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Abstract. Technical possibilities to create equipment for the calibration of flat angles are discussed in the article. The 
angular standard measure, the radian, has not been realised as a standard unit until now. Nevertheless, the unit of 
angular measure in degrees is used as the geometric measure of length in geodesy, machine engineering and other 
branches of industry – by multiangular prisms – polygons with an autocollimator, rotary tables, circular scales, etc. It 
should be noted that these angle measures are calibrated against the upper level measures (etalons) only at the several 
intervals depending on the number of sides (angles) of the polygon or the other standard measure. The methods of 
calibration of constant angle value in full circle are used as well. At the same time geodetic instruments, rotary tables 
of metal cutting tools and instruments, rotary encoders have a great number of discrete values. These values between 
the calibrated points remain unknown during calibration. The information received during calibration relative to all 
the information available can be evaluated using information entropy. The equipment of calibration permitting to 
select significantly more information would be essential for better accuracy assurance of instruments used in machine 
engineering, geodesy, building structures. Theoretical and technical background for justifying and developing such 
equipment for angular accuracy calibration is presented here. A modern scientific and technical background validates 
this concept. 
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1. Introduction 

 
The angle measuring instruments produced by many 

Western companies were used in Lithuanian factories and 
institutions for a long time. Circular scales were produced 
using mostly circular dividing machines produced by 
VEB Feinmess Dresden company. Original circular 
dividing machines were constructed and put into practice 
at the Experimental Scientific Research Institute of metal-
cutting tools (ENIMS) Vilnius branch. The production of 
circular scales is straightforward linked with the methods 
and means of angle measurements. These methods have 
not altered much in time being in their general approach. 
Especially it is valid for circular scales measurement. 
High accuracy and discretion of circular scales 
measurement remain an acute problem even nowadays.   
 
2. Measurement of circular scales 
 

Measurement of circular scales has its own specific 
problems. Additional features that help perform this 
measurement is the fact the sum of the full circumference 
is always equal to 360°. This enables to calibrate circular 
scales using one reference angle throughout the whole 
circumference and thus to analyse the errors of angular 
values as the difference between the real values of 
reading devices and the values of calibrated reference 
angle. In the metrology of circular scales that was mostly 
developed in geodesy and astronomy, there is such 
terminology used as “error of the scales diameter”. The 
“diameter” means the line going through the strokes lying 
on the opposite side according to the centre of the scale. 
In most geodetic measurements the errors of “diameters” 

or the errors between the “diameters” are determined. It 
helps to avoid the errors due to the scale eccentricity to be 
measured and the trajectory of axis rotation. The error of 
“diameters” can be expressed by the algebraic sum of 
errors of two opposite strokes [1, 2]: 
 

( ) ,0180+
ΣΣΣ ϕ∆+ϕ∆=ϕ∆ iii      (1) 

 
where i

Σϕ∆  and 0180+
Σϕ∆ i are the errors of two opposite 

strokes. 
The errors of circular scales are determined by some 

methods approved in written standards: 
- the method of approximation; 
- the method of opposite matrix; 
- the method of Yeliseyev (or Heiwelynk); 
- the method of Wild. 
These methods are legalised by the written standard 

[3], the exception being that the method of Heiwelynk is 
used more widely in Western countries. 

The following methods of angular scales calibration 
are used in machine engineering and instrumentation: 

- the comparison of the angular values of the 
scale strokes with the values of the reference 
scale or other reference measure of angle;  

- the comparison of the angular position of 
strokes of the scale with the reference angle 
created by the strokes of the same scale. This 
method is also called the calibration with the 
constant angle in the full circumference. 

The methods of circular scales calibration were 
created and developed by such famous scientists as H. 
Bruns, G. Schreiber, A. Perard, H. Wielde, Heiwelynk,  
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S. Yeliseyev, etc. [1, 2, 4–6]. The “diameters” errors are 
determined by using those methods at angle intervals 
applying the control angles equal, for example, to 10°, 
20°, 30°. The angles of 36°, 45° and 60° are applied by 
other methods of calibration. When using the methods of 
Heiwelynk or Yeliseyev, the full diameters errors are 
determined and by using Fourier series their systemic 
constituents are determined. The scales usually are 
calibrated at every 3° by using those methods. Processing 
of the “diameters” errors by method of Bruns, linear 
equations of the  strokes of scale position are created. The 
number of equations is equal to the number of angular 
position errors to be determined. For example, by 
measuring at every 3°, 60 equation systems are to be 
created. The method of Yeliseyev was the further 
development of the former method simplifying the 
number of calculation operations. The “diameters” errors 
are calculated determining their mean arithmetic values, 
and for enhancing of the accuracy of the calculations the 
error weight parameters are introduced. Thus, the error 
evaluation is stochastic, it differs from the real values of 
the relevant errors of the “diameters”. The pitch of 
measurement of circular scale is not small enough, so the 
discretion of the stroke errors is  big enough; ie it is 
determined at quite large intervals of the scale. 
Furthermore, the errors of “diameters” are determined, 
not the central angles of the scale. It is the reason why the 
comparative scales measurements are performed in 
machine and instruments engineering by using for the 
calibration other angle standards with much higher 
discretion of reference angle measure.  

The “diameter” errors by comparison methods are 
determined from the period of early development of 
geodetic instruments. The result of measurement is 
calculated by using the formula 

 
 

( ) ( ) ,1λ++ϕ+−ω−= ϕω BNNA    (2) 
 

where A is the nominal angle of measurement; ωN  and 

ϕN – the “diameters” of strokes created by relevant 

means for strokes reading, ( )ω  and ( )ϕ  – errors of 

relevant “diameters”; B – nominal (zero) value of angle 
(difference from the real “0” value); 1λ – random error of 

measurement.   
Thus, n equations for measurements performed at a 

chosen pitch of the scale measurement, for example, 10° 
are designed. It is accepted as ( ) ,0=ϕ  at the beginning of  

measurement, and the other errors are calculated 
considering that the errors are distributed evenly in the 

circumference. By this assumption, a value ∑ω
=

n

i
in 1

1
 is 

subtracted from the results received. Such approximation 
is used by many authors, including the Yeliseyev method. 
Nevertheless, it is not accurate as the errors of different 
strokes and errors of the position of “diameters” are not 
equal and its sum is not equal to zero.  

According to the main methods of scales calibration, 
for the calculation of scales errors, it is necessary to 

associate the errors determined at different angle 
calibration between themselves. For example, to 
determine the error at every 5°, it is necessary to calibrate 
the scale applying the 40° and 45° or 20° and 45° angles 
of the calibration. The constant angles for calibration are 
chosen as reiterative values to the desirable interval of 
calibration and such that the least difference of angles or 
the difference consisting of their sums and differences 
would be equal to the same interval [1]. 

Some of the earliest descriptions of the angular 
calibration process are the article in [4] and by Jablonski 
[5]. The calibration was performed using the Moore’s 
1440 Precision Index as angle standard and angle 
polygon prism of 12 sides with the autocollimator. 
Moore’s 1440 Precision Index is an angular measuring 
device consisting of two serrated plates joining together 
to create the angle standard of measure. During the 
measurement the upper disk of the Index is lifted, the 
lower part rotates with the object to be measured, after 
that the upper part is lowered back and the measurement 
of the angular rotational error is performed by the 
autocollimator. The authors [5] describe the results of the 
mutual calibration process of the Moore’s 1440 Precision 
Index and the polygon. The repeatability of the readings 
of the autocollimator did not exceed ± 0,02″. The 
accuracy of axis of Index rotation was 0,11 µm, the 
interval of angle measurements was 30°. Every position 
was repeated 10 times, the values of polygon calibration 
were in the limits between (–1,6″ and +2,7″). Theoretical 
aspects of two calibration methods are discussed in [5]. 
The angular correction values are determined and mean 
square values of the calibration are presented.   

The tests for accuracy of the comparator for the flat 
angle unit transfer were carried out in PTB, Germany [7]. 
The angular comparator WMT 220 of very high accuracy 
was used for the calibration of electronic autocollimators 
for the flat angle unit, radian, transfer according to the 
ISO standards. An uncertainty of 0,007” was determined 
as the result of calibration of the electronic 
autocollimators of high resolution in repeating the 
consecutive steps of 0,005″ in the transfer of the standard 
unit of flat angle. It was stated that the calibration by very 
small intervals that are near to the resolution capability of 
the autocollimator gives an information about the 
possible short period bias and as consequence, making 
the influence to the effect of measurement by the 
autocollimator.  

The rotary table, the standards of angle and 
measuring instruments are shown in Fig 1. The standards 
of angle as shown in Fig 1 are the most used standards in 
machine and instrument engineering. The items shown in 
the picture are: 1 – basis of the angle measuring 
equipment, 2 – axis of rotation, 3 – worm wheel, 4 – 
circular scale, 5 – photoelectric microscope, 6 – angle 
measuring device (Moore’s 1440 Precision Index), 7 – 
mirror, 8 – autocollimator, 9 – warm glass gear, 10 – 
multiangle prism (polygon).  
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Fig 1. Arrangement for angle calibration with different 

angle standards 
 
The worm gear drive is used for the transportation 

the object to be measured into the required position. The 
items 4–5; 6–7–8; 10–8 can be chosen as the standard 
measure for angular displacement control. The high 
accuracy photoelectric transducers (rotary encoders) can 
be put to this range and the most advanced instrument for 
angular measurements – the laser gyrometer as well. 
When using the circular scale as the standard of measure, 
two photoelectric microscopes are used to avoid the 
influence of excentricity for the angular measurements. 
The advantages of rotary encoders are good possibilities 
for the automation of the measuring process. Some 
technical specifications of angle measuring devices are 
listed in Table 1. 

 
Table 1. Technical specifications of angle measuring devices 

 

No Angle 
standards of 
measure 

Discretion Standard 
deviation  

Bias 

1 Polygon – 
autocollimator 

10°; 15°; 
30°,… 

0,15″ 0,30″ 

2 Moore’s 1440 
Precision 
Index 

15’ 0,04” ± 
0,1″ 

3 Circular scale- 
microscope 

3°, 4°,5° 0,2 ~3″ 

4 Photoelectric 
rotary 
encoders 

1”; 0.1” ~ 0,3” ~ 1” 

 
3. Applying the new method for measuring circular 
machines 
 

The newly proposed method for circular scales 
calibration [8–11] is based on application of the 1800 
angle created during the same measuring process as a 
standard measure for the circular scale calibration. Such 
standard can be set with the accuracy not less than 0,1″ of 
the standard deviation in case of application of high-
accuracy rotation axis and of high-accuracy photoelectric 
microscopes. The preparation for measurement and initial 
position are described in [11]. The measuring scheme and 

the principal process as the described in [11–13], is 
shown in Fig 2. There we present a simplified method of 
measurement and the main task is to demonstrate the 
algorithm and means for data processing.  

The scale is moved by angular steps in clockwise 
direction, the measuring data being registered as ,ia  ,ib  

( ).12,...,2,1,0 −= n  i  ,ia  ib  – are the data of 

measurement by the 1st and 2nd  microscopes; 2n – 
number of strokes in the scale. 
 

i
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Fig 2. The diagram of measurement by determining the 

180° standard of angle 
 

The microscopes 1 and 2 are set on the diametrically 
opposite strokes of the scale, between them the standard 
measure of angle 180ο is set. The third microscope is set 
on the stroke of the scale at the angle .tδϕ  

The position shown in Fig 2 is: |ai | = |bi |. The initial 
presumption is taken [10] that ;00 =a  ;00 =δϕ  

;nn b=δϕ  ;∆=δϕt  ∆ – error of the angular position of 

the stroke with the index t, tδϕ  – the angle of the third 

microscope from the “0” point; iδϕ – errors of angle of 

relevant strokes of the scale. The result of measurement is 
expressed by the system of linear equations:  
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Indexes of readings b vary according to the number 
of strokes from n to (2n –1), further it follows the strokes 
with the numbers i = 0, 1, …, t.  The general expression 
for readings will be: 

  





∆+δϕ−δϕ=
∆+δϕ−δϕ=
+++

+
.

;
tiinin

tiii
b
a

     (4) 
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After measuring the full circumference and by 
summing both sides of equations, it will yield: 
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For both equations (5) and (6): 
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        (7) 

 

Further the equations can be solved in respect to 
both ai or bi. There must be noted that according to [11] 
various possibilities are available including the 
determination of the “diameters” errors using the 
expressions (1), (2). Here the calculations will be 
demonstrated according to expressions of ai by the 
formula (4). Theoretically, it is possible to measure and 
determine the errors of every stroke in the circular scale, 
albeit a great number of strokes is present. It is very 
important nowadays, as the circular scales are made of 
very small diameter having thousands of strokes in the 
scale. It is impossible to perform such measurements by 
using the known circular scales calibration methods. 
Applying an axis of rotation based on aerostatic bearings 
and using the microphotoelectric reading devices, the real 
possibility for its implementation exists. The errors 
determination functions consisting of great number of 
equations also present a problem as usually applied 
software is not quite fit for this. By measuring the scale at 
every 1°, the equation system of 360 members will be 
created; by measuring the scale at every 1/3 degree it will 
be 1080, etc. The raster scale having 21 600 strokes will 
require the same number of equations to be solved for the 
error determination.  

The Mathematica 5 software package was used for 
this purpose.  
 
4. Applying software for calculating results 
 

With the help of Mathematica 5 a linear equation 
system Ax = b is solved, where A is an n×n matrix, while 
x and b are n×1 vectors. In the code for solving the 
problem A is called left, and b – right. Mathematica 
software has been chosen for its capabilities to 
seamlessly expand linear equation systems up to 
hundreds of thousands of unknowns as well as for the 
simplicity of performing calculations with them. These 
capabilities are demonstrated and discussed below.  

The rules are created according to which a sparse 
matrix is constructed. A sparse matrix is a matrix the 
majority of members of which are equal to zero. In this 
case the diagonal is filled in with ones, and the diagonal 
above the main diagonal is populated with –1. In other 
words, aii = 1 and aij = –1, i = 1, …, n; j = i + 1. It 

depends on coefficients iδϕ  and ti+δϕ−  in formula (4). 

In the command code below, i and j represent the indices 
of matrix rows and columns. On the main diagonal these 
values are equal, and for the diagonal just above the main 
diagonal, the row index is one less than the column index:   
matrix_rules = {{i_, i_} → 1, {i_, 
j_}/; j- i == 1 → -1} 
 

Following the rules of populating a matrix set 
earlier, a 16×16 sparse matrix is created: 
 
left = 
Normal[SparseArray[matrix_rules, {16, 
16}]] 
 

A 16×16 sparse matrix created according to the rules 
set earlier is displayed below. The rows of the sparse 
matrix are as follows: 
 
{{1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, {0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
{0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0}, 
{0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0}, 
{0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0}, 
{0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0}, 
{0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}} 
 

Next, the matrix created can be displayed in a 
traditional form. Real measurement results provide ai 
values, and a vector of these values is created: 
 
right = {0, 4, -6, -5, -1, 2, 3, -4.4, 
-3, 1.4, -1.2, -0.4, -1.8, -4.6, 2,  
-1} 

 
The software confirms the vector created by 

repeating the values entered: 
{0,4,–6,–5,–1,2,3,–4.4,–3,1.4,–1.2,–0.4,–1.8,–4.6,2,–1} 

Using formula (7) ∆  is calculated (an average value 
of all elements of the vector above), which is later 
subtracted from each member of the result vector thereby 
receiving vector b. In the program code (a –= b) means (a 
= a – b): 
 
right -= (Total[right]/Length[right]) 
{1.,5.,–5.,–4.,0.,3.,4.,–3.4,–2.,2.4,–0.2,0.6,–0.8,–3.6, 
3.,0.} 
 

Then the linear equation system Ax = b is solved:  
LinearSolve[left, right] 
 

And the result vector x is displayed: 
{0.,–1.,–6.,–1.,3.,3.,0.,–4.,–0.6,1.4,–1.,–0.8,–1.4,–0.6, 
3.,0.} 
 

To illustrate the solution in a more straightforward 
fashion we present a relatively small matrix with 16 
unknowns – angle error values from measurement results 
to be found. Calculations with 360×360 and 1080×1080 
matrices have also been performed. Vector b or right has 
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been generated from random numbers. An example with 
a 360 element vector follows: 
 

right = Table[Random[Real, {-5, 5}], 
{360}] 
{2.37046,3.18891,2.15894,-3.54148,-0.0817196, 
-2.31856,-0.375997,-4.13402,-0.961725, 
-3.82091,1.69778,-3.13592, -4.56338,3.00893, 
-2.46184,-3.42847,1.47874,0.456193,0.64549, 
1.32391,4.44547, 1.77012, 1.50745,0.7 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _  
1.74205,1.09387,-0.29465,-3.6623,-0.946749, 
3.92285, -0.360443, 
3.27918,-0.356854,-4.33934,-2.44381,2.32558,-
4.06168} 
 

In this example 360 floating point values are 
generated in the interval of [–5, 5]. Vectors and matrices 
of 1080 values are formed in an analogous way. This 
solution method is convenient because it is possible to 
create a coefficient matrix of the size of your choice on 
the left side of the equation. In spite of a rapidly 
increasing amount of data, Mathematica software 
provides the solution quickly. 

Because of a large quantity of information, only a 
16×16 matrix has been displayed. Operations with more 
data do not introduce anything substantially new; only 
some parameters in the instruction code need to be 
changed. After the solution process, which takes place 
noticeably longer, it makes sense to output only the final 
results in row or table format as instructed. The 
capabilities of calibrating circular scales can be validated 
by computer modelling described in [12, 14, 15]. 

Using a circular scale as a referential standard, a 
multivalue device for an easily conveyed angle 
calibration of high discreteness and accuracy or even a 
standard of a flat angle can be created. The optimal 
structure of a flat angle calibration bench could possess 
these technological characteristics (Table 2). 
 

Table 2. Accuracy and technical parameters of the test bench 
for the flat angle calibration 
 

No Structural elements Parameters 

1 Hardware Rotary table with the axis, 
circular scale, micro-
scopes, autocollimator 
and polygon 

2 Total run-out of axis, µm 0,05…0,1 
3 Number of scale strokes 1080 (ϕt = 20’) 

4 Width of the strokes, µm 5 
5 Microscopes photoelectric 
6 Standard deviation of the 

microscopes,  S, µm 
0,05 

7 Multiangle polygon 12–24 angles 
8 Accuracy parameters of 

the angles of the polygon 
S = 0,03; P = 0,99 

9 Autocollimator Measurement range ± 10’; 
S = 0,02; P = 0,99 

10 Pitch of angular 
 positioning of the rotary 
table, degrees 

1’; 10’; 20’; 1°; 3°; 10° 

 

The above-mentioned technical specifications 
parameters show a technical possibility to create a angle 
calibration bench of a very high accuracy. Such 

equipment can also be used for the calibration of geodetic 
instruments and machine engineering devices. It is 
possible to calibrate the angle measuring devices of the 
accuracy equal to ~3”. The discretion of the calibration is 
also easily achieved, and such a feature gives a possibility 
to calibrate the angle standards and instruments which 
have 10n or 2n strokes or signals per revolution.  
 
5. Conclusions 
 

1. An analysis of methods and means for the precision 
angle measurement is presented in the article. A practical 
implementation of the method based on using the half of 
the full angle is also explained in detail. The algorithm for 
solving a great number of equations is developed. For its 
solution the Mathematica software package was applied. 
Practical results of solutions are demonstrated, the 
possibilities for solving the equations with more number 
unknowns is also shown. 

2. The data presented lead to the conclusion that by 
using the special circular scale as the standard measure of 
angle, it is possible to create the standard measure of flat 
angle of high accuracy, stability and discreteness and the 
calibration arrangement as well assuring the transfer and 
the traceability chain with the state and international 
standards of the flat angle unit.  
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KAMPŲ KALIBRAVIMO TIKSLUMO TYRIMAS 
 
V. Giniotis, M. Rybokas, P. Petroškevičius 
 
S a n t r a u k a 
 
 Straipsnyje nagrinėjamos techninės galimybės sukurti 
plokščiojo kampo kalibravimo įrenginį tiksliems kampų matams 
kalibruoti. Plokščiojo kampo vienetas radianas iki šiol nėra 
laikomas kampo mato etalonu. Kampo matas laipsniais gali būti 
nesunkiai sukuriamas ir atkartojamas geodezijoje taikant 
geometrinius ilgio matus, o mašinų gamybos ir kt. pramonės 
šakose – naudojant daugiakampes prizmes (poligonus) su 
autokolimatoriais, pasukamuosius optinius stalus, apskritimines 
skales ir pan.  

Reikia pažymėti, kad plokščiųjų kampų matai 
kalibruojami tik retais intervalais, tiek, kiek turi briaunų 
daugiakampė prizmė arba kitas pirminis matas, taikomas kaip 
etalonas. Taip pat šiam tikslui yra taikomi pastovaus kampo 
kalibravimo visame apskritime metodai. Geodeziniams 
prietaisams, staklių pasukamiesiems stalams ir keitikliams 
būdinga didelis rodmenų diskretumas. Jų tarpinė vertė bei 
paklaidos lieka nenustatytos, taip pat išlieka daug nežinomos 
informacijos vertinant informacinės entropijos metodu. 
Didesnio diskretumo ir reikiamo tikslumo plokščiojo kampo 
kalibravimo įrenginys padėtų užtikrinti didesnį gaminių, 
statybinių darbų bei geodezinių matavimų tikslumą ir 
informatyvumą. Čia pateikiamas teorinis ir techninis plokščiojo 
kampo kalibravimo įrenginio tikslingumo pagrindimas ir, 
remiantis turimu techniniu bei moksliniu potencialu, aptariamos 
jo sukūrimo galimybės,  
 
Raktažodžiai: kalibravimas, apskritiminė skalė, etalonas, 
kampas, tikslumas 
 


