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Abstract. Determination of which stochastic model taken in hand for this study is suitable under conditions, when 
comparing stochastic models, used for adjusting horizontal control networks, is the aim of this study. Some well-known 
variance component estimation methods like Conventional, Helmert, MINQUE, AUE, and Förstner, which have been 
developed to determine the stochastic model, necessary to be formed in a real way for adjusting geodetic nets, have been 
compared. For comparing the models mentioned above, concrete deciding criteria, using statistical tests, have been 
defined and the determination of which model is superior has been studied. For comparison of the models, numerical 
experiment using data, which belong to the part of Istanbul Metropolitan Triangulation Network (Asiatic side of 
Istanbul), has been performed. 

Keywords: horizontal control network, variance component estimation method, adjustment of geodetic net. 

 
1. Introduction 

 
In order to compare the stochastic models used for 

adjustment of horizontal control networks, which require 
the highest accuracy, firstly, concrete comparing criteria 
must be defined by statistical tests.  

If the hypotheses given below are valid, reliable 
results can be got by using the comparison criteria 
explained later:  

1. „all gross and systematic errors have been 
eliminated before adjustment”, 

2. „there is not a functional model error”. 
 
2. Stochastic models used in horizontal control 
networks 

 
Some well-known stochastic models have been taken 

for this study. These are 
 

a. Estimation of variance components using 
conventional stochastic model   (Model 1) 

 
The standard deviations of a net directions, which are 

evaluated as groups, can be obtained either from Ferrero 
equation  
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A priori variances of the distance measurements can 

be obtained using either equation (2.4), which is given by 
the instrument manufacturer, 
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or the equations 
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After computing variances of distances and 

directions, assuming that a priori variance, determined 

for a group of directions, is a priori variance ( 2
0σ ) for 

unit of the weight measurement, and weights of the other 
directions groups and weights of  distances of the net 
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could be obtained from this a priori variance for unit  of 
the weight ( 1=

i
P ). So weights of other direction groups 
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and weights of distances 
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Because this model, used for the adjustment of 

horizontal control networks, does not reflect exactly the 
net geometry and the real conditions during surveying, 
adjustment results and their precision, determined by this 
model, are questionable. 
 
b. Estimation of  variance components by Helmert 
method (Model 2) 
 

The variance components are estimated iteratively by 
Helmert method. In the method, the determination of the 
variance components can be summarised in the following 
steps. 
 
Step 1. Observations are grouped as m numbered 
according to the measurement methods and the weight 
matrix is estimated for each group before adjustment. 
Identity matrix can be taken as the weight matrix of the 
groups at the beginning of the iteration (Sahin, 1992; 
Yavuz, 2000): 
 

1....21 === mPPP .            (2.8) 

 
Step 2. In this step, global matrix N  and normal matrix 

1N , 2N ,…, mN  of each group are formed by the initial 

weights: 
 

)( ,...,,1 mkAPAN k
T
k kk == ,         (2.9) 

 

m
T NNNPAAN +++== ...21

,       (2.10) 

 
where 
 kA : coefficient matrix of the group k-th, 

 A     coefficient matrix of all observations. 

Step 3. In this step, the unknown parameters and the 
observation residuals are determined as 
 

PbANx T1−= ,            (2.11) 
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kkk =−=        (2.12) 

 

where 
x : unknown parameters, 

b : observation vectors of all groups, 

kb : measurements vector of group k-th, 

kV : residual vector of group k-th. 
 

Step 4. After these three steps, Helmert equation is 
formed as 
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where 
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where 
2

σ k  (k=1, 2, …, m) variance of group k-th. 
 
Step 5. In this step, Helmert equation (2.13) is solved 
and the variance of each group is obtained. Then the 
weights of the observation groups are computed by the 
equation 
 

21
σ k

k
k+

P
P = .             (2.17) 

 

If 
2

σ k  is not equal to 1 for all k=1, 2,..., m the 

procedure returns to step 2. When 
2

σ k =1 for all 
observation groups, iteration is finished (Welsh, 1981; 
Grafarend, 1979, 1984; Sahin, 1992; Yavuz, 2000). 
 
c. Estimation of variance components by MINQUE 
(Model 3) 

 
This method developed by Rao can be summarised as  
 

qS 1T2
m

2
2

2
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The variance components are estimated iteratively by 

MINQUE method. By this method, the determination of 
the components can be summarised in the following 
steps. 
 
Step 1. Approximate variances of observation groups 

)0202
2
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1 σσσ )(

m
)()( ,.....,,( are selected. Then the corres-

ponding nn × matrices
i

T  (i =1, 2 ,......, m) are formed: 
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Step 2. Quadratic matrix R is formed using the equations 
(2.18) and (2.19): 
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where lC  – covariance matrix, ( )σR  – quadratic matrix.

  
If the adjusted net is a free network, matrix 

( )[ ] 11 −− ACA l
T  is singular and a generalised inverse is to 

be used. 
 
Step 3. In this step, the elements of matrix S  ( ijS ) and 

matrix q  ( iq ) are computed: 

 
,[ )]()(  Trij RTRS i σσ=                                          (2.21) 

 )()( lRTRlq
i

T
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Step 4. In this step, MINQUE equation (2.18) is solved 
and the variance of each group is obtained. Then the 
weights of the observation groups are computed using the 
equation 
 

σ1
i
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P

P = .                                                            (2.23) 

 
If σ is not equal to 1, for all i=1, 2,..., m the procedure 

returns to step 2. When 1σ =  for all observation groups, 
the iteration is finished (Yavuz, 2000). 
 
d.  Estimation of  variance components using AUE 

(Almost Unbiased Estimation) (Model 4) 
 

This method has been developed by Horn and Lucas 
(Lucas, 1985). It is to be applied in iterations. The brief 
of the method is as follows: 

qS 1σ −= ,                                                            (2.24) 
T
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These equations are equivalent to MINQUE 

(Minimum Norm Quadratic unbiased Estimation) 
equations (Lucas, 1985). At the point of convergence, 
variances of the observation groups 

  
T1)(1,1,....,σ = ,  

 
then equation (2.24) becomes  
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Equation (2.27) is AUE equation for estimating the 

variance components concerning the observation groups, 
where  
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In this method, variance components are estimated by 

grouping the observations according to a definite 
criterion. The method is to be applied in iterations 
(Lucas, 1985; Yavuz, 2000). A priori weights can be 

select as 100
2

0
1 ==== )(

i
)()( PPP .......  for all groups 

(Yavuz, 2000). After every iteration, the weights of the 
observation groups are computed by the equation 

 

σ1
i

i+
P

P = .                                                           (2.29) 

 

When 1σ2 =
i

 for all observation groups, the iteration 

is finished (Grafarend, 1984). 
In the iterative estimation of variance components, 

one or more of variance components can be negative 
during any iteration. Inexact grouping of observations 
can be the reason of this issue (Lucas, 1985). In the 
situation of getting negative estimations, the groups 
concerning the observations must be rearranged. If 
observation groups will be not rearranged, zero or very 
small positive numbers can be taken alternatively instead 
of negative estimations (Lucas, 1985). 
 
e. Estimation of  variance components using the  
equation given by Förstner (Model 5) 
 

The equation by Förstner for estimating the variance 
components: 
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iii
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After grouping the observations according to definite 

criteria, the a priori weights of the groups are estimated. 
The solution is also performed iteratively by this method. 
Initial weights can be selected as 

 1(0)(0)
2

(0)
1 ==== iPPP .......   

for all groups. After every iteration, the group weights 

are computed as in equation (2.29). When 2σ
i

=1 for all 

groups, the iteration is finished. 
 
3. Criterion for comparing the stochastic models 
 

In order to compare the stochastic models, criteria 
have to be defined. Resulting time, Global test (stochastic 
model test) on the a posterior variance factor and gross 
error localisation and elimination, homogeneity and 
isotropy with mean accuracy tests can be used for the 
comparison of stochastic models (Yavuz, 2000).  
 
3.1. Resulting time  
 

Observations vector and functional model are kept 
fixed in the adjustment computations concerning the 
comparison of the stochastic models. Naturally, the 
stochastic models, which give meaningful and true 
results in a practically acceptable time, are superior than 
the others, which do not give such results in a practically 
acceptable time, in computations performed by changing 
the stochastic model.  
 
3.2. Global test and gross error localisation and 
elimination 
 

In order to test the compatibility of the estimated 

posterior variance factor 2
0

σ̂  with an a priori selected 

variance factor 2
0

σ , the global test must be applied first. 

In this test, 2
0

σ  is compared to 2
0

σ̂ . Under the null 

hypothesis )(
0

H , 

2
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or 
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Test statistic value  
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or                                                                  
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is compared with the value ( α−1

21
,,ffF  or  α−1

12
,,ffF ) taken 

from F distribution table, where 
1

f : degrees of freedom 

2
0

σ̂ , 
2

f : degrees of freedom 2
0

σ , α1− : confidence limit. 

If 
 

α−1
21

,,ffT>F ….,…. 2
0

2
0 > σσ̂ ,                                 (3.4) 

α−1
12
,,ffT>F ….,…. 2

0
2
0 > σ̂σ ,          (3.5) 

 
there is a model error; in other words, weights of 
observations are not chosen properly and  zero 
hypothesis is rejected. 

If the global test failed and some residuals show an 
excessive magnitude, gross error localisation  and 
elimination technique (Baarda’s data snooping or Pope 
tau-test) is employed. 

Test statistic values for the techniques mentioned 
above are as follows: 
 

Baarda (data snooping) 
 

)10(σ0 ,NqVT ~/
ivivii,B = ,                                  (3.6) 

 
Pope (tau-test) 

 

fivivii,P ~/ qVT τ= 0σ̂ ,                                        (3.7) 

 
where 

ivivq  is weight coefficient for residual iV . 

If the test magnitudes exceed the limits below, it is 
accepted that gross error exists in the related observation 
data. In this case, this observation can be eliminated, and 
a new adjustment is made: 
 

0
α112

0
α1max −∞−

=>
,,/,B FkT ,                         (3.8) 

2
0

α1max /f,,P tT
−

> ,                                               (3.9) 

 
where 

2
0

α1 /
k

−
: confidence limit taken from standard 

normal distribution table, 
2

0
α1 /f, −

τ : confidence limit 

taken fromτ  distribution table.  
 After the tests, considering the condition that 
minimum number of the observations, which have a 
gross error,  has been eliminated during adjustment, the 
stochastic model which proves null hypothesis in eq (3.2) 
is accepted superior than the other which rejects the null 
hypothesis. 
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3.3. Homogeneity test  
 

Homogeneity of a net depends on the convenience of 
the stochastic model under the condition that the other 
parameters of the adjustment are fixed. 

In this study, the simple arithmetical mean and the 
standard deviation of the sum of the long (a) and the 
short (b) half-axis of the computed error ellipses, related 
to the net points after the adjustment, have been taken as 
a criterion to determine the superior model from the point 
of homogeneity. 

At the end of the adjustment of a horizontal control 
net using any stochastic model, let the long and the short 
half-axis of error ellipses be related to points of u 
numbered. Homogeneity condition for this net:  
 

jiuiaa
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≠      −  ...., , ,=    , = ,121 , 

ujbb
ji

  ...., , ,=    , = 32  

or  
 

jjii
baba +=+ .                                               (3.10) 

 
Eq (3.10) can be used for comparing the adjustment 

results, which have been obtained by stochastic models, 
from the point of homogeneity. Sum of 

   ...., , ,=(    + )21 uibac
iii

= concerning with each sto-

chastic models are accepted as a measurement set. The 
mean values and the deviations of these measurement set 
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If homogeneity condition (eq 3.10) is exactly valid 

 

i
cc =

0
 ve ,= )(σ 00  

 

then the standard deviations )(σ 0 calculated from eq 
(3.11)  are homogeneity criteria for the stochastic 

models. In homogeneity test, )(σ 0 standard deviations 
related to each stochastic models are compared in 
doubles.  

If )(
k

)(
j

00 and σσ     are standard deviations which 

belong to j-th and k-th stochastic models and the number 
of total stochastic model is m, null hypothesis 

 

0)}2020
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and the test statistic 
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null hypothesis is true. In this case, we cannot decide 
which one of two models is superior. 

Where 
 

1−== uff
kj

, 

if 

k
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j
faj,k

FT >
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it is accepted that the stochastic model with the value of 

kσ  is superior to the model having the value .σ j  

If null hypothesis is true, we cannot give decide the 
model superiority. In this case, mean accuracy test is 
applied and the superiority order of the stochastic models 
is made according to mean accuracy test result.  

Null hypothesis for mean accuracy test, 
 

)})
000 ,k,j

cEcEH (( ={ ,  121 −= m ....., , ,j    (3.16) 
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and the test statistic, 
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Test value is compared with the value of 

,f
F

α−1
, 

where 
 

)1(2 −= uf  

if 

,fj,k
Ft

α−
≤

1
,                                                      (3.18) 

 
null hypothesis is true. In this case, it is decided that 
there is no superiority between two stochastic models 
taken. 

If 
 

,fj,k
Ft

α−
>

1
,                                                 (3.19) 

 
it is accepted that the stochastic model 

,k
c

0
 is superior 

(look eq 3.17). 
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3.4. Isotropy test 
 

Isotropy is a characteristic of the accuracy criteria, 
which are related to the positions of the points, being 
independent of the direction in horizontal control 
networks. Error ellipses take the form of circle in full 
isotrop nets. Mathematical form of this speciality is 

 

ii
ba = , 

 or 
0=−

ii
ba ,    ....,  ,  ,= ui 21 .                       (3.20) 

 
Eq (3.20) can be used to compare the results of the 

adjustments, which have been obtained from the 
stochastic models, from the point of isotropy. In order to 
carry out this, the following equation belonging to each 
stochastic models is thought as a measurement set:  

 
)21 uibae

iii
= ...., , ,=(         − .                            (3.21) 

 
Then, the mean values and the standard deviations of 

these measurement sets are computed: 

u
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These values are accepted as isotropy criteria for the 

comparison of stochastic models. Comparıson is made 
similarly as in section 3.3 using the equations from (3.12) 
 to (3.15) or eq (3.19), if needed. But in the equations 

mentioned above, instead of )(σ 0  and σ , 
0

c  and  

0
e must be used. 

 
4. Experiments 

 
In this study, the part of Istanbul Metropolitan 

Triangulation Network (Asiatic side of Istanbul), which 
was surveyed in 1987, has been selected as an application 
network. In order to compare the models used in this 
study, the net is adjusted by the least square adjustment 
with the free adjustment approach by the stochastic 
models. After testing the adjustment results, the 
stochastic models, selected for this study, has been 
compared using some criteria mentioned in section 3, 
proposed by Yavuz, (2000). 

The observations have to be divided into groups and 
the weights have to be determined iteratively according 
to model 2, 3, 4, 5. 

448 direction and 208 distance observations were 
made in the net. Because of a detailed information, which 
will form the base for grouping the measurements, like 
types of instruments used during surveying, which 

directions and distances were measured by using these 
instruments, date of measurements has not been obtained, 
observations have been separated into two groups like a 
group formed by using directions, another group formed 
by using distances for model 2, 3, 4, 5. 

In free net adjustment formed by using model 1, a 
priori standard deviation of unit weighted observations 

has been selected as mgon1136,0
0

±σ =  which was 

computed from station adjustment made for a station 
point. All computations have been made by a personel 
computer which has the properties like Pentium 4 CPU, 
512MB RAM. 
 
4.1. Comparison of the models according to  
criterion 1 
 

The needed time for determining the observation 
weights has been taken as criterion 1. It continued < 1 
min for model 1. For other models, which need iteration, 
the needed time is as follows : 

Model 2    sm
221  

Model 3    sm
1532  

Model 4    sm
2016  

Model 5    sm
206  

 

 Iteration numbers concerning the determination of the 
variance components (observation weights) and total 
times are given in Table 1.  
 
Table 1. Total iteration times to calculate the weights of the 

models according to two observation groups 12 =σ  for all 
models) 
 

 

 The final adjustment computation step has been 
finished in 4 min for both models. As a result, 
considering the total computation times, the superiority 
arrangement  of the models according to criterion 1 can 
be given as 

 1. Model 1    m
5~  

2. Model 2    smh
34130  

3. Model 3    smh
40131  

4. Model 4    smh
20472  

5. Model 5    smh
45493  

Calculated weights Model 
No 

Total 
iteration 
number 

Total time  
First group Second 

group 
Model 

2 
7 smh

90 34  0,2575835929 0,1689553333 

Model 
3 

7 smh
3 4545  0,2575839782 0,1689548039 

Model 
4 

10 smh
2 2043  0,2575828403 0,1689563675 

Model 
5 

11 smh
1 4009  0,2575834582 0,1689555168 
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4.2. Comparison of the models according to criterion 2 
 

Global test (stochastic model test) for a posterior 
variance factor has been applied to the adjustment 
results, which have been obtained by the adjustment of 
Asiatic site of Istanbul. Using all measurements (448 
directions and 208 distances), the fallowing results have 
been obtained (comparison value taken from F 
distribution table 172,195,0431 =∞,,F );  

For model 1       646,2
136,1

848,1

2

2

==T >1,172 

null hypothesis is rejected. 

 For model 2, 3, 4, 5  175,1
1

084,1

2

2

==T >1,172 

null hypothesis is rejected. 
 Because the null hypothesis is rejected in all models, 
gross error detection (localisation and elimination) tests 
have been applied and the results obtained (Table 2).  
 
Table 2. Gross error detection test  results obtained by the free 
adjustment of Asiatic side of Istanbul using all observations  
 

 Gross error detection test 
 Direction 

observations with 
gross error  

Distance 
observations with 

gross error  
Model 1                   
Baarda-Data 
Snooping 

 
22 directions 

 

 
6 distances 

Model 2, 3, 4, 5 
Pope Tau and            
Baarda-Data 
Snooping 

 
3 directions 

 

 
1 distance 

 
After the elimination of 4 observations with gross 

error  (Table 2) from the observation set, the adjustment 
has been remade using all the models and the global test 
(stochastic model test) on the a posterior variance factor 
has been reapplied to the adjustment results (comparison 
value taken from F distribution table )173,1=∞,0.95425,F . 

For model 1 460,2
136,1

568,1

2

2

==T >1,173 null 

hypothesis is rejected. 

For model 2, 3, 4, 5 129,1
941,0

1

2

2

==T <1,173 null 

hypothesis is true. 
The results mentioned above prove that a lot of 

measurements must be eliminated from the observations 
heap for model 1. But, because of the elimination of 28 
observations with gross error (Table 2) might weak the 
net geometry, this has not been done. As a result, the 
superiority arrangement of the models according to 
criterion 2 can be given as  

1. Model 2, 3, 4, 5 
5. Model 1 

 
4.3. Comparison of the models according  
to criterion 3 
  
 Homogeneity test (criterion 3) (for further 
information look Yavuz, 2000) results are in Table 3. 
 
Table 3. Homogeneity and mean accuracy test results applied 
to the adjustment results obtained by adjusting Asiatic side of 
Istanbul net 
 4656,19507575 =.,,F , 6551,1950150 =.,F .  

 

 
Because the models are equivalent besides model 1 

and they are superior than model 1 (Table 3), superiority 
arrangement of the models according to criterion 3 can be 
given as 
 

1. Model 2, 3, 4, 5 
5. Model 1 

 
4.4. Comparison of the models according to  
criterion 4 

 
Isotropy test (criterion 4) (for further information 

look Yavuz, (2000) results have been given in Table 4.  

 
Table 4. Homogeneity and mean accuracy test results applied 
to the adjustment results obtained by adjusting Asiatic side of 
Istanbul net 

4656,1F 95,0,75,75 = ,  6551,1F 95,0,150 = . 

 
As a result, the superiority arrangement of the models 

according to criterion 4 can be given as  
1. Model 2, 3, 4, 5 
5. Model 1 

 
4.5. The evaluation of the results related to the 
adjustment of Asiatic side of Istanbul net  considering 
the whole criterion  
 

The general superiority arrangement of the models, 
according to the whole criterion in the adjustment of 
Asiatic side of Istanbul net, are summarised. 
 

Model 
No 

1 

=)0(σ  
0939,0
 

2, 3, 4, 5 

=)0(σ  
0689,0  

Superior 
model 

according to 
homogeneity 

Mean 
accuracy 

test 
value 

Superior 
model 

according 
to mean 
accuracy 

1  T=1,8573 2, 3, 4, 5   

Model 
No 

1 

=σ
0184,0

 

2, 3, 4, 5 

=σ  
0156,0  

Superior 
model 

according 
to isotropy 

Mean 
accuracy 
test value 

Superior 
model 

according 
to mean 
accuracy 

1  T=1,3912 equivalent t=1,5298 equivalent 
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Table 5. General superiority arrangement of the models 
 

Model 
No     

Criter 
1 

Criter 
2 

Criter 
3 

Criter 
4 

Total General 
arrangment 

1 1 5 5 5 16 5 

2 2 1 1 1 5 1 

3 5 1 1 1 8 4 

4 4 1 1 1 7 3 

5 3 1 1 1 6 2 

 
According to Table 5, the models except for model 1, 

are equivalent to 3 criterions. Only calculation times are 
different. 
 
5. Conclusion 
 

The stochastic models determined by the methods 
like Helmert, Minque, AUE, Förstner, etc have to be 
used instead of the conventional stochastic model 
determination, especially in the adjustment of geodetic 
nets, which require accuracy and precision. These 
methods, besides conventional method, are already 
widely used in the developed countries. Beside 
theoretical manner, the importance of these models has 
not been taken into consideration in turkey until now. 
These models, which have proved the superiorities over 
the conventional model by the aid of theoretical research 
and practical applications, which have been done in this 
study, must be used in private and public sector 
surveying applications. 
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KINTAMOSIOS KOMPONENTĖS VERTINIMO 
METODŲ PALYGINIMO IŠLYGINANT 
HORIZONTALIUOSIUS TINKLUS KRITERIJAI 

E. Yavuz, O. Baykal 
 

Analizuojama, kuris stochastinis metodas tinkamesnis 
horizontaliesiems tinklams apdoroti  esant tam tikroms 
sąlygoms. Palyginama keletas stochastinių metodų – įprastinis, 
Helmerto, MINQUE, AUE ir Forstnerio, kurie taikomi 
geodeziniams tinklams išlyginti praktikoje. Statistiniais testais 
nustatyti sprendimų kriterijai, pagal kuriuos palyginta taikytų 
metodų pranašumai. Taip pat pateikiami skaičiavimų su 
Stambulo trianguliacijos tinklo duomenimis rezultatai. 
 
Prasminiai žodžiai: horizontalusis tinklas, kintamosios 
komponentės vertinimo metodas, geodezinio tinklo išlyginimas. 


