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Abstract. Measurement strategy is discussed in the article. It is important to optimise the data selection (sampling) from 
the object for the determination of its geometrical features within some limits of accuracy. The minimal and maximal 
intervals of measurement must be selected ensuring the maximal efficiency of operation and the accuracy as well. In 
machine engineering the typical case is in the calibration of coordinate measuring machines (CMMs) as it is a quite 
complicated task because of the variety of accuracy parameters to be checked and the high accuracy that must be 
assured. Some new techniques for the two- and three-dimensional measurements are discussed in this paper leading to a 
more efficient calibration process. This is relevant to machine engineering where geometric accuracy parameters are to 
be determined, to the geodetic measurements where slopes of terrain, area flatness and volumetric features are surveyed, 
in structural engineering, etc. 
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1. Introduction 

 Technical problems of sampling in coordinate 
measurements are discussed in [1–5], etc. Sampling 
procedures are important in dimensional measurements, 
measurement of geometrical features and position 
deviations between them. The main approach in this 
procedure is probability theory giving statistical means 
for evaluating the results of measurement (the 
measurand) by selecting the pitch of measurement that 
serves as a kind of sampling, assessing the set of trials, 
the mean value of estimates, the evaluation of dispersion 
at the probability level chosen. It is a basis for data 
processing in all measurements and is widely used in all 
kinds and branches of metrology. During the calibration 
of scales [3] it is possible to find out only a restricted 
number of values from the full range of existing data. An 
example of the results shows that during the accuracy 
calibration some larger values of the error can be omitted 
including some significant ones. The problem exists due 
to the great amount of information that is present in the 
calibration of numerically-controlled machines, such as 
coordinate measuring machines (CMM) in their total 
volume. Suitable sampling of measuring points on the 
surface of industrial parts was shown to be a very 
important task, as was the sampling of the points in the 
machine’s volume during its calibration. The same 
problem exists in the surveying operations [4], the 
difficulties being in the determination of acceptable pitch 
of measurement to determine the slope, curvatures, peaks 
and valleys of terrain adequately.  
 Sladek and Krawczyk [5] have highlighted the 
problem due to the great amount of information that is 

needed to calibrate a CMM using the total volume. The 
authors showed that it was technically difficult and 
economically demanding to calibrate the enormous 
number of points, eg, 324 000 steps of the rotary table of 
the CMM in the measuring volume arising from six 
rotary axes. Suitable sampling of measuring points on the 
surface of industrial parts is a very important task as was 
the sampling of the points in the CMM volume during its 
calibration. The accuracy of calibration must remain at 
the same level although the time consumed must be 
minimised.  
 Sampling strategy for dimensional measurement of 
geometric features on the CMM was discussed by Lee et 
al [2]. The Hammersley sequence and a stratified 
sampling method were used by the authors for assessing 
geometric accuracy of the workpiece depending on its 
manufacturing process and dimensions. Investigations 
showed that the Hammersley sequence had a nearly 
quadratic reduction in the number of points to be checked 
when using the random or the uniform sampling method. 
The sampling strategy for various geometric features of 
parts measurement in industry is especially important in 
computer–integrated manufacturing where both time and 
cost are significant.  
 Various measurement models and methods are used 
for sampling strategy during the selection of the optimal 
number of points in the measuring volume. It is widely 
analysed in several research works [6–10]. Succession 
models as Hamersley, Halton - Zaremba are used in 
which the coordinates of measurement points are 
calculated according to particular formulas for the 
flatness and volume measurements. 
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 Woo et al, Yau et al [11, 12] propose a hierarchy-
planned system for the determination of errors using 
CMM. This allows selecting the measurement process 
and the coordinates for the measurement of errors to be 
selected. Some authors use the “grey” theory [8] to 
forecast measurement points, B - splines and other 
models of parameter modelling [9, 10]. The most 
analysed methods are associated with the set of 
mathematical models, generated series or splines. The 
coordinates of the measurement errors often depend on 
the type of spline, and if it is to be changed, then another 
set of coordinates will be generated. The area, where 
errors vary evenly, the pitch of discretisation can be 
chosen larger and that, where variation is quite sharp – 
significantly less [10]. The methods discussed above are 
connected with mathematical models based on sequences 
or the generation of splines. The measurement strategy is 
strongly dependant on the method of splitting the area or 
volume that is to be measured.  
 Having in mind many varieties of information 
assessment during the measurement, it is evident that the 
sampling problem is important and is worthwhile to 
develop. The most evident example used in all fields of 
metrology is calibration of weights. The scale of 
electronic weights cannot be calibrated at every 0,1 mg or 
so. A calibration process is carried out at some pitch of 
the scale range. Thus, some intervals between the 
calibrated points on the scale are left undetermined.  
 The purpose of this work is the analysis of the 
possibilities of discretisation of two- and three-
dimensional space, evaluating the trend of the function of 
the systematic error gradient in the x, y, and z axes, 
selection the trends for the new measurement plan, to 
determine relation of the dimensions to the mean 
differential parameters of the gradient. By splitting the 
measurement volume in such a manner, the coordinates 
of measurement will only depend on the characteristics of 
systematic errors. An implementation of this method in 
the measurement strategy is also discussed.  
 
2. Measurement of geometrical accuracy of the CMM  
 
 One of the main steps used for the accuracy control 
of multi-coordinate machines, robots and measuring 
equipment is to calibrate the accuracy of geometric 
elements of the machine – the straightness, 
perpendicularity, flatness of guide ways and bedding; the 
bias of vertical, horizontal and longitudinal traverse, 
pitch, roll, yaw, etc. This depends on necessity to create 
the system of datum to assure the highest accuracy of 
operation of the machine in the volume with six degrees 
of freedom. 
 The geometric errors in the volume of a multi-
coordinate machine consist (Fig 1a) of the perpen-
dicularity of coordinate axes ∆x/y, ∆x/z, ∆y/z , the coordinate 
position errors ∆x,y,z  along the axes x, y, and z; the rolling 
errors ∆ϕxx; ∆ϕyy; ∆ϕzz around the axes x, y and z, yaw 
and pitch errors  ∆ϕxy; ∆ϕxz; ∆ϕyz; ∆ϕyx; ∆ϕzx; ∆ϕzy; lateral 
displacement errors ∆x(xy); ∆x(xz); ∆y(xy); ∆y(yz); ∆z(xz); ∆z(yz) 
during the movement of the part along the relevant axis in 

the indicated plane (xy, zx, etc.; the first of the indices 
shows the axis of movement). So, there are 21 type of 
geometric errors in 3D coordinate machines. Along with 
some other sampling strategies for determination of 
geometrical parameters, L–P sequences method for this 
purpose was applied. 
 The aim of the L–P sequences method [10] is to 
minimise the number of points and strokes of 
measurement during the coordinate and geometric error 
assessment of CMMs and to collect information no less 
than that in general cases. The method was used to find 
the points equally distributed in the working volume. 
Evenly distributed points according to the principle of   
L–P sequences are shown in Fig 1b. 

a) 
 

  b) 
 

Fig 1. Geometric errors distribution for machine product 
specification (a) and measuring points sampling in the 
measurement volume (b) 

 
 The points are most evenly distributed in the area 
when the number of points is  
 

1,2mN −=                (1) 

 
where  1, 2,...m =  

The coordinates of n-points in L–P distribution are 
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1, 2,...i = `;  i – the index of a point. By writing the indices 

of points i = em ,...e1  in the binary system and after 
performing a logic operation, it will become:  
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m
jmjjij veveveq ∗∗

⋅=            (3) 
 

The operation designated by * performs the 

comparison of codes. The values of  s
jv  are taken from 

the tables whose size is ,201 ≤≤ s  .511 ≤≤ j  Using    

n≤ 51, the n-dimensional Q points will be found, 
212≤N . 

 The coordinates of points are calculated after 
determining i for every number: [ ]m i= +1 2ln / ln . 

After that  j =1, ... , n  is calculated. 
 The number of points can be chosen freely and 

depends on the dimensions of the CMM or other volume 
to be calibrated. An example of the points generated in 
such a way is presented in Fig 1b. According to the 
coordinates of points generated using the equations (1)–
(3), an experimental accuracy calibration of the machine 
was performed.  

 

3. Modified volume discretisation method 
 

A method for volume discretisation is proposed in 
[6, 9, 10] where the pitch of the discretisation is 
calculated in inverse ratio to the values: 
− of the gradient module: 
 

int
L

L q=
∆

,               (4) 

 

22 2

x y z

 ∂Φ ∂Φ ∂Φ   ∆ = + +    ∂ ∂ ∂    

r
;         (5) 

 

− of the constituents of the gradient module: 
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where Φ is an analytic expression of the local errors on 
the surface; 0x, 0y, 0z are coordinate axes; L is the value 
of the pitch of discretisation of the surface by standard 
methods; and q is the coefficient of proportion.  

It must be noted that the value of partial derivatives 

is tgα, then it is valid to write: ;tgα xx
=

∂
Φ∂

 ;tgα yy
=

∂
Φ∂

 

,tgα zz
=

∂
Φ∂

where the value of ∆
r

 will be equal to some 

special calculated value of αtg :  
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The value of xαtg ′ can be approximately determined 

according to Fig 2, by taking the adjacent values of ∆x: 

.αtg
1
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x xx
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+
            (7) 

Calculating the values of xαtg ′′  according to the 

adjacent values 2ix +∆  and 1ix +∆ , it would be  
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ii
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x xx

            (8) 

 

and it will yeld in xαtg ′′ < xαtg ′ .  

 

Fig 2. Graphical interpretation of measurement results 
 
 It is apparent from Fig 2 that by calculating the 
values of ,tgα x  random errors will have a big influence 

on the result. They can appear in a little different way 
during the repeated measurements of the surface. The 
methods must be applied that permit to define the features 
of the gradient on the surface when more accurate 
evaluation of variation of the systematic errors is needed. 
Using the method of mathematical regression, the law of 
variation of the systematic error in local intervals xi, xi+1, 
…, xi+n, yi, yi+1, …, yi+n , and zi, zi+1, …, zi+n can be 
determined by polynomials 

• for the volume: 
 

Φ=a1+a2 x+a3 y+a4 z+a5 x
2+a6 y

2+a7 z
2+a8 x

3+ 
+a9 y

3+a10 z
3;              (9) 

 

• for the plane:  
 

Φ=a1+a2 x+a3 y+a4 x
2+a5 y

2+a6 x
3+a7 y

3;      (10) 
 

• for coordinate measurements: 
 

Φ=a1+a2 x+a3 x
2+a4 x

3.          (11) 

Here a1, a2, … a10   are the values of coefficients.  A least 
square method must be used for determination of the 
variable coefficients a1, a2, ..., an :  

( ) .
1

Φ=
− TT YYYA            (12) 

Here A is a column of vector of the coefficients 
of variables a1, a2, …, an; Y is a rectangular matrix 
created according to method described in [6, 9]; and Φ is 
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a column of vector of the values of errors determined by 
experimental trials.  

The expressions (9–12) show that each coordinate 
under different powers has three additives and one free 
member a1. In this case, there will be 10, 7 and 4 
unknown members in the polynomials. Thus, for 
determination of their values there is a need to construct 
the same number of equations. Every equation will be 
created for a separate value of Φi (i=1,2…). The number of 
equations necessary for this purpose can be calculated in 
such a way:  

 

u=n+b ,              (13) 
 

where n is the number of unknown coefficients of the 
polynomial; b ≥ 1 is freely chosen number showing the 
number of equations that will be created (more than 
unknown coefficients). Then the points rx, ry, and rz for 
each coordinate will be calculated by the expression 
 

rx=ry=rz =r=u/p.            (14) 
 

 Here p is the different number of coordinates 
consisting in the calculation.  
 For the case discussed (Fig 2) five points must be 
used for assessing the systematic errors.  By drawing the 
diagram of the third order Φ (Fig 2), the closest approach 
to the law of variation of the systematic error would be 
the least squares method. It must be noted that when 
using the latter method the filtering separates a random 
part of the errors. This helps to explain the consistency 
and adequate accuracy of the modified surface 
discretisation methods. This is the first main feature of its 
efficiency. 
 The second feature of efficiency of the modified 
surface discretisation method shows an ability of using 
this method to create the shortest length of the period of 
constituents of errors of industrials parts or the terrain of 
the area that can be evaluated by volume discretisation.  
 

4. Conclusions 
 

 After performing an analysis of the effectiveness of 
determining the pitch of discretisation of the 
measurement surface or the volume by modified means, 
some conclusions can be made: 
− The errors of the local surface and the characteristics 
of its gradient are more accurately determined by 
applying the methods of regression analysis;  
− The dependence of the shortest length of period of 
constituents of errors on the pitch of measurement of the 
surface is determined. The means to improve 
effectiveness of measurement are pointed out; 
− The methods of choosing the measuring strategy 
described can be successfully used for the machine 
engineering and surveying as well. 
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