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Abstract. In the theory of the orthometric height, the mean value of gravity along the plumbline between the geoid 
and the earth’s surface is defined as the integral mean. To determine the mean gravity from the gravity observations 
realized at the physical surface of the earth, the actual topographical density distribution and vertical change of 
gravity with depth have to be known. In Helmert’s (1890) definition of the orthometric height, the assumption of the 
linear change of normal gravity is used adopting the constant topographical density distribution. The mean value of 
gravity is then approximately evaluated so that the observed gravity of a point at the earth’s surface is reduced to the 
mid-point of the plumbline by Poincaré-Prey’s gravity gradient. To avoid the problems related to the determination 
of mean gravity, Molodensky (1945) formulated the different concept. In his theory of the normal height, the mean 
value of the normal gravity along the ellipsoidal normal between the ellipsoid surface and telluroid is considered. 
The mean normal gravity is then evaluated explicitly without any hypothesis about the topographical density 
distribution and vertical gradient of actual gravity. In this paper, the corrections to Helmert’s orthometric height are 
formulated based on the comparison of the integral mean of gravity and Poincaré-Prey’s gravity reduction. As 
follows from the results of the numerical investigation, the orthometric heights can also be determined with a 
reasonable accuracy if the sufficient information about topographical density and gravity are available. 

 
Keywords: orthometric height, gravity, Poincaré-Prey’s gravity reduction. 

 
1. Introduction 
 

For a practical realization of the geodetic vertical 
datum, Helmert’s [1] orthometric heights are preferably 
used. The reason is a simple computation of the mean 
gravity using Poincaré-Prey’s gravity reduction and the 
acceptable accuracy for most of the regions where the 
leveling networks are established. To determine the 
orthometric heights in the mountainous regions with the 
accuracy of a few centimeters or even better, Helmert’s 
definition is not sufficient. In this case, a more precise 
method for the evaluation of mean gravity is required.  

A more accurate method was introduced by 
Niethammer [2]. It takes terrain into account, assuming 
the constant topographical density distribution. The mean 
value of the planar terrain correction is evaluated as a 
simple average of values computed at the finite number 
of points along the plumbline within the topography. 
Mader [3] estimated the difference between Helmert and 
Niethammer’s methods of about 6 cm for Hochtor    
(2504 m) in the Alps, see also Heiskanen and Moritz 
(chap. 4–6, [4] ). Mader also presupposed that the terrain 
correction varies linearly with depth. Based on this 
assumption, the mean terrain correction is averaged from 
two values computed for points at the earth’s surface and 
geoid. 

It is well known fact that the mean gravity depends 
on the actual topographical density distribution. The 
variation of topographical density can cause centimetre 

and decimetre changes of the orthometric height [5]. The 
correction to Helmert’s orthometric height due to the 
lateral variation of topographical density can be evaluated 
using a simple formula in which the change of 
orthometric height is in a linear relation to the anomalous 
lateral topographical density at the computation point [4]. 
Adopting this relation, the effect of the anomalous 
topographical density to Helmert’s orthometric heights 
was investigated by Allister and Featherstone [6] and 
Tenzer and Vaníček [7].  

In Helmert’s definition of the orthometric height, the 
vertical gradient of gravity generated by the geoid is 
approximated by the linear change of normal gravity, 
disregarding the vertical gradient of the geoid-generated 
gravity disturbance as well as the change of the normal 
gravity gradient with depth. Hwang and Hsiao [8] 
estimated that this approximation causes centimetre 
inaccuracy of orthometric height in the mountains.  

The analytical downward continuation of the 
observed gravity at the earth’s surface was used in Tenzer 
et al. [9] to evaluate the mean gravity. To make the 
gravity along the plumbline analytical, the laterally 
varying model of topographical density distribution was 
adopted. The relation between Poincaré-Prey’s gravity 
gradient and the analytical downward continuation of 
gravity was then formulated and corrections to Helmert’s 
orthometric height arising from the relation were 
discussed. More recently, a new method for a 
determination of the mean gravity along the plumbline 
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was introduced in Tenzer et al. [10]. The mean gravity is 
decomposed into the mean normal gravity, mean gravity 
disturbance generated by the geoid and mean values of 
the gravitational attractions of topographical and 
atmospheric masses. The mean normal gravity is 
evaluated according to Somigliana-Pizzetti’s theory of 
the normal gravity field [11], [12]. The mean topography-
generated gravitational attraction is, in accordance with 
Bruns’ [13] theorem, defined in terms of the difference of 
gravitational potentials reckoned to the geoid and earth’s 
surface, multiplied by the reciprocal value of the 
orthometric height. The same principle is deduced for a 
definition of the mean atmosphere-generated gravitational 
attraction. The mean geoid-generated gravity disturbance 
is defined applying Poisson’s integral to the integral 
mean.  

Comparing the integral mean of gravity and 
Poincaré-Prey’s gravity reduction, the corrections to 
Helmert’s orthometric height are formulated and results 
of numerical investigation discussed in this contribution. 

 
2. Orthometric height, mean gravity  
 

The actual length of the plumbline between the geoid 
of which the geocentric radius is denoted by ( )Ωgr

 
and 

the earth’s surface, ( ) ( ) ( )Ω+Ω≅Ω OHrr gt , defines the 

orthometric height ( )ΩOH , e.g., Heiskanen and Moritz 

[4], Eq. 4–21 
 

( ) ( )[ ]
( )Ω

Ω
=Ω

g

rC
H tO ,    (1) 

 
where ( )[ ]ΩtrC  is the geopotential number, and 

( )Ωg  the mean value of actual gravity along the 

plumbline within the topography.  
To define a position, the system of the geocentric 

coordinates φ , λ  and r  is used, where φ  and λ  are the 

geocentric spherical latitude and longitude ( )λφ=Ω , , 

( )π20;2/π2/π <λ≤≤φ≤− , and r  the geocentric 

radius ( )∞+∈ ,0r .  

The mean gravity ( )Ωg  along the plumbline in Eq. 

(1) is given by Heiskanen and Moritz [4], Eq. 4–20 
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where ( )( )org ,,cos Ω− r  is the cosine of the deflection of 

the plumbline from the geocentric radial direction, and 
or  the unit vector in the geocentric radial direction. As 

numerically estimated in Tenzer et al. [10], neglecting the 
deflection of the plumbline from the geocentric radial 
direction could result in a few millimetres inaccuracy of 
the orthometric height.  

Helmert [1] approximated the mean gravity ( )Ωg~  

using Poincaré-Prey’s gravity reduction. It reads [4], Eq. 
4–25  
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where G  is Newton’s gravitational constant, oρ  the 

mean value of topographical density, and ( ) t/, ∂Ω∂ rg  

and ( ) n/, ∂φγ∂ r  represent the actual and normal linear 

changes of gravity, respectively.  
According to Eq. (3), the approximate value ( )Ωg~  

of mean gravity is evaluated so that the observed gravity 
( )[ ]Ωtrg  of a point at the earth’s surface is reduced to the 

mid-point of the plumbline ( ) 2/O ΩH . The expression 

in the brackets on the right-hand side of Eq. (3) represents 
Poincaré-Prey’s gravity gradient, in which the linear 
change of normal gravity is used, assuming the constant 
topographical density distribution oρ .  

 
3. Relation between integral mean of gravity and 

Poincaré-Prey’s gravity reduction 
 

To find the relation between the integral mean of 
gravity and Poincaré-Prey’s gravity reduction, the actual 
gravity ( )Ω,rg  is decomposed into the normal gravity 

( )φγ ,r , gravity disturbance ( )Ωδ ,rg NT  generated by the 

geoid, and gravitational attractions of topographical and 

atmospheric masses ( )Ω,rg t  and ( )Ω,rg a . Thereby 

[14] 
 

( ) ( ) ( ) ( ) ( )Ω+Ω+Ωδ+φγ=Ω ,,,,, rgrgrgrrg atNT ,    (4) 

 
where the sum of the normal gravity ( )φγ ,r  and the 

geoid-generated gravity disturbance ( )Ω,NT rgδ  

represents the gravity ( )Ω,NT rg  generated by the geoid, 

( ) ( ) ( )Ωδ+φγ=Ω ,,, NTNT rgrrg . 

Since the effect of atmosphere on the orthometric 
height is negligible [10], the gravitational attraction of 
atmospheric masses is not considered in the sequel of 
discussion.  

By analogy with Eq. (4), the mean gravity ( )Ωg  in 

Eq. (2) can be rewritten as 
 

( ) ( ) ( ) ( )Ω+Ωδ+Ωγ≅Ω tNT
ggg   (5) 

 
where ( )Ωγ  is the mean value of the normal gravity 

along the plumbline within the topography, ( )Ωδ
NT

g  
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mean geoid-generated gravity disturbance, and ( )Ωtg  

mean topography-generated gravitational attraction. 
Substituting Eq. (4) to Eq. (3), Poincaré-Prey’s 

gravity reduction becomes 
 

( ) ( )[ ] ( )
( )

( ) +Ω
∂

φγ∂
−Ωγ=Ω

Ω= 2n

,~
OHr

rg
trr

t  

( )[ ] ( )[ ] ( )Ω−Ω+Ωδ+ O
o

NT ρGπ2 Hrgrg t
t

t , (6) 

 
where the observed gravity ( )[ ]Ωtrg  is divided into the 

gravity components ( )[ ]Ωtrγ , ( )[ ]Ωδ trg NT  and 

( )[ ]Ωt
t rg  which are reckoned at the earth’s surface.  

Comparing Eqns. (5) and (6), the following basic 
relation is introduced 
                                   

( ) ( ) ( ) ( )[ ] ( )
( )

( ) +Ω
∂
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tt .  (7) 

 
As follows from the above equation, the relation 

between the integral mean of gravity ( )Ωg  and its 

approximate value ( )Ωg~  in Helmert’s definition consists 

of three individual terms related to the components of 
mean gravity. Investigating these terms, the corrections to 
Helmert’s orthometric height due to the mean normal 
gravity, mean geoid-generated gravity disturbance and 
mean topography-generated gravitational attraction are 
formulated in the next paragraphs. Furthermore, the 
correction due to the mean topography-generated 
gravitational attraction is treated separately for terrain 
roughness and anomalous topographical density.    
 
4. Correction related to the mean normal gravity   
 

Applying the analytical downward continuation of 
normal gravity to the integral mean, the following 
expression is obtained [9] 
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Comparison of the mean normal gravity in Eq. (8) 

and its counterpart in Poincaré-Prey’s gravity reduction 
(Eq. 6) yields 
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The variation of normal gravity gradient with depth 
in Eq. (9) can further be rewritten as [4], Eq. 2-121 
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where a  is the major semi-axis of the reference ellipsoid, 
and ( )φγ o  normal gravity at the surface of ellipsoid. 

The correction ( )Ωε γ
H  to Helmert’s orthometric 

height due to the variation of normal gravity gradient can 
then be found to be [9] 
 

( ) ( )[ ]
2

3O

a

Ω≅Ωεγ H
H .                 (11) 

 
This correction reaches up to 13 mm for the height 

8000 m, while for heights up to 3500 m less than 1 mm.   
 
5. Correction due to the mean geoid-generated 

gravity disturbance 
 

As stated in the Introduction, the geoid-generated 
gravity gradient in Poincaré-Prey’s gravity reduction is 
approximated by the linear change of normal gravity, 
disregarding the geoid-generated gravity gradient. 

Thereby, the correction ( )Ωg
H
δε  to Helmert’s 

orthometric height due to the mean geoid-generated 
gravity disturbance is applied. It reads 
                                           

 ( ) ( )
( ) ( ) ( )[ ] 






 Ωδ−Ωδ

Ω
Ω−=Ωεδ

t
NT

NTO
g

H rgg
g

H
.      (12) 

 
The mean gravity ( )Ωg  in the denominator of Eq. 

(12) can be replaced by the normal gravity ( )φγ o  without 

decreasing the numerical accuracy. 
The correction to Helmert’s orthometric height due 

to the mean geoid-generated gravity disturbance was 
numerically investigated for a part of the Canadian Rocky 

Mountains between o50  and o55  of the geodetic latitude 

and between o235  and o339  of the geodetic longitude. 
At this territory, it varies between -2 and 9 cm. This result 
is very similar to that presented in [9], in which the 
corrections were formulated based on the comparison of 
the analytical continuation of gravity and Poincaré-Prey’s 
gravity gradient. Since similar results were obtained also 
for the corrections related to the mean topography-
generated gravitational attraction, they are not again 
graphically interpreted in this paper.  

Applying Poisson’s upward continuation to the 
integral mean, the mean geoid-generated gravity 

disturbance ( )Ωδ
NT

g  in Eq. (12) is found to be [10] 
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where ( )Ω′Ω R,rK ;,

 

denotes the Poisson kernel. The 

mean radius of the earth R  [15] in Eq. (13) is used to 
approximate the geocentric radius of the geoid surface, 
i.e., ( ) R≈Ωgr . As follows from the above equation, the 

mean value ( )Ωδ
NT

g  is evaluated by convolution of the 

radially integrated Poisson’s kernel and the geoid-
generated gravity disturbances ( )[ ]Ωδ g

NT rg

 

reckoned to 

the geoid surface. 
The geoid-generated gravity disturbances 

( )[ ]Ωδ g
NT rg  in Eq. (13) are computed from the geoid-

generated gravity anomalies ( )[ ]Ω∆ g
NT rg . In this case, 

the geoid-generated gravity anomalies ( )[ ]Ω∆ t
NT rg

 

at 

the earth’s surface are continued downward onto the 
geoid solving the Poisson integral equation. 
Alternatively, the geoid-generated gravity disturbances 

( )[ ]Ωδ t
NT rg

 

can be downward continued, after they are 

computed from the geoid-generated gravity anomalies 

( )[ ]Ω∆ t
NT rg

 

at the earth’s surface. Disregarding the 

ellipsoidal corrections to the fundamental gravimetric 
equation, the relation between them is given by 
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where ( )Ως  denotes the height anomaly [16], and 

( )Ω,rV t  and ( )Ω,rV a  are the gravitational potentials of 

topographical and atmospheric masses.  
Furthermore, the geoid-generated gravity anomaly 

( )Ω∆ ,rg NT  in Eq. (14) is defined so that the effect of 

topographical and atmospheric masses is subtracted from 
the actual gravity anomaly ( )Ω∆ ,rg . The fundamental 

gravimetric equation formulated for the geoid-generated 
gravity anomaly reads [14] 
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where ( )Ωεδ ,rNT
g

 

and ( )Ωε ,rNT
n

 

stand for the ellipsoidal 

corrections to the gravity disturbance and for the 
spherical approximation, respectively. The effect of 

topographical masses on the gravity anomaly consists of 
the direct and secondary indirect topographical effects. 
The direct topographical effect is given by the second 
term on the right-hand side of Eq. (15), and the fourth 
term represents the secondary indirect topographical 
effect. Equivalently, the third term stands for the direct 
atmospheric effect, and the fifth term is the secondary 
indirect atmospheric effect.  

A different concept for a determination of the mean 
geoid-generated gravity disturbance is available. Since 
the mean geoid-generated gravity disturbance can be 
defined in terms of the geoid-generated disturbing gravity 
potential difference (of two values reckoned to the geoid 

and earth’s surface), the mean value ( )Ωδ
NT

g  can be 

evaluated from the geoid-generated gravity anomalies 

( )[ ]Ω∆ g
NT rg

 

solving Stokes’ boundary-value problem. 

This is allowed due to the well-known fact that Stokes’ 
integral defines the relation between the disturbing 
gravity potential and gravity anomalies. Regarding that 
gravity anomalies are used more often in geodetic 
applications than gravity disturbances, this method is 
more appropriate for a numerical realization.  
 
6. Corrections due to the mean topography-

generated gravitational attraction 
 

Comparing the mean value of the topography-

generated gravitational attraction ( )Ωtg  in Eq. (5) and 

the corresponding term of Poincaré-Prey’s gravity 
reduction in Eq. (6), the following expression is written   
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The integral mean of the topography-generated 

gravitational attraction ( )Ωtg  in Eq. (16) is given by  
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According to Martinec [17], the gravitational 

attraction of topographical masses ( )[ ]Ωt
t rg  reckoned at 

the earth’s surface reads 
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where ( )Ω′′Ω ,;, rrl  denotes the spatial distance. In Eq. 

(18), the actual topographical density ( )Ωρ ,r  is divided 

into the mean density oρ  and anomalous density  

( )Ωδρ ,r , so that ( ) ( )Ωδρ+=Ωρ ,ρ, o rr .  

The first term on the right-hand side of Eq. (18) is 

the gravitational attraction ( )[ ]Ωtrg SBS  of the spherical 

Bouguer shell, see [18]. The second term stands for the 

spherical terrain correction ( )[ ]Ωtrg STC , i.e., the 

gravitational attraction of the spherical terrain roughness 
term [19]. The last term defines the gravitational 

attraction ( )[ ]Ωtrg δρ  of the anomalous topographical 

density distribution, see [20]. Eq. (18) can then be 
formally rewritten into the following simple form 
                                        

( )[ ] ( )[ ] ( )[ ] ( )[ ]Ω+Ω+Ω=Ω tttt
t rgrgrgrg δρSTCSBS .   (19) 

 
Applying the above decomposition, the mean value 

of the topography-generated gravitational attraction 

( )Ωtg  is divided into the mean value of gravitational 

attraction ( )ΩSBSg  of the spherical Bouguer shell, mean 

spherical terrain correction ( )ΩSTCg  and mean value of 

gravitational attraction ( )Ωδρg  of the anomalous 

topographical density distribution. Thereby 
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With reference to Eq. (17), Eq. (20) becomes [10] 
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Substitution of Eqns. (19) and (20) back to Eq. (16) 

yields 
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As follows from Eq. (22), the effects of anomalous 

density and terrain on the mean gravity absent in 
Poincaré-Prey’s gravity gradient, i.e., 

( ) 0/,STC ≈∂Ω∂ Hrg  and ( ) 0/,δρ ≈∂Ω∂ Hrg . It 

yields the corrections to Helmert’s orthometric height 
related to these two quantities. 

The correction to Helmert’s orthometric height due 
to the anomalous topographical density distribution 

( )Ωδρ
Hε  reads 
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Inserting expressions from Eqns. (18) and (21) into 

Eq. (23), this correction becomes 
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where the mean gravity ( )Ωg  in the denominator of Eq. 

(24) is, in accordance with Eqn. (12), approximated by 
the normal gravity ( )φγ o . 

The correction to Helmert’s orthometric height due 
to the mean spherical terrain correction within the 

topography ( )ΩεSTC
H  is given by  
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By analogy with Eq. (24), Eq. (25) is rewritten as 
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In solving Newton’s integral of Eqns. (24) and (26), 

the surface integration domain can be split into the near 
and far-zones. The numerical integration is then 
employed over the near-zone, while the far-zone 
contribution is negligible. Optimal size of the near-zone 
depends on the terrain and topographical density 
distribution around the computation point. The accuracy 
of numerical integration at the intermediate neighborhood 
of the computation point is unstable due to the weak 
singularity of Newton’s kernel. Therefore, the topography 
can be discretized by the prism elements assuming the 
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planar approximation of the geoid surface at the 
intermediate neighborhood of the computation point. The 
computation is then realized according to the formulae 
for the gravitational potential and attraction of prism 
summarized in [21]. 

The corrections to Helmert’s orthometric height due 
to the anomalous topographical density and mean 
spherical terrain correction were computed for the same 
area as specified in the previous paragraph. At this 
territory, the orthometric heights range from 4 up to    
2736 m, and the anomalous laterally varying 

topographical density is between –0,18 and 0,31 g.cm
−3

. 
The correction to Helmert’s orthometric height due to the 
anomalous topographical density was estimated to range 
between –6 and 3 cm. Since data for radial density 
distribution were not available, the lateral density model 
was only used for the numerical integration of Eq. (24). 
This correction is often computed according to the simple 
formula ( ) ( ) ( ) ( )[ ] 2O1δρ Gπ2 ΩΩ≈Ω − HoH φγδρε  [4], Eqns. 

(4–34, 4–35). Comparing the results obtained from the 
above equation and Eq. (24), this approximation can be 
used everywhere except in the mountainous regions with 
the variable geological structure. In the mountains, the 
inaccuracy due to this approximation can even reach up 
to a few centimeters.  

The correction to Helmert’s orthometric height due 
to the mean spherical terrain correction is strongly 
correlated to the terrain. In the mountains, the correction 
is mostly negative and reaches up to –17 cm, while being 
positive in the valleys. The mean value of the spherical 
terrain correction in Eq. (25) was computed as the 
difference of the gravitational potentials of the terrain 
roughness. Niethammer and Mader’s methods are 
compared to this method in the next paragraph.  

From comparison of the mean gravitational attraction 

( )ΩSBSg  generated by the spherical Bouguer shell, 

which is given by the first term on the right-hand side of 
Eq. (21), and the corresponding expression 

( )[ ] ( )Ω−Ω O
o

SBS ρGπ2 Hrg t  of Poincaré-Prey’s gravity 

reduction, the following second-order term is finally 
obtained 
                 

  
( )

( ) ( ) ( )[ ] ( )( )≅Ω+Ω−Ω
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ρGπ2 Hrgg
g

H
t  
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ρGπ8
Ω
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−≅ H
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 .                                          (27) 

 
Disregarding this term, the inaccuracy of 

orthometric height is less than –1 mm for heights up to 
3500 m. For the height 8000 m this inaccuracy reaches –
1,2 cm [9]. 
 
7. Mader and Niethammer’s mean terrain 

correction  
 

In order to improve the accuracy of Helmert’s 
orthometric height, Niethammer [2] introduced the mean 

value of terrain correction along the plumbline ( )ΩSTCg  

to Poincaré-Prey’s gravity reduction considering the 
constant topographical density distribution oρ . The 

approximate value ( )ΩN~g  of mean gravity is then 

evaluated according to the following equation                                
 

( ) ( ) ( )[ ] ( )Ω+Ω−Ω≈Ω STCSTCN ~~ grggg t .               (28) 
 

As follows from Eq. (28), the point value 

( )[ ]Ωtrg STC  of terrain correction computed for a point at 

the earth’s surface is subtracted from Poincaré-Prey’s 

gravity reduction and its mean value ( )ΩSTCg  is added 

instead. 
The point values of the terrain correction ( )Ω,STC rg  are 

computed at the finite number N  of points along the 
plumbline within the topography. The mean value is then 
obtained by simple averaging 
 

    ( ) ( )∑
=

Ω≈Ω
N

n
nrg

N
g

1

STCSTC ,
1

,   Nn ,...,2,1∈ ; 

Hnrn ∆+≡ R ; ( ) NHH /O Ω=∆ ,               (29) 

 
where H∆  is the step of the numerical integration with 
respect to height. 

Under the assumption that the terrain correction 
varies linearly with depth, its mean value can 
approximately be estimated as the average of two values 

of the terrain correction ( )[ ]Ωtrg STC  and ( )[ ]Ωgrg STC  

evaluated for a point at the earth’s surface and geoid [3]. 
Thereby

 
 

                                                      

        ( ) ( ) ( )[ ] ( )[ ]
2

~~
STCSTC

M Ω−Ω
+Ω≈Ω tg rgrg

gg .    (30) 

 

In Niethammer and Mader’s definitions, the planar 
form of the gravimetric terrain correction is usually 
considered, while its spherical form was used in this 
study. The reason follows from the fact that the 
interpretation of Poincaré-Prey’s gravity reduction (Eq. 6) 
in the meaning of the infinite Bouguer plate is not 
rigorous.  
 

 
 

Comparison of different methods for evaluation of the mean 
terrain correction 
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The numerical results of Niethammer and Mader’s 
methods vere compared to the integral mean of the 
spherical terrain correction defined in terms of 
gravitational potential difference. As shown in Fig, 
Niethammer’s method serves very similar results as the 
potential difference while the results of Mader’s method 
are different. These differences caused by nonlinearity of 
the spherical terrain correction reach up to 2.5 cm in the 
mountains. On the other hand, the small differences 
between results of Niethammer’s method and potential 
difference are caused by the discretization errors of Eq. 
(29). In this study, the 25 m step of the numerical 
integration was implemented with resulting sub-
centimetre relative accuracy.  

 
8. Summary and Conclusions 
 

Comparing the integral mean of gravity and 
Poincaré-Prey’s gravity reduction, the corrections to 
Helmert’s orthometric height are formulated. The main 
corrections are due to the mean geoid-generated gravity 
disturbance, mean spherical terrain correction and 
anomalous topographical density distribution. Regarding 
the correlation of these corrections with the topography, it 
follows that with the accuracy of a few centimeters, 
Helmert’s orthometric heights are sufficiently accurate 
everywhere except in the mountains. Applying the 
corrections here, Helmert’s orthometric heights can be 
improved in order of centimeters and decimeters. At the 
area of study, the complete contribution of the corrections 
to Helmert’s orthometric height ranges between –22 and 
4 cm. 

As the results indicate, Helmert’s orthometric 
heights are usually smaller than the actual orthometric 
heights. The reason is that the dominant influence of the 
mean spherical terrain correction has a negative sign 
especially in the mountains. On the other hand, the 
correction to Helmert’s orthometric height due to the 
mean geoid-generated gravity disturbance is mostly 
positive. It is worthwhile to mention that these 
conclusions are valid only for the computation area used 
in this study. Generally, the effect of the geoid-generated 
gravity disturbances can be significantly large. The 
correction due to the anomalous topographical density 
distribution can be negative as well as positive, 
depending on the geological structure of the region, i.e., 
the variation of the anomalous topographical density 

around the mean value oρ . The results provided in this 

paper are similar to those presented in [9], where the 
analytical downward continuation of the observed gravity 
was used to determine the corrections to Helmert’s 
orthometric height. Considering the laterally varying 
topographical density, the approach used in this study is 
equivalent to the analytical downward continuation used 
in [9]. Therefore, the small differences of these results up 
to a few centimeters are caused by the different numerical 
accuracy of methods applied for the computation.  

The correction to Helmert’s orthometric height 
caused by the second-order term of the mean 
gravitational attraction of spherical Bouguer shell (given 

by Eq. 27) has a similar magnitude to and the opposite 
sign to the correction due to the variation of the normal 
gravity gradient (Eq. 11). Thereby, their total effect on 
the orthometric heights is less than 1 mm for heights up 
to 8000 m.  

As discussed in paragraph 7, Niethammer’s method 
serves numerically similar result as the integral mean of 
the spherical terrain correction defined in terms of the 
gravitational potential difference. On the other hand, the 
result of Mader’s method differs from the previous two 
methods. The inaccuracy of Mader’s method reaches up 
to 2,5 cm in the mountains, where the mean terrain 
correction is systematically smaller. This is not in 
accordance with conclusions presented by Mader [3] and 
Ledersteger [22]. They obtained very similar results to 
Niethammer’s approach on a sub-centimetre level, which 
confirms the assumption of linear change of the terrain 
correction with depth. On the other hand, results in 
paragraph 7 shows that the assumption of linearity cannot 
be taken into account. This disagreement is caused by 
using spherical instead of planar form of the terrain 
correction. 

Concluding from the above results, the orthometric 
heights can be determined with a reasonable accuracy to 
provide the meaningful information about the physical 
shape of the Earth. 
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