i i−µ µ + δµ   .
4. For point iµ , calculate ( ),i iξ η , iµ  and iβ , formu-

las (24), (25) and (26).
5. Calculate ( ),i ix y   and the ECEF coordinates of Pi , 

formulas (27) and (28).
6. Calculate geodetic coordinates if  and iλ , formula 

(29).
7. Calculate iα  with the ENU components of Pi , for-

mulas (10), (11) and (12).
8. Repeat steps 3 to 7 until the number of points is 

completed.
An example is given in Table 5.

Table 5. Example of the path of the first normal section of case 
8 (Table 2), GRS80 ellipsoid

Po
in

t

f λ α

1 60.000000000000 0.000000000000 81.925502050507

2 60.269175390318 13.254222266165 93.432237828252

3 59.226197861025 26.201862952712 104.629189863010

4 56.995400315997 37.974562685100 114.637125249651

5 53.796126315162 48.157293005483 123.029798100222

6 49.860098676240 56.751503061822 129.796812992010

7 45.383235868353 63.974206036611 135.142396468560

8 40.514180802185 70.097147265708 139.324201305814

9 35.360660410871 75.370376432333 142.576444522586

10 30.000000000000 80.000000000000 145.087127664755

Conclusions

There are some advantages of elliptical sections with 
respect to geodesics: they are easily rectifiable plane 
curves and the path is unique when one or more full 
turns of the ellipsoid are made. The central section is 
unique for the two points and the direct and inverse 
problem can be solved; while, there are three types of 
normal sections to connect two points.The central sec-
tion cannot replace the geodesic path when the points 
are close to the antipodes, although, proportionally the 
difference of the distances traveled is relatively small.
Being a plane curve, the elliptical section has a solution 
to the inverse and direct problem, and waypoints with-
out resorting to iterations, with the exception of the 
direct problem of the second and meannormal sections. 
The algorithms that solve this problem were described, 
which, unlike other approaches, make use of the equi-
distant circumference, reducing the length problem to 
the sum and difference of angles. The inverse and direct 
algorithms are consistent in the order of truncation er-
ror of double-type numbers.
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APPENDIX

It is not possible to calculate, without iterations, the direct problem of the second and meannormal sections. This is be-
cause we need to know the value of 0Z . An iterative algorithm to solve these problems can be the following:

1. Solve the direct problem for the central section with 1f , 1λ  y 12α  (section “Direct problem”).
2. With the obtained value of 2′f , calculate the ECEF coordinates of point 0P , which depend on the second or mean 

normal section, formula (4).
3. With the new value of 0P , solve the direct problem again until obtaining, 2f , 2λ and 2α . The value of 2f  will be 

used to recalculate 0P  formula , 2 2=′f f .
4. Repeat steps 2 and 3 until 15

2 2 <1 10−′f − f × .
Table 6 shows the consistency of the inverse and direct problem of the second and mean normal sections, according 

to the examples in Table 2.

Table 6. Consistency of the inverse and direct problem. Values 12α , 2α  and 12s  are calculated with the inverse algorithm; 2′α , 2′f  
and 2′λ  are calculated with the direct algorithm. The cases are taken from Table 2. The number of iterations is added

Case ( ) 15
2 2 10′α −α × ( ) 15

2 2 10′f −f × ( ) 15
2 2 10′λ −λ × Iter.

1c –25 6 –32 5
1d 0 6 0 5
2c –25 0 –25 5
2d –25 25 –25 4
3c 0 0 –25 8
3d 0 0 –51 5
4c 0 4 0 4
4d 0 4 0 4
5c –13 –13 –20 2
5d –6 0 –7 2
6c 0 13 –25 6
6d 0 –19 25 6
7c 0 3 5 3
7d 0 54 5 3
8c –25 32 –25 5
8d –25 –6 0 5
9c 0 25 0 7
9d 25 25 51 6
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