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Abstract. Up-to-date digital photogrammetry involves operations on huge data sets, and with classical image 
processing procedures it might be time consuming to find out the best solution. One of the key tasks is to detect 
outliers in given data, eg for curve fitting or image matching. The problem is hard as the number of outliers is 
usually large, possibly larger than 50 %, thus powerful estimation techniques are needed. We demonstrate one of 
these techniques, namely Random Sample Consensus (RANSAC), for fitting a model to sample data, especially for 
fitting a straight line through a set of given points. Experiments with up to 80 % outliers prove the efficiency of 
RANSAC. The results are representative for image analysis in digital photogrammetry. 
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1. Introduction 

 
Progress in digital photogrammetry relies on 

automatic procedures exploiting the technological 
possibilities of high resolution image acquisition, fast 
access to disk space and high computing power. Research 
mainly deals with conceptual problems in 
photogrammetric evaluation processes, the goal being a 
highly efficient software. This requires flexible and 
robust solutions to estimation and classification 
problems.  

In this paper we discuss the problem of estimation in 
the presence of high percentages of outliers. This type of 
problem occurs in all stages of automatic calibration, 
orientation and surface reconstruction, as automatic 
image matching procedures are error prone. Statistics and 
probability theory are indispensable for handling 
uncertainty and estimating parameters under these 
conditions. There exist powerful robust estimation 
techniques. However, no unique technique exists which is 
applicable in all situations.  

One of the most attractive techniques is Random 
Sample Consensus (RANSAC). It randomly chooses a 
minimal set of observations and evaluates their likelihood 
until a good solution is found or a preset number of trials 
is reached. RANSAC is a technique which is best suited 
for estimation problems with a small number of 
parameters and a large percentage of outliers. It has 
regularly been applied for estimation of model parameters 
in feature matching, detection and registration.  

The paper gives a demonstration on the ability of 
RANSAC to correctly estimate parameters, even when the 
percentage of outliers is far beyond 50 % and the outliers 
hide the true solution. As an example we take the 
classical problem of straight line fitting. 

Experiments have been made with MATLAB 7.0, a 
development package with a high level language for 
programming and visualization [1].  
 
2. Model fitting by RANSAC 

 
We assume the data contain a certain percentage ε of 

outliers. The inliers are usually assumed to be distorted 
by small independent measurement errors following a 
Gaussian distribution, often with an equal variance. 

If no assumption on the distribution of the outliers is 
made, it might happen that the outliers imitate the model, 
with the consequence that any estimation procedure 
would fail if ε > 0,5. Fortunately, we often are in a better 
situation, where higher percentages of outliers might be 
allowed. For our experiments we assume the outliers to 
be uniformly distributed in the space of observations. 

Given a data set of N observations, in principle each 
observation may be wrong. In case of N data one would 
therefore need to check all 2N possible combinations of 
observations to find a subset of observations yielding an 
optimal solution. It was the idea of Fischler & Bolles in 
1981 ([2], cf also [3, 4]), to see that a much smaller 
number of trials is necessary to find a good solution, 
which may then be refined by classical procedures. 
 
2.1. The prerequisites 
 

The basic RANSAC algorithm assumes the following 
input:  
• The data set D = {di} with in total N = |D| items. In 

our case we have a set {xi i=1, …, N} of N data 
points xi = [xi, yi]’.  
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• A function p = F(S), which directly computes the 
model parameters p from a subset S of data items 
containing a minimal sufficient number M = |S| of 
items. Directly means that no approximate values are 
needed. To yield highest efficiency, the number of 
data items necessary for this determination should be 
as small as possible. In our case we need M = 2 
points, say with homogeneous coordinates x1 = [x1, 
y1, 1]’ and x2 = [x2, y2, 1]’ from which the 
homogeneous line parameters l = [a, b, c]’ can be 
determined via l = x × y. 

• A cost function ρ(p, di) for each data item di and for 
each parameters p gives costs. This cost function is 
chosen such that outliers have only a limited 
influence onto the parameter to be estimated. In 
general, it will depend on some residual  
 

   ei = ei (p, di)            (1) 
 

of the observations referring to a certain model, 
specified by parameters p. If in our example we 
would want to achieve a least-squares solution, we 
would use the total costs depending on the distances 
di of the points to the fitted line  
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For achieving robustness, in the most simplest case 

we may just count the number of outliers by choosing the 
function ρ in Fig 1. It is calculated comparing points’ 
distance di from the line with given tolerance: if di > k, 
these points are outliers and ρ = 1; otherwise the points 
are within the tolerance and are inliers ρ = 0. We use the 
total costs 
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with 
 ρ(di) =  1, if |di| < k.               (4) 
              0, else 
 

Observe that by using ρ(di) = di
2 we obtain the least-

squares solution.  
In order to achieve a least-squares solution in case 

of only inliers we choose the cost function in Fig 1: if |di| 
< k, the points are good and the individual costs are ρ = 
di

2; if |di| ≥ k, the points are bad and the individual costs 
are ρ = k2 (Fig 2), thus 
 
 ρ(di) =   di

2, if |di| < k.            (5) 
               k2, else 

 
Thus the total costs yield the sum of the number of 

outliers and the sum of the normalized square distances of 
the inliers.  

 

Fig 1. Simple cost function ρ only counting the number of 
outliers 
 

 
Fig 2. Cost function: for small errors it leads to a least-squares 
solution and large values have a limited influence on the 
estimation  

 
2.2. The procedure 

 
The idea of the RANSAC algorithm is to repeatedly 

select a random subset S of the data, to determine a 
solution p = F(S) and to evaluate it with other data. The 
algorithm is therefore comprised of the following steps: 
1. n times, do repeat steps 2 to 4, where n has to be 

specified by the user (cf below).  
2. Select a sample S of a minimum number M of 

data items from the data set. This selection 
might take all combinations, which would take 
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n  samples. In our example this would 

require n = N(N–1)/2 samples, and though feasible 
for small data sets, for large data sets this would 
require too many samples  Therefore, the sample 
set is chosen randomly. In a first instance, each 
data item has the same probability of selection. 
Thus we obtain a subset Sν ⊂ D, |Sν| = M, ν ∈ 
[1,…, n]. We might directly exclude subsets which 
do not allow stable parameter estimation. In our 
case we select n pairs of points randomly, possibly 
having excluded pairs of points which are too 
close to each other to yield a stable line. 

3. Estimate the parameters pk of the model based 
on the subset Sk from pk = F(Sk). In our context 
we determine the straight line through the M = 2 
selected points. 

4. Compute the quality of the model with 
parameters pk using the cost function Ck = Σx∈S 

ρ(pk, x). In case we would put a threshold on Ck to 
accept a solution this would lead to a model 
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verification. Then we could stop the search for an 
acceptable solution if Ck would be accepted. 
However, for stability reasons we evaluate all 
samples. 

5. Choose the best model, i e the set Sk with 
parameters pν where Ck is minimum. In 
addition, we might accept the solution only if the 
number of inliers is larger than a prespecified 
threshold, say t.  

 
2.3. The parameters 
 

RANSAC uses three parameters:  
1. the number n of trials,  
2. the threshold k for determining where a data 

point agrees with model in (4) or (5), and 
possibly 

3. the threshold t for the required number of inliers.  
 

ad 1: The number of trials is to be chosen carefully. If not 
all combinations of data items are tested, one cannot be 
certain to obtain a valid result. However, one can estimate 
the probability P to obtain at least one good solution in k 
trials from a subset of M, if the percentage of errors is ε. 
This is given by (proof cf below) 
 

P = 1 – (1 – (1 – ε)M)n.            (6) 
 

If one now requires a minimum probability Pmin to 
obtain at least one good sample, then the minimum 
number nmin of trials is  
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Table 1. Minimum number of trials nmin to find at least one 
solution with minimum probability Pmin for an assumed 
percentage of errors ε  
 

ε Pmin 
0,1 0,3 0,5 0,5 0,7 0,8 0,9 

0,95 2 5 11 18 32 74 299 
0,99 3 7 17 27 49 113 459 
0,999 5 11 25 40 74 169 688 

 

For our example, the minimum numbers of trials are 
given in Table 1 for the minimum probability 

%95min  =P , 99 % and 99,9 %, and for different 

percentages of assumed outliers, between ε  = 10 %   and 
90 %. For example, if the expected percentage of outliers 
is 50 % at least 11 trials are necessary, if Pmin of finding 
at least one correct solution is 95 %.  

The minimum number nmin of trials thus depends on 
two parameters, Pmin and ε.  Whereas the minimum 
probability may be easily chosen, there might be an 
uncertainty about the expected percentage of outliers. 

These minimum number of trials are independent on 
the number of data items. So, if, for example, a line has to 
found in 100 points, of which 50 % are erroneous, one 
would need 100(100–1)/2 = 4950 trials if all 
combinations would be tested. Obviously, a large 
reduction in the number of trials can be achieved. 

We will see later that the required minimum 
probability Pmin is not really reached.  

Proof of (6): P (at least one good in n samples) = 1 – 
P (all n samples are bad) = 1 – P (sample is bad)n = 1 – (1 
– P (all M entities of a sample are good))n = 1 – (1 – P 
(one entitiy of a sample good)M)n = 1 – (1 – (1 – P (one 
entity of a sample bad)M) n. 
 

ad 2: The threshold k requires knowledge about the 
quality of the data items. In case this is not given, one 
might determine k from the residuals ei, for example, 
using the median or the Nin smallest residuals, where Nin 

= (1–ε)N is the expected number of inliers.  
 

ad 3: Here one could just take the number Nin of expected 
number of inliers. 
 

3. Experiments 
 

We developed simulation software to investigate the 
power of RANSAC. The user specifies the number of 
points, the percentage of outliers, the straight line and the 
measuring precision used for generating the inlier data. In 
addition, the user specifies the required minimum 
probability for success and the expected error rate, 
independently of the generation in order to investigate the 
effect of erroneous assumptions.  
 

3.1. Sampling and modelling the input data set 
 

We assume the outliers to be uniformly distributed 
in the square [ ]1,1 +− 2. 

 The inliers are assumed to sit on a straight line, 
except for random errors. The line is specified by its 
distance s to the origin and the direction φ of its normal. 
The positions of the points along the line are assumed to 
be uniformly distributed along the line segment within 
the unit circle (cf Fig 3). The positions of the points 
across the line are assumed to be normally distributed 
with standard deviation σ.  

Generating the inliers starts with determining the 
endpoint of the line segment in the unit circle. They are 

symmetric with respect to the point [ fx , yf] closest to the 

origin 
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The starting and the end points of the line segment 
are given by 
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where 21 st −=  for the starting and 21 st −−= for 
the end point. 

Therefore the true values for the points on the line 
are 
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where [ ]1,1 +−∈k . 

The observed point coordinates are:  
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where ixe  and 
iye are normally distributed random 

variables with standard deviation σ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. Line segment in the unit circle with inliers. Point xf  is 
closest to the origin. The inliers are uniformly distributed along 
the line segment between start and endpoint xi and xf   
 

3.2. An example 
 

Fig 4 shows the data generated by the programme 
for one representative case. The N = 100 points with an 
outlier rate of 80 % yields a line with 20 inliers having a 
standard deviation of σ = 0,02. Obviously classical least-
squares techniques will not be able to find a correct 
estimate. Also iteratively eliminating points with large 
residuals will be not a successful strategy. In spite of a 
high percentage of outliers a human observer easily can 
detect the line.  

If we now apply RANSAC with Pmin = 0,999, an 
expected error rate of ε  =  0,8 and a critical value k = 2σ 
= 0,04, we have to try nmin = 169 samples.  

The detected line is shown in Fig 5. The true 
parameters of the line are φ = 0,8 and s = 0,2. The 
estimated values differed only by approximately 0,01, 
which corresponds to the expected accuracy. 
 

 
 

Fig 4. Example for generated data: total number of points N = 
100; number of good points on line 20 = 100 (1–80 %); 
direction angle of normal to given line φ = 0,8 (in rad); distance 
in Hessian normal form of given line to origin s = 0,2; standard 
deviation of points on line σ = 0,02 

 

 
 

Fig 5. Detected line: true values φ = 0,8; s = 0,2; σ = 0,02  
 
3.3. On the probability to find a good line 
 

The theoretical probability to find a good line in the 
previous example is expected to be Pmin = 0,999. During 
testing the algorithm we had the impression that the line 
was not found with this high probability. This has also 
been found by other researchers (cf [5], [6]). 

For further investigation, we automatically 
performed the line generation and the line detection       
10 000 times. We counted the number of cases where the 
estimated angle φ was closer to the true angle than 6σ and 
the estimated distance s were closer than 6σ from the true 
distance.  

We varied the standard deviation from σ = 0,0001 to 

σ = 0,1 in steps of factor 10 and obtained the results 
collected in Table 2. 
 
Table 2. Empirical probability of finding the correct line in N = 
100 and 40 points with 80 % outliers using 169 samples in 
RANSAC 

 

σ P(N = 100) P(N = 40) 
0,0001 0,988 0,977 
0,003 0,990 0,975 
0,001 0,990 0,974 
0,03 0,991 0,962 
0,01 0,996 0,929 
0,03 0,997 0,833 
0,1 0,976 0,801 

 
The positive result, shown in Table 2, is the high 

probability of finding a straight line in extremely noisy 
data.  

However, we have never reached the expected 
probability Pmin. The reason is simple and can be seen in 
the extreme: if the inliers are very noisy, then there is a 
high chance that there is another straight line through the 
outliers and imitates a good line. The effect is larger if the 
number of points is smaller.  

Obviously, to be successful with RANSAC the 
number of inliers needs to be larger than a minimum. 
This minimum depends on the total number of data and 
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the standard deviation of the inliers compared to the 
density of the outliers. This relation appears to be not 
known and needs to be investigated. 
 
4. Conclusions 

 
This paper demonstrates the ability of robust 

estimators to cope with large percentages of blunders. 
Random sample consensus is an effective tool to detect 
the true parameters also in presence of highly corrupted 
data.  

Our experiments were performed with uniformly 
distributed outliers. The quality of the results will be 
lower if the outliers show regularities. In the extreme, 
they may imitate another line. Therefore the theoretical 
breakdown point of all robust estimators, where there is 
no general guarantee of success, is less than 50 %. 

On the other hand, the required probability for 
finding at least one good line is not reached. The 
difference is significant. The experiments suggest this 
probability to be lower in case of small data sets and high 
measurement noise, and may go down to below 80 %. 
These results need further investigation in order to 
explore the limits of robust estimators. 

Altogether, RANSAC is a powerful tool to cope with 
large percentages of blunders. It can be successfully used 
in digital image analysis, feature matching procedures as 
well as for automatic relative orientation of images 
particularly in close range photogrammetry 
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RANSAC TAIKYMAS KLAIDINGIEMS DUOMENIMS 
APTIKTI 
 
B. Ruzgienė, W. Förstner 
 
S a n t r a u k a 
 
 Nūdienos skaitmeninė fotogrametrija nagrinėja 
fotografinių vaizdų, kuriuose gausu duomenų, apdorojimo 
procedūras, todėl automatiškai rasti geriausią sprendimą ilgai 
trunka, būtina talpi kompiuterinė atmintis. Atliekant 
fotonuotraukų sugretinimą (matching), vienas iš pagrindinių 
uždavinių yra teisingai identifikuoti duomenų elementus. 
Sprendžiant šį uždavinį, kyla klaidingų duomenų, kurių 
paprastai yra daug (gali būti daugiau nei 50 %), eliminavimo 
problema. Tam tikslui turi būti parinkta tinkama duomenų 
įvertinimo metodika.  
 Analizuojama statistinis duomenų įvertinimo metodas 
RANSAC (Random Sample Consensus), skirtas sudarytajam 
modeliui suderinti su parinktaisiais duomenimis, t. y. šiuo 
atveju nagrinėjama tiesios linijos, einančios per turimą taškų 
visumą, radimo ypatumai. 
 RANSAC efektyvumui nustatyti atliktas eksperimentas – 
įvertintos tiesios linijos generavimo procedūros, kai nurodoma 
minimali tikimybė bei paklaidos dydis (žr. 5 pav., 2 lentelę). 
Eksperimento metu nustatyta, kad teisingo sprendimo tikimybė 
bus mažesnė, jei duomenų modelis bus mažesnis, o matavimų 
paklaidos didesnės.  
   Tyrimo rezultatai parodė, kad net ir esant 80 % klaidingų 
duomenų (outliers), taikyti RANSAC yra labai efektyvu − įvedus 
teisingus parametrus, gaunamas optimalus sprendimas.  
 RANSAC taikymo klaidingiems duomenims aptikti, 
atliekant automatinį vaizdų sugretinimą, galimybių tyrimas 
turėtų būti tęsiamas ateityje. 
 
Raktažodžiai: statistika, netikslumas, tikimybė, parametrų 
įvertinimas, klaidingi duomenys, sugretinimas. 
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