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Hilbert spaces. In Freeden and Gutting (2013), spherical 
spline approximation of discrete boundary value problems 
is defined for a smooth or regular surface. In Freeden and 
Gutting (2018), spline interpolation and exact integration 
for the Beltrami-Laplace operator are discussed on the 
spherical surface. In Freeden et al. (1998), a complete dis-
cussion of the spherical splines, Green’s functions for the 
iterated Beltrami-Laplace and consecutive iterated Helm-
holtz operators, pseudo-differential operators, and radial 
basis functions (RBFs) are presented. The theory of spline 
functions through distribution theory, surface Green’s 
functions for the consecutive iterated Helmholtz operator 
and their existence, uniqueness and computational proce-
dures are presented in Freeden (1984) and Freeden (1981). 
Based on Green’s function, spline functions and zonal ker-
nels are introduced in Freeden and Schreiner (2009).

The principle of employing the least squares 2D bi-cu-
bic spline approximation method to estimate a smoothed 
surface of a 2D data set are presented in Amiri-Simkooei 
et al. (2018). Thin plate splines and their applications in 
Geodesy are studied in Keller and Borkowski (2019) in 
the context of a reproducing kernel Sobolev space. The 
local spherical thin plate splines are also derived and com-
pared with the global spherical splines. The applications 
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Introduction 

This paper is concerned with finding a minimizer of the 
applied specific operator, which is either the iterated Bel-
trami-Laplace or consecutive iterated Helmholtz, to the 
particular Hilbert space in the sense of norm on a smooth 
manifold. The minimizer satisfies the Dirichlet or Neu-
mann conditions at given points of the manifold.

The applications of this problem are in a number 
of fields in mathematical physics and engineering, e.g., 
Earth’s gravity field and linear elasticity theory. The solu-
tion of the minimization problem has physical interpreta-
tion. For instance, in elasticity theory it means minimizing 
the bending energy of a thin layer.

In order to solve the minimization problem, spline in-
terpolation approach is considered. Based on what the do-
main is and which boundary conditions are used, different 
problems of finding spline interpolant must be solved.

In the spherical domain, the spline interpolation has 
been investigated in a number of different studies in-
cluding Freeden et al. (2018), Freeden (1981), Keller and 
Borkowski (2019), Sloan and Womersley (2002), Bara-
midze et al. (2006), and Wahba (1981, 1990). In Freeden 
et al. (2018), spherical splines and zonal kernels are de-
fined in the context of Sobolev and reproducing kernel 
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in interpolating the GRACE satellites’ positions in their 
ground-track repeat orbit and the Total Electron Content 
(TEC) in the ionosphere are presented. In Klees et al. 
(2008), the concept of RBFs is employed to locally inter-
polate gravity data. Several types of spherical RBFs are in-
troduced and implemented to interpolate residual gravity 
anomalies using GPS-Leveling data. In Sloan and Womer-
sley (2002), the data interpolation in Geodesy is discussed 
by the concepts of minimum energy. Spherical harmonics 
are taken as the fundamental bases and the weight coeffi-
cients. Spherical interpolating and smoothing splines for a 
set of linearly independent evaluation functionals are dis-
cussed in Wahba (1981). Moreover, reproducing kernels 
are given in an analytic integral representation. 

We are motivated by the minimization problem for 
data interpolation on the surface of a spheroid. Physical 
explanation for the importance of spheroidal surface can 
be observed in the interpolation of gravity data in Earth’s 
gravity field, with its geometry being better defined with 
a spheroid. Earth is impacted by a number of different 
(inner and outer) forces, which make its shape irregular. 
To approximate this rough surface, we can use a sphere. 
However, observations have confirmed the spheroidal 
shape of the Earth. So, having a mathematical framework 
for interpolation on this special surface is highly needed. 
Although many works have been done on the spherical 
(spline) interpolation, there is little done on the spheroi-
dal case. An important work for outer spheroidal spline, 
namely, Abel-Poisson kernel spline, has been done in 
Akhtar and Michel (2012); However, the case where data 
are on the surface of spheroid is fundamentally different 
and is investigated in the present paper.

This paper is organized as follows. Preliminaries and 
minimization problems are stated in Section 1. Section 2 
is devoted to the surface Green’s functions approach for 
Dirichlet and Neumann conditions at the given points of 
the spheroid. This section is ended with finding the iter-
ated and consecutive iterated surface Green’s functions. 
The definition of spline interpolant is developed in Sec-
tion 3. Application of spheroidal spline interpolation for 
Gravity Data in Geodesy are presented in Section 4. At the 
end, conclusions are stated. In Appendix A, the eigenval-
ues and eigenfunctions of the Beltrami-Laplace equation 
are derived. Finally, the approximate formula for iterated 
Green’s function is given in Appendix B. 

1. Preliminaries and minimization problem

Similar to a sphere, an oblate spheroid is a surface of 
revolution with genus zero. Because of the inequality of 
its axes, it acquires a special geometry different from a 
sphere. Several important operators and definitions that 
are used frequently in the paper are given in the follow-
ing.

Definition 1.1. Let a  and b  be the semi-major and 
semi-minor axes of the oblate spheroid, respectively. The 
eccentricity of the corresponding oblate spheroid is de-
fined by 

2 2
2

2
.a be

a
−

=

Let θ  and λ  be the co-latitude and the longitude, 
respectively. The oblate spheroidal coordinate system is 
defined as 

    ( ) ( )2, , sin cos , sin sin , 1 cos .x y z a a a e= θ λ θ λ − θ  (1)

Remark 1.1. The second eccentricity is defined by 
2

2
2

'
1

ee
e

=
−

. The prolate spheroidal coordinate system is 

defined when 2 2is replaced by  'e e  in the oblate spheroi-
dal coordinates (1). 

Definition 1.2. On a differentiable manifold of dimen-
sion n , the iterated Beltrami-Laplace operator is defined 
by 

1 1
1 1

1 1

1 1 ,v v
v v

v v

i j i jv
B i j i j

i j i j

g g
g gg g
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   

 (2)
where, for , 1,2, ,i j n=  , ijg  and g  are the elements and 
determinant of a metric tensor, respectively. 

 For the case 1v =  in (2), the operator ÄB  is called 
the Beltrami-Laplace operator. This operator in spheroidal 
coordinates ( ),θ λ  is represented by 
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(3)

The i-th Helmholtz operator is defined as sum of the 
Beltrami-Laplace operator and the negative of its i-th ei-
genvalue ip , namely, 

( )
2

22 2 2

2

2 2 2 2 2 2 2

1
1 sin

cot 1 .
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∂
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+ −
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(4)

The consecutive iterated Helmholtz operator of degree 
v , with its i-th element acting iq  times, is defined as 

1
0

.v
C v

qq
H H H∆ = ∆ ∆  (5)

Definition 1.3. Let us denote   as the surface of a 
spheroid. The Hilbert space of all infinitely differentiable 
functions for the operator   of the form (2), (4) and (5) 
is defined as 

( ) ( ) ( )2{ | and }.H F F C F L∞= ∈ ∈   

Definition 1.4. Under particular interpolation condi-
tions, the function ( )S H∈   is called a spline interpolant 
when it is the solution of one of the following problems
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 – Minimization problem of the iterated Beltrami-
Laplace operator 

( ) ( )2arg min .v
Bf H LS f∈= ∆    (6)

 – Minimization problem of the consecutive iterated 
Helmholtz operator 

( ) ( )
1

2
0

arg min .v
v

qq
f H H H LS f∈= ∆ ∆     (7)

As an interpolation problem, the following set of J  
distinct points 

{ }1, , ,J= η η ⊂ 

is given such that the given functionals applied to S  at 
points 1 2, , , Jη η η  are known real values 1 2, , , JU U U , 
respectively. In this paper, the given functionals for the 
minimization problems (6) and (7) , are either of the fol-
lowing cases

−  discrete Dirichlet condition at  , namely, 

( ) , 1, , ,i iS U i Jη = =   (8)

  − discrete Neumann condition at  , namely, 

( ) , 1, , ,i i
S U i J∂

η = =
∂n



where n  is outward normal vector to  . 
Remark 1.2. The existence and uniqueness of the so-

lutions of problems (6) and (7) are guaranteed (for more 
details, see Freeden, 1981). 

 
Definition 1.5. With homogeneous discrete Dirichlet 

and Neumann conditions at  , the following Hilbert 
spaces are defined 

( ) ( ) ( )0 { | 0, 1, , },D
iH F H F i J= ∈ η = =    (9)

( ) ( ) ( )0 { | 0, 1, , }.N
i

FH F H i J∂
= ∈ η = =

∂n
 

Remark 1.3. The space ( )H   is of key importance 
to define the spline interpolant. This space can be written 
as the direct sum of the null space of the operator and 
the Hilbert space ( )1

tH   for ,t D N= . To find the spline 
interpolant in the Hilbert space ( )H  , the reproducing 
kernel in ( )1

tH  , for ,t D N= , has to be constructed. 

2. Surface Green’s functions

In order to define reproducing kernels, a common ap-
proach is to find surface Green’s functions (see Freeden, 
1981). According to the differential operators of the form 
(2)–(5), the surface Green’s functions are derived for 
discrete Dirichlet and Neumann conditions. Following 
the method of Green’s function, described in Greenberg 
(2015), it can be shown that 

.B BG Fd F Gd∆ σ = ∆ σ∫∫ ∫∫ 
 (10)

Formula (10) also holds for operators v
B∆  and 

CH∆  
as operator .B∆

2.1. System of surface spheroidal harmonics for 
Green’s functions

In order to derive Green’s functions, one needs to have a 
fundamental system of surface spheroidal harmonics. As 
mentioned in Remark 1.3, we have the following decom-
position 

( ) ( ) ( )0 ,tH H= ⊕    

where ,t D N= , depends on the discrete Dirichlet or Neu-
mann conditions while ( )   is the null space of opera-
tor   on the surface  . The surface spheroidal harmon-
ics are the solution of the homogeneous Beltrami-Laplace 
equation on the spheroid  . This problem is solved in 
Appendix A.

If the solution has a zero degree eigenfunction, then 
the problem of finding the generalized Green’s function 
has to be considered. The generalized Green’s function is 
independent of the given data. Based on the definition of 
spline interpolant similar to Freeden (1984), Freeden and 
Schreiner (2009), and Wahba (1981), this type of Green’s 
function can be exploited for both discrete Dirichlet and 
Neumann conditions. In the following subsections, the 
first Green’s functions are introduced. These functions do 
not possess a zero order eigenfunction. With these func-
tions, the fundamental system of surface harmonics are 
designed. Also the second Green’s functions are created 
for discrete Neumann condition. It can be observed that 
the second Green’s functions possess a zero order eigen-
function. In the case of generalized Green’s functions, a 
set of complete orthonormal basis of surface spheroidal 
harmonics with a zero degree eigenfunction is formed.

2.2. First Green’s function

For ,ξ η∈  and   in the form of (2), the function 
( ),G ξ η  is called the first Green’s function or Green’s 

function for Dirichlet condition, when it satisfies 

( ) ( ), ,G ξ η = δ ξ −η  (11)

where δ  denotes the Dirac delta function. Relation (10) 
holds for discrete Dirichlet condition (8). From (10) and 
(11), it is simply concluded that 

( ) ( ) ( ), .BF G F dη = ξ η ∆ ξ ξ∫∫
For finding the first Green’s function, a general meth-

od, proposed in Felsen and Marcuritz (1994), is consid-
ered. According to this method, a singular point is placed 
on the spheroid’s poles 0,θ = π . Thus the Green’s func-
tion is singular at these points. Furthermore, the Green’s 
function obeys the laws of wave propagation. For instance, 
the surface and its factor from which the wave crosses are 
indispensably important.
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Proposition 2.1. Let the points ξ  and η  be on the 
spheroid ,  with spheroidal coordinates ( ),θ λ  and 
( )', ' ,θ λ  respectively. By setting the standard notation 

( )min , '<θ = θ θ  and ( )max , ' ,>θ = θ θ  the first Green’s 
function in ( )0

DH   is 

( ) ( )

( )( )

2
2 2

2 22

2 2

2
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, '; , ' ln 2 cos 2 1 sin
2

1 sin cos
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aG e e e

ea

e

a u v m
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< <

< <
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=

θ θ λ λ = θ + − θ +
π

 − θ − θ  −
 π − θ + θ 

λ − λ
π∑

 

 
(12)

where 
( ) ( )2 2

22 2
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;
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2 2
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1 sin cos
.

1 sin cos
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m

m

v
e e

e

e

> >
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θ θ =  
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−

×



−


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−







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θ 

θ + θ
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The series representation in (12) is uniformly conver-
gent, at point ξ = η  and poles 0,θ = π . 

Proof. From (3) and (11), it can be shown that 

( )

2

2 2 2 2 2 2

2
2

2 2

1 cot
1 sin (1 sin )

1 , '; , ' .
sin

G G
e e

G a

∂ θ ∂
+ +

∂θ− θ ∂θ − θ

∂
= δ θ θ λ λ

θ ∂λ

 

(13)

By splitting the Dirac delta function ( ), '; , 'δ θ θ λ λ  into 
products of two Dirac delta functions in azimuth and lati-
tude components and dividing them by the surface factor, 
Equation (13) is reformulated to 

   

( ) ( )

2 2

2 2 2 2 2 2 2 2

2
2 2

1 cot 1
1 sin (1 sin ) sin

' '
.

1 sin sin

G G G
e e

a
e

∂ θ ∂ ∂
+ + =

∂θ− θ ∂θ − θ θ ∂λ

δ θ− θ δ λ −λ

− θ θ

 
(14)

To solve (14), the method of separation of variables is 
considered as 

( ) ( ) ( ), '; , ' , ' , ' .G G Gθ λθ θ λ λ = θ θ λ λ

Based on the distribution theory (see details in Felsen 
and Marcuritz (1994)), the azimuth delta function can be 
written as 

( ) ( )
1

1' 1 2 cos ' .
2 m

m
∞

=

 
δ λ −λ = + λ −λ  π  

∑  (15)

By substituting (15) in (14) and (13), the first green’s 
function is expressed by the following series 

( ) ( ) ( ) ( )2 2
0

1
, '; , ' , ' , ' cos ' .m

m
G a G a G m

∞

=

θ θ λ λ = θ θ + θ θ λ −λ∑
 (16)

From (16) and (13), it is deduced that 

( )0
2 2

sin 1 ' .
21 sin

dGd
d de

 θ
= δ θ− θ  θ θ π− θ 

 (17)

Solving Equation (17) leads to 

( ) ( )2 2
0 0

2 2

2 2

ln 2 cos 2 1 sin

1 1 sin cosln .
2 1 sin cos

G a e e e

e

e

θ = θ+ − θ +


 − θ − θ  
 − θ + θ   

(18)

By integrating both sides of (17) in the interval 

 and tending  to zero, it is obtained that 

2 2
0 0 1 1 sin| | .

2 sin
dG dG e
d d+ −

− θ
− =

θ θ π θ
 (19)

From Equation (19) and (18), The coefficient 0a  in 
(18) is 

0
1 .

2
a =

π
To calculate mG  in (16), the following equation must 

be solved 

( )
2 2

2
2 2

sin 1 sin 1 ' .
sin1 sin

m
m

dGd em G
d de

 θ − θ
− = δ θ− θ  θ θ θ π− θ 

 (20)

It can be shown that the Equation (20) leads to the 
eigenvalue problem 

2
2 2 2 2

sin sin .
1 sin 1 sin

m
m

dGd m G
d de e

 θ θ
=  θ θ− θ − θ 

This eigenvalue problem yields 

2 2

sin .
1 sin

m
m

dG
mG

de

θ
= ±

θ− θ
 (21)

The solutions of Equation (21) for m+  and m−  are, 
respectively, 

( ) ( )2 2

22 2

2 2
;

, ' 2 cos 2 1 sin

1 sin cos

1 sin cos

me
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u e e

e

e
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< <
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θ θ = θ + − θ

−

+
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( )
2 2

22 2
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1, '
2 cos 2 1 sin

1 sin cos
.

1 sin cos

me

m

m

v
e e

e

e

> >
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−




−
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
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θ 

θ + θ
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(23)

Therefore, mG  can be written as 

( ), ' .m m m mG a u vθ θ =

Again by performing the same task as for (19), it can 
be concluded that 

2 21 1 sin| | ,
sin

m mdG dG e
d d+ −

− θ
− =

θ θ π θ

and then 

1 .
2ma

m
= −

π

Substituting 0G  and mG  in (16) leads to the solution 
given in (12). The functions 

2 2

1 ;
2 cos 2 1 sine e< <θ + − θ

2 2

2 2

1 sin cos
  ,

1 sin cos

e

e
< <

< <

− θ + θ

− θ − θ

are, respectively, ascending and descending functions in 
the interval ( )0,π . The choices of signs >  or <  in (22) 
and (23) make the series in (12) uniformly convergent. 

2.3. Second Green’s function

Again suppose that the operator   has the form (2) with 
1v = . The function ( ),G ξ η  is called second Green’s func-

tion or Green’s function for discrete Neumann condition, 
when it is the solution of the following problem 

( ) ( ) 1, ,G
A

ξ η = δ ξ −η −


  (24)

where 
2

2 1 12 1 ln
2 1

e eA a
e e

 − + = π +  −  


is the surface area of the spheroid  . From (24) and (10), 
it is deduced that 

( ) ( ) ( ) ( )1 , .BF F d G F d
A

η = ξ σ + ξ η ∆ ξ σ∫ ∫∫ 


Remark 2.1. If the complete system of surface har-
monics is chosen, then the generalized Green’s function 
could be used for any set of linearly independent evalua-
tion functionals (see Wahba, 1981). Therefore, the gener-
alized Green’s function under discrete Dirichlet conditions 
at   also satisfies (24). 

In the following Proposition, the second and forth or-
der approximate formulas are given for the second Green’s 
function. 

Proposition 2.2. The second and forth order expan-
sions for the second Green’s function of Beltrami-Laplace 
operator are, respectively, 

( ) ( )( )

( )
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2 2 2 2
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A

a a e a
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 ′θ  ′ ′θ + θ +  ′θ      

θ +





 




( )

2
2os ' – .a

A
θ

 

(26)

Proof. First of all, the following appropriate conformal 
mapping must be provided 

( ) .iT e λζ = θ  (27)

With this conformal map, the spheroid is mapped 
to the complex plane where two-dimensional vari-
ables can be represented in a complex variable. We set 
( ) ( )Ø , , '; , 'Gζ τ = θ θ λ λ , where ( ) '' .iT e λτ = θ  This means 

that the second Green’s function is shown in the complex 
plane as the function ( )Ø ,ζ τ . By using (27) in (24), it can 
be shown that 

( )

( )

2 2 2
2 2 2 2
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2
2 2 2 2
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Ø Ø Ø Ø1 2

Ø Ø 1 ,

e e e

e e a
A
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+ ζζ − ζζ + ζ + ζ +

∂ζ∂ζ∂ζ ∂ζ∂ζ ∂ζ

 ∂ ∂
ζ + ζ = δ ζ − ζ − 
∂ζ ∂ζ  

 

(28)

where ζ  denotes the conjugate of ζ . By using (27), it is 
easy to show that 

( ) ( )' ' ;i iT e T eλ − λ∂ ∂ ∂
= θ + θ

∂θ ∂ζ ∂ζ
 (29)

   

( ) ( ) ( )

( ) ( )

2 2
2

2 2

2 2
2 2

2

'' '' ( ' )

    ( ' ) 2( ' ) ;

i i i

i

T e T e T e

T e T

λ − λ λ

− λ

∂ ∂ ∂ ∂
= θ + θ + θ +

∂ζ ∂ζ∂θ ∂ζ
∂ ∂

θ + θ
∂ζ∂ζ∂ζ

 

(30)
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2 2 2 2
2 2

2 2 2
2 .∂ ∂ ∂ ∂ ∂ ∂

= ζζ − ζ − ζ − ζ − ζ
∂ζ∂ζ∂ζ ∂ζ∂λ ∂ζ ∂ζ

 (31)

To have a conformal map, all terms in (28) have to be 

removed, except 
2

.∂
∂ζ∂ζ

 By using (29)–(31), the following 

equation is derived 

( ) ( )

( )

– 2
2 2

2
– 2 2

2

–
2 2 2

2 2 2
2 2

2 2 2

1 ( ( ( ) )
1 sin

( ) 2( ( ))

cot ( ) ( )
(1 sin )

1 2 – – – –
1 sin

( –

i i i

i

i i

G G GT e T e T e
e

G GT e T

G GT e T e
e

G G G G G

λ λ λ

λ

λ λ

∂ ∂ ∂ ′′ ′′ ′θ + θ + θ + ∂ζ ∂ζ∂ζ− θ 
 ∂ ∂′ ′θ θ + 

∂ζ∂ζ 
θ ∂ ∂ ′ ′θ + θ + ∂ζ ∂ζ− θ  
 ∂ ∂ ∂ ∂ ∂
ζζ ζ ζ ζ ζ = 

∂ζ∂ζ∂ζ ∂ζ− θ ∂ζ ∂ζ 

δ ζ ζ
1)– .

A

Therefore, it holds that 

( ) ( ) ( ) ( )2 2
2 2 2
1 1( ' exp ) ( exp ) .

1 sin sin
T i T i

e
θ λ = θ λ

− θ θ
 (32)

Choosing the positive root of Equation (32) gives 

( )
2 21 sinexp ,

sin
eT d

 − θ θ = ∫ θ
 θ 

or in a more precise representation as 

( ) ( )2 2

1
22 2

2 2

2 cos 2 1 sin

1 sin cos .
1 sin cos

e
T e e

e

e

<θ = θ+ − θ

− θ −

×

 
 

 θ θ 

θ

− +

 

(33)

Substituting (33) into (27) and (28) leads to 

( )
2 2

2
2

Ø 1sin .
4
a
A T

∂
= − θ

∂ζ∂ζ θ

The second green’s function problem is closely associ-
ated with the Hamiltonian problem in spheroidal geom-
etry. The Hamiltonian formula is a representation of the 
system’s total dynamic energy for moving vortexes on the 
spheroid  . To achieve the Green’s function, we change 
the Hamiltonian formula for dynamic energy (see more 
details in Castilho and Machado (2008)). For this reason, 
an appropriate conformal factor is proposed as 

( ) ( )
.

sin
T θ

µ θ =
θ

 (34)

Note that the conformal factor ( )µ θ  is not constant 
while the eccentricity satisfies 1e < . Therefore, the func-
tion ( )T θ  can be expanded around e  as 

( )

2 2 2 2

tan
2

1 12cos cot sin cot .
2 2 2 4 2

T

e

θ
θ = +

θ θ θ + + θ+ + 
 



Following Castilho and Machado (2008), it is con-
cluded that 

( ) ( ) ( )2 2
1 2 1 2

0 0

1, ln ' ,j j
j j

j j
e e

A

∞ ∞

= =

 
 Ψ ζ ζ = µ θ µ θ ζ − ζ
 
 
∑ ∑  


 

 (35)

where jµ  for 0,1, ,j =   are coefficients of power series of 
function µ  around e . In (35), the two distinct points of 
the complex plane, 1ζ  and 2ζ , are the results of applying 
the conformal map (34) to the distinct points ( ),θ λ  and 
( )', 'θ λ  on  , respectively. By using 

( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) )
1 2

1
2

exp ' exp ' ,

exp ' exp ' ,

T i T i

T i T i

ζ − ζ = θ λ − θ λ

θ λ − θ λ

 

the following formula is obtained 

( ) ( ) ( ) ( ) ( )
1

2 2 21 2 ( ' 2 ' cos ' ) .T T T Tζ − ζ = θ + θ − θ θ λ −λ 

Using the second order Taylor series expansion of the 
function ( )ln t  stated in (35), the second Green’s function 
is approximated as 

( ) ( )( )

( )

2

2 2 2
2 2

, '; , ' ln 1 cos cos ' sin sin 'cos '

ln2 cos cos ' .

aG
A

a a e
A A

θ θ λ λ − θ θ − θ θ λ −λ +

− θ+ θ





 

 

 
(36)

Since the null space of the Beltrami-Laplace opera-

tor contains only constant functions, then adding 
2a

A
−


 

to (36) gives 

( ) ( )( )

( )

2

2 2 2 2
2 2

, '; , ' ln 1 cos cos ' sin sin 'cos '

ln2 – cos cos ' .

aG
A

a a e a
A A AΕ

θ θ λ λ − θ θ − θ θ λ −λ +

θ+ θ −





 

Using the forth order Taylor series expansion of the 
function ( )ln t  in (35) leads to the approximate formula 
(26). 

The surface area A  is smaller than the surface area of 
its corresponding sphere. Therefore, the spheroidal Green’s 
function is smaller than the spherical Green’s function. 

2.4. Iterated Green’s functions

We consider the iterated problem for the first and second 
Green’s functions where the Beltrami-Laplace operator 
acts v  times. From the general theory of Green’s func-
tions as presented in Freeden and Schreiner (2009), iterat-
ed Green’s function vG  satisfies the following convolution 
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( ) ( ) ( )1 , , , .v v vG G G d+ ξ η = ξ ζ ζ η ζ∫∫  (37)

Similar to the proposed method in Greenberg (2015), 
this problem can be solved based on eigenvalue expan-
sion. For solving (37) , one needs to find the eigenvalues, 
p , and eigenfunctions, N , of the Beltrami-Laplace op-

erator, i.e., 

( ) ( ) 0.B p N∆ − ξ =

Based on Appendix A, ( )1p n n= − +  with n +∈  
and ( ) ( )nmN Kξ = ξ , where reproducing kernel ( )nmK ξ  
is given for both Dirichlet and Neumann conditions in 
(53). Therefore, the following relation is obtained 

( ) ( ) ( )
( )1

1
, .

1

k
km km

k m k

K K
G

k k

∞ +

= =−

ξ η
ξ η =

− +∑ ∑

From (37) and orthogonality of functions ( )nmK ξ  
with respect to the inner product in ( )2L  , the iterated 
Green’s function is given by 

( ) ( ) ( )
( )1

, .
( 1 )

k
km km

v v
k m k

K K
G

k k

∞ +

= =−

ξ η
ξ η =

− +∑ ∑  (38)

For the iterated problem with discrete Neumann con-
dition at  , we get 

( ) ( ) ( ) ( )1 , .v
v BF F d G F d

A
η = ξ σ + ξ η ∆ ξ σ∫∫ ∫∫ 



For The iterated problem with discrete Dirichlet condi-
tions at  , we have 

( ) ( ) ( ), .v
v BF G F dη = ξ η ∆ ξ σ∫∫

2.5. Green’s function for the iterated Helmholtz 
operator

Suppose that   is of the form (4). The Green’s function 
for the i-th Helmholtz operator is defined as 

  ( )( ) ( ) ( ) ( ) ( )1 , .
i

i
H im im

m i
i i G K K

+

=−

+ + ξ η = δ ξ −η − ξ η∑

 (39)

The term ( ) ( )
i

im im
m i

K K
+

=−

ξ η∑  is the null space of the 

Helmholtz operator. From the general theory of Green’s 
functions (see Greenberg, 2015; Szmytkowski, 2006, and 
references therein), this term must be added to the Green’s 
function equation for the Helmholtz operator. Based on 
the eigenvalue expansion method, the solution of (39) is 
represented by 

( ) ( ) ( )
( ) ( )1,

, .
1 1

k
km kmi

H
k k i m k

K K
G

i i k k

∞ +

= ≠ =−

ξ η
ξ η =

+ − +∑ ∑

From (37), the following formula is obtained 

( ) ( ) ( )
1

, , , .
v v v

i i i
H H HG G G d

+
ξ η = ξ ζ ζ η ζ∫∫

The orthogonality of the functions ( )nmK ξ  leads to 

( ) ( ) ( )
( ) ( )1,

, .
( 1 1 )v

k
km kmi

H v
k k i m k

K K
G

i i k k

∞ +

= ≠ =−

ξ η
ξ η =

+ − +∑ ∑  (40)

By using (39) and (10), we have 

( ) ( ) ( ) ( )

( ) ( )( ) ( ), 1 .ž
v

i

im im
m i

i
BH

F K F K d

G i i F d

+

=−

η = η ξ ξ ξ +

ξ η ∆ + + ξ ξ

∑ ∫∫

∫∫





2.6. Green’s function for the consecutive iterated 
Helmholtz operator

We consider the consecutive Helmholtz operator by set-
ting 0 1iq q= = =  in (5). Based on the null space of the 
consecutive Helmholtz operator and following (39), the 
Green’s function for the i-th degree satisfies 

( )( )( ) ( )

( ) ( ) ( )
0

1 ,

.

B B

i k

km km
k m k

i i G

K K
+

= =−

∆ ∆ + + ξ η =

δ ξ −η − ξ η∑ ∑



 
(41)

Taking into account the following convolution 

and using the eigenvalue expansion procedure in Freeden 
and Schreiner (2009), it could be shown that 

( ) ( ) ( )
( )( ) ( ) ( )( )1

, .
1 1 1C

k
km kmi

H
k i m k

K K
G

k k i i k k

∞ +

= + =−

ξ η
ξ η =

− + + − +
∑ ∑



By using (41) and (10), it is concluded that 

( ) ( ) ( ) ( )

( )( ) ( ) ( )
0

0

,ž.
iC

i k

km km
k m k

i
H HH

F K F K d

G F d

+

= =−

η = η ξ ξ ξ +

ξ η ∆ ∆ ξ ξ

∑ ∑ ∫∫

∫∫ 





Similar to (38) and (40), the consecutive iterated 
Helmholtz Green’s function reads as 

( )

( ) ( )
( ) ( ) ( )

, ,0

11

,

( 1 ) ( 1 1 )

Cq qi

i

i
H

k
km km

qq
k i m k

G

K K

k k i i k k

∞ +

= + =−

ξ η =

ξ η

− + + − +∑ ∑





and 

( ) ( ) ( ) ( )

( )( ) ( ) ( )0
0, ,0

0
 

, i
C iq qi

i k

km km
k m k

q qi
H H H

F K F K d

G F d

+

Ε
= =−

η = η ξ ξ ξ +

ξ η ∆ ∆ ξ ξ

∑ ∑ ∫∫

∫∫






is finally obtained. 

.
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3. Spline interpolant

So far, the Green’s functions on the spheroid   have 
been derived. According to Freeden (1984) and (1981), 
we introduce the corresponding reproducing kernels and 
spline interpolants. For an admissible system of points 
{ | 1, , }i i Jη =  , we consider the Lagrange basis function 

( ),{ | 1, , }k JL k J H= ⊂   such that 

( ),     , 1, , ,k J i kiL k i Jη = δ = 

where δ  denotes the Kronecker symbol. 
Definition 3.1. For the unisolvent system of points 

{ | 1, , }i i Jη =   and discrete Dirichlet and Neumann con-
ditions 

 – Reproducing kernel for the iterated Beltrami-Laplace 
operator is 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

,
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,
1

, ,
1 1

, , ,
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=

=

= =
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ξ η η η

∑

∑

∑∑



 – Reproducing kernel for the consecutive iterated 
Helmholtz operator is 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )
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, ,0

, ,0

,
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,
1
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i
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M
i

j k JH
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M
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j J j i i JH
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=
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ξ η η +
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ξ η η η

∑

∑
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









According to the considerations given in Freeden 
(1984), the definition of the spline function is presented 
in the following. 

Definition 3.2. In the Hilbert space ( )H  , the spline 
interpolant is defined as 

( ) ( ) ( )
1

1

,
1 1

, ,
J J

j j J j j
j j J

S c L c
= = +

ξ = ξ + ξ η∑ ∑ 

where 1J  denotes the first 1J  elements of points which 
constitute an admissible system.

Note that the whole formulas for Green’s functions and 
spline interpolants are valid and applicable in the prolate 
spheroidal coordinate system. 

4. Application in gravity data interpolation in 
geodesy: interpolating global potential data

There are many applications to the spline functions, in-
cluding gravity data interpolation, satellite position in-
terpolation between observation points, and TEC inter-
polation between the discrete measurements in the Ion-
osphere (Keller & Borkowski, 2019). We show how the 
results obtained in the previous sections can be applied to 
globally interpolate gravity data. To make the 5° × 5° and 
4° × 4° grid data, Potential values derived by EGM-2008 
geopotential model (up to 2190 degree) are interpolated. 
Then these values are compared with the actual grid pro-
duced by the potential formula. The process of determin-
ing the unknown coefficients of the spline interpolation is 
exactly the same as that of the sphere (for more detail, see 
Freeden, 1981; Keller & Borkowski, 2019). We notice that 
the spherical coefficients in the potential formula have 
to convert to the ellipsoidal coefficients via the relations 
stated in Jekeli (1988). After the computations, we get the 
following Figure 1. 

Figure 1. Potential over the globe, 5° × 5°-grid

Then the following steps are performed
 – According to (9), subtract the mean from the poten-
tial data on the surface of the ellipsoid. Consequently 
we get the following Figure 2.

Figure 2. Potential over the globe, after subtracting the mean

 – By using the ellipsoidal spline interpolation, interpo-
late the data in the previous step for 4° × 4° and add 
the removed mean after interpolation. Then we get 
the following Figure 3.

 – To determine the difference, subtract the actual 
4° × 4° grid derived from the potential formula from 
the 4° × 4° interpolated grid (Figure 4).
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Conclusions

For solving the minimization problem on the spheroid, 
the surface Green’s function approach has been chosen. 
Under the specific interpolation conditions, the Green’s 
functions for the Beltrami-Laplace and consecutive Helm-
holtz operators and their iterations have been derived. By 
using the Green’s functions, the corresponding reproduc-
ing kernels of the operators and the interpolation condi-
tions on the given points have been introduced. Based on 
the reproducing kernels, the spline interpolants, as the 
minimizer of the problem, are presented.

It is verified that this work is the generalization of the 
minimization problem on a sphere. This means that the 
spline interpolant formulas on a sphere could be obtained 
by the corresponding formulas on a spheroid when the 
eccentricity tends to zero. This work can be used in dif-
ferent areas of study, including Earth’s gravity field where 
the geometrical structure of the Earth is better modeled 
with a spheroid. In future work, we intend to extend the 
minimization problem of spheroidal smoothing spline 
to ellipsoidal geometry for a set of linearly independent 
evaluation functionals. 
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APPENDIX

A. Eigenvalues and eigenfunctions of the 
Beltrami-Laplace operator

Let us consider the problem of finding eigenvalues, p , 
and eigenfunctions, N , of the Beltrami-Laplace operator 
as the following 

( ) ( ) ( )0, , .B p N∆ − ξ = ∀ξ = θ λ ∈  (42)

This problem can be written in the oblate coordinate 
system ( ),θ λ  as 

2

2 2 2 2 2 2

2
2

2 2
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1 0.
sin

N N
e e

N a pN

∂ θ ∂
+ +

∂θ− θ ∂θ − θ

∂
− =

θ ∂λ

 

(43)

Using the method of separation of variables 

( ) ( ) ( )1 2, ,N N Nθ λ = θ λ

problem (43) leads to the following system of equations 
2

1 2 1 2
2 2 2 2 2 2

2
1 2 2

1 22 2
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1 sin (1 sin )
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e e
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∂θ− θ ∂θ − θ

∂
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2
1 1 22 2

2 2 2 2 2
1 1 2

'' ' ''sin sin cos sin .
1 sin (1 sin )

N N N
a p

N N Ne e
θ θ θ

+ − θ = −
− θ − θ

 

 (44)

Since Green’s functions are periodic on  , we have 
''
2 2

2
.

N
m

N
− =  (45)

Equation (45) has the independent solutions 

( )2, cos , sin , 1,2, .mN m m mλ = λ λ = 

We discuss the case 0m =  later for Equation (45). 
Substituting (45) in (44) leads to 

( )
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2
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e d e

dN ma p N
d

θ θ
+ ×

− θ θ − θ
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(46)

To find p , we expand (46) with respect to sine θ  as 
the following

  

( ) ( )

( )

2
2 2 2 2

1 1
0 0

2
2

12

'' sin cot sin '

0
sin

j j j j

j j
N e e N

ma p N

∞ ∞

= =

 
θ θ + θ θ θ − 

 
 

 
+ θ = 

θ 

∑ ∑

and so 

   

( ) ( ) ( )

( )

( ) ( ) ( )

2

1 1 12

2 2
1

1

2 2 2 2 2
1 1

, 1

'' cot '
sin

'' sin –

cot sin ' 1 .

j j

j

j k j k

j k

mN N p N

N e

e N a N

∞

=

∞
+ +

=

 
θ + θ θ − + θ = 

θ 
 
 − θ θ
 
 

θ θ θ + − θ

∑

∑

 

(47)

Based on Lagrange solution of an inhomogeneous 
second order differential equation, the solution of (47), 
expressed in an implicit form, reads as 

2
1,1 , 2 , 1

1

2 2 2
, 1 ,0 1

1

( ) – ( ) sin ( ( ) ( ) ( sin )

( ) ( ) ( sin ) ( )( –1) ( )) ;

j
m m

j

j k
m

j

N P Q N e

Q N e Q a N d

∞

=
∞

+

=

′′θ = θ θ θ θ θ +

′θ θ θ + θ θ θ

∑∫

∑

 

 

 

2
1,2 , 2 , 1

1

2 2 2
, 1 ,0 1

1

( ) – ( ) sin ( ( ) ( ) ( sin )

( ) ( ) ( sin ) ( )( –1) ( )) .

j
m m

j

j k
m

j

N Q P N e

P N e P a N d

∞

=
∞

+

=

′′θ = θ θ θ θ θ +

′θ θ θ + θ θ θ

∑∫

∑

 

 

where   is the biggest integer that is less or equal than 

1 4 1
,

2
p+ −

 ,mP


 and ,mQ


 are, respectively, general-

ized Legendre polynomials of the first and second kind of 
order ( ),m . Thus we have 

( ) ( )
( ) ( ) ( )( )

( )
( ) ( ) ( )( )

1 , 1,1 1,2

, 1,1 1,2

1
,

1

1
,

1

m

m

s m
N P N N

s m

s m
Q N N

s m

Γ − +
θ = + θ + θ

Γ − +

Γ − +
+ θ + θ
Γ − +





where 
1 4 1

2
p

s
+ −

=  and Ã is the Gamma function. It 

is deduced that the number p  in the eigenvalue prob-
lem (42) is exactly the same as ( )1n n− +  with n +∈  
in the eigenvalue problem for spherical case. Therefore, 
the number p  in (42) can be written as ( )1p p− +  where 

,
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0,1, 2, .p =   With this important result, Equation (46) 
can be written as 

( ) ( )

( ) ( )

2
1 1

2 2 2 2 2 2

2
2

12

1 cot
1 sin (1 sin )

1 0.
sin

d N dN
de d e

ma p p N

θ θθ
+ +

θ− θ θ − θ

 
+ − θ = 

θ 

 

(48)

This equation is solved by the aid of series expansion. 
By setting cost = θ , Equation (48) yields 

( ) ( )

( ) ( )

22 2 2 31 1
2 2 2 2 2 2 2 2

2
2

12

1 2
1 (1 )

1 0.
1

d N t dN tt t e t e t
dte e t dt e e t

ma p p N t
t

− − −
− +

− + − +

 
+ − = 

− 

 

(49)

Taking into account the self-adjointness requirement 
for the eigenvalue expansion method (see Greenberg 
(2015), the self-adjoint factor for Equation (49) reads as 

( )
2

2 2 2
2 2 2

exp 1 .
1

tet dt e e t
e e t

 
σ = ∫ = − + 

− + 

By using this factor, Equation (48) is written as 

  

( ) ( )

( ) ( )

22 2 2 31 1
1 2 3

2 2 2 2 2 22 2

2
2 2 2 2

12

1 2

(1 ) (1 )

1 1 0.
1

d N t dN tt t e t e t
dtdt

e e t e e t

me e t a p p N t
t

− − −
− +

− + − +

 
− + + − = 

− 

 

(50)

Equation (50) with 0e =  is the Legendre equation. 
Based on the series expansion method, a Taylor series rep-
resentation around zero exists for Equation (50). There-
fore, the solution of Equation (50) is expressed by 

( )1
0

.n
n

n
N t a t

∞

=

= ∑  (51)

Substitution of (51) in (50) gives 

( )( )( )
1 2 2 3 4 4 6

2 2
,

1 1 2
n n n n

n
c a c a c a c a

a
e n n
− − −

+
+ + +

= −
− + +

 (52)

where 
( )( )( )

( )( )
2 2

1

2 2 4 2 2 2

3 2 1 2

1 2 1 ;(1 )

c n e n e

a p p e e m e

= − − + − −

+ − − − −

( ) ( )( )( )
( )( ) ( )

2 2
2

2 2 4 2 2 2

2 1 3 3 2 2

1 4 1 3 2 1 ;

c n e n e

a p p e e m e e

= − − − + − −

+ − + + − −

( ) ( )2 2 2 2 2 2 4
3 ( 4) 1 2 3 ;c e n a p p e e m e= − − + − −

( )2 4
4 1 .c a p p e= − +

The recursive formula (52) needs the following initial 
conditions 

( )( )( )2 2 2

2 0 ;
1 1

2

a p p m e
a a

− + + −
=

( )
( )( )( )2 2 22

3 12

1
;

12
66 1

a p p m eea a
e

 − + + −− = +
 − 

( ) ( )( )
( )

( ) ( )( )

2 2 2
4

2 2 2

02 2 2 2 2

( 1 ( 1 2

1 ) 6 8

4 2 1 ) ;
24

a a p p a p p m

e e

a
m e m e

= − + − + + ×

− + − +

− + −

( )( )( )
( )( )

( )

2
2 2 2

5 32

2 2 4
2 2

12
;

3 7 61 1
20 1

1 1 4 31 2
10 20

–

1

ea a p p m e a
e

a p p e e
m e a

e

 −
= − + + − − 

− 
 − + − +
 − +
 − 

 

( )( )( )

( )
( )( )

( )
( ) ( )

( )

2
2 2 2

7 52

2 2 42
2 2

32 2

2 2 2 2 2 4

12

5 13 101 1
42 1

1 1 4 32 4 2
7 1 42 1

1 2 3
.

–

42 1

–ea a p p m e a
e

a p p e ee m e a
e e

a p p e e e m e
a

e

 −
= − + + − − 

− 
 − + − +− − +
 − − 
 − + − + −
 
 − 

The following considerable points about the solutions 
of the problem (42) can be observed  

 – The Beltrami-Laplace equation is a type of the Sturm-
Liouville equation. Therefore, the solutions of the 
Beltrami-Laplace equation are orthogonal in the 
sense of ( )2L  -inner product. 

 – In contrast to the Legendre functions, these functions 
are not polynomial. 

 – For odd and even number p , the solution is odd and 
even function, respectively. 

 – The coefficient 0a  or 1a  is chosen so that for 0,m =  
( )1 1 1.N =  

 – We consider equation (50) with 0 .m =  In this case, 
the coefficients na , for 0,1, ,n =   are expressed by 

( )( )( )
1 2 2 3 4

2 2
,

1 1 2
n n n

n
d a d a d a

a
e n n

− −
+

+ +
= −

− + +

where

( ) ( ) ( )2 2 2 2 2 2 4
2 3( ( 2) 2 1 1 , 1 ,d e n a p p e e d a p p e= − − − + − = +

with the conditions 

( )( )2 2

2 0 ;
1 1

2

a p p e
a a

− + −
=

( )( )
( )

2 2 2

3 12

1 1 2
6 6 1

;
a p p e ea a

e

 − + − − = +
 − 
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( ) ( )( )

( )( )

2 22 2

4

2 2

0

1 11
6 2

1 11 ;
2 12

a p p ea p p e
a

a p p e
a

 + −− += + ×


 + −  − +   

( )
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( )( )
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( )

2 22

5 2

2 22

2

2 2 2
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1
1020 1

1 13 5 4
20 201

1 1 2 .
6 6 1

a p p eea
e

a p p ee
e

a p p e e a
e

 − +
= + +
 −

 + −− × + × − 

 + − −  −  −  

In Figure 5, the functions 1, ,n nN P  for 0,1,2n =  (left 
panel) and 1, , ,,n m n mN P  for 2n =  and 1,2m =  (right pan-
el) are shown. For 0.06e =  (ten times that of the Earth), 
all series in (51) are truncated to their first 100 coefficients. 

By normalizing the solutions of problem (42) with re-
spect to the weight function 

( ) 2 2 21 ,w t e e t= − +

the orthonormal basis is formed by 

( ) ( ) ( )

( ) ( )( ) ( )

1, , 2,

2 21
1, , 2,1 0

,n m m
nm

n m m

N t N
K

N t N w t d dt
π+

−

λ
ξ =

λ λ∫∫
 

 (53)

or 

( ) ( ) ( )

( ) ( )

1, , 2,

2
2

2
1

0 , 0

,
1 311 , ; ,

2 2 2 1
1 (1 (–1) )

1

n m m
nm

i j
m i ji j

N t N
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i j i j ee F
e

a a
i j

∞ + +
=

λ
ξ =

 + + + +
− − − 

− π + δ −
+ +∑

where F  represents the Hypergeometric function. 

Remark 4.1. In (53), the function ( )2,mN λ  is chosen 

( )
( ) ( )

2,

2, 2,

cos sin ,
sin , cos ,

m

m m

N m m
N m N m

λ = λ + λ

λ = λ λ = λ

for generalized, Dirichlet, and Neumann conditions, re-
spectively. 

For Generalized conditions, we consider the following 
particular function 

( )00
2

1 .
1 12 1 ln

2 1

K
e e
e e

ξ =
 − + π +  −  

 (54)

 

B. Approximate formula for the iterated second 
Green’s function

This Appendix is concerned with finding an approximate 
formula for the following iterated Green’s function 

( ) ( ) ( )
( )1

, .
( 1 )

k
km km

v v
k m k

K K
G

k k

∞ +

= =−

ξ η
ξ η =

− +∑ ∑

From (53), it is deduced that 

( ) 1 .nm
nm

K
K

ξ ≤
 

in which we have assumed that ( )2 cosN mλ = λ  is equal 
to 1, so 0m =  and 

( )
0

1 .nm
n

K
K

ξ ≤
 

Figure 5. Left: 1,nN  and nP ; right: 1, ,n mN  and ,n mP
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Similar to the spherical case, it can be concluded that 

   
( ) ( )

1
2 2 2 2 2

0
01

1 ( ) 1 .j
nm m j

j
K a t e e t dt

+ ∞

=−

ξ = π + δ − +∑∫ 

On the other hand, it could be readily observed that 

00

1 .nmK
K

≤ 

 

 (55)

From (55) and (54), it can be concluded that 

21 12 1 ln .
2 1nm

e eK
e e

 − + ≤ π +  −  
 

Based on the given desired precision , it is needed to 
find r  such that 

Therefore, the integer number r  satisfies 

or 

Finally the Green’s function ( ),vG ξ η  is approximated 
by 
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, .
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r k
km km
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K K
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k k

+

= =−

ξ η
ξ η

− +∑ ∑


