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Abstract. We derive a number of rough theoretical estimates for the precision of a geoid model computed from a 
local gravimetric survey combined with global reference model information. Example calculations for Finland and 
Estonia are presented. 
 
Keywords: geoid precision, gravimetric survey. 

 
1. Introduction 

 
It is possible to give a number of theoretical 

estimates for the precision of a gravimetric geoid 
computed using gravimetric survey data obtained from a 
bounded area and having a finite density of measurement 
points. The derivations presented below have in the past 
appeared in different form and in small pieces in the non-
reviewed literature, often in connection with practical 
geoid determination projects [1–3]. These derivations, 
which are of simple, brute-force nature, are summarized 
and presented more clearly and systematically in the 
present article, while we also take the opportunity to 
correct some errors present in the earlier derivations. 

We will consider three main types of geoid error 
deriving from a gravity survey’s limited nature: 

• The error of omission due to the finite spatial 
density of the gravity survey. 

• The aliasing error, also due to the finite spatial 
density of the survey, where error patterns with half-
wavelengths shorter than this spacing are misrepresented 
as geoid error patterns with longer wavelengths. 

• The out-of-area error, caused by the absence of 
gravity survey coverage outside the area of study. Gravity 
information may be missing completely; or it may be 
available as long wavelength only information, eg as a 
spherical harmonic expansion of a reference gravity 
model. Estimating the out-of-area error requires 
knowledge of the signal covariance function, either of the 
full gravity field, or of the part of gravity not described 
by the reference model. 

As input to the expressions we derive we need 
mainly two quantities: 

• The mean separation of gravimetric 
measurement points, and 

• the average „error of prediction“ in the form of 
a mean error for an arbitrary point somewhere in the 
terrain, when predicting its gravity anomaly from those of 
nearby points. This error is in principle computable if we 
know two quantities defining the gravity anomaly field’s 
signal covariance function: its signal covariance 0C  and 

its correlation length .l  
For the Finnish gravimetric survey, values have been 

quoted [2, eg] of km5=d  and .mGal2±=σ∆g  These 

values probably hearken back to a determination made 
already in 1980 [4] but is undoubtedly still valid today. 

For Estonia in recent years, two geoid model 
computations have been undertaken: [5] and [6]. For the 
gravimetric survey used in this work we have the values 

km4=d  and .mGal3±=σ∆g  The value of mGal3  

originates from Artu Ellmann’s licentiate thesis [5]; in his 
Doctoral dissertation he gives [7] a value of .mGal4,2  

However, one of us (KK) after discussing with Tõnis Oja, 
concluded that the value mGal3  is probably more 

realistic. 
 

2. The error of omission 
 
If we have gravimetric data given on a grid with 

spacing d, the Nyquist theorem tells us that the grid 
points can only represent a low-pass filtered anomaly 
field with cut-off wavelength 2d, ie degree .2/2 dRn π=  

If the mean error of prediction of gravity g∆σ  is 

given, which we may assume equal to the RMS of the 
degree variances above the truncation limit; and if we 
assume for simplicity that all power is concentrated at 

,/ dRn π=  then we can compute (using, as in the sequel, 

):sm81,9 2−
=γ    
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if we express d  in km, g∆σ  in mGal and Nσ  in mm. 

This near-trivial derivation appeared first in [1]. 
Obviously this is only an upper bound; gravity anomaly 
power will in reality be present in all degrees between 

dRn /π=  and .∞  
For the Finnish gravimetric survey and values 

quoted above, one obtains for the error of omission in the 
geoid undulation: .mm3±=σN  For Estonia, using the 

values quoted above, we similarly obtain .mm6,3=σN  
 

3. The aliasing error (1) 
 

If the true gravity anomaly field we are trying to 
represent is not low-pass filtered in this way, we will 
have an aliasing error caused by the part of the field 
above the truncation degree. 

If we assume for a moment the grid to be regular 
with spacing ,d  and the high-frequency part of the g∆  

field to be uncorrelated at different grid point locations, 
with mean error ,g∆σ  then this is white noise. If the grid 

is of size DD×  (ie point counts 
d
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For white noise, each of these constituents will then 

have amplitude 
D

d
g 2∆

σ  in order to produce the given 

total RMS power. 
Computing the corresponding geoid error means 

summing up the squares of these contributions, which are 
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where i  and j  both run from 
2

D
−  to 

2

D
+  but with 

0== ji  excluded, something to keep in the backs of our 

minds throughout the below derivation. 
We may approximate this sum by an integral: 
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v = are wave numbers in the two co-ordinate 

directions. This again is approximated by the integral 
over a circular disc with a hole in the middle, with 
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because now we integrate over p  from 
D

1
 (remember, 

the origin ,0== vu  ie the geographic ( )yx,  area outside 

the DD×  square, is excluded!) to 
d

1
 (more precise 

bounds would be from 
Dπ

4
 to slightly less than

d

1
). 

The total result then is 
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Compared to the expression (1) found earlier, this 

will typically be dominant. Note that whereas d  is the 
spacing of the g∆  data points, D  represents the scale at 

which geoid errors are constrained, eg by GPS/levelling 
points, or by a global geopotential reference model.  

 
3.1. Application to the Finnish gravimetric survey 

 
Cf Table 1, recomputed from an earlier version 

appearing in [2]. The same values for d  and g∆σ  were 

used as earlier. 
 

Table 1. The aliasing error in Finland as a function of geoid 
support point separation D  

 

D (km) Nσ  (mm) D (km) Nσ  (mm) 

10 3,4 100 7,0 
20 4,8 200 7,8 
50 6,2 500 8,7 
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3.2. Application to the Estonian gravimetric survey 
 
Cf Table 2, computed using the values referred to 

earlier. 
 

Table 2. The aliasing error in Estonia as a function of geoid 
support point separation D  

 

D (km) Nσ  (mm) D (km) Nσ  (mm) 

10 4,7 100 8,8 
20 6,2 200 9,7 
50 7,8 500 10,7 
 

4. The aliasing error (2) 
 
An independent derivation starts from the Stokes 

integral. In the near-field limit the Stokes kernel is 

,
22

Rr
=

ψ
 with r  the geometric distance. Now consider 

an area DD×  in size, within which there are 
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gravity anomaly point values given with mean error g∆σ , 

each of which is representative of a small square of size 
.dd ×  Again, we must compute the sum of square 

contributions from all these squarelets. Each such 
contribution is  
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We must sum this (the expression on the left in 

d and r ) over all little squares of size dd ×  in the big 
square of size DD× . Alternatively, integrate: 
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where yx, are plane metric coordinates. This integral is 

from 
2

D
−  to 

2

D
+  in both coordinates.  

Again go to polar coordinates with ,22 yxr +=  

yielding: 
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2

d
 [we exempt a small disc around the 

origin where the integral would misbehave] and .
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identical to Eq (2). 

 
5. The out-of-area error 

 
The two above calculations assume an infinite extent 

of the gravimetric survey data. In reality this data will 
always be limited in extent, and then error will be 
generated especially in the border areas due to the lack of 
gravimetric data on the other side of the border. 

We assume that the lacking gravimetric data – or 
alternatively, the lacking short-wavelength part of the 
gravimetry not contained in a global reference model 
used – can be described by the parameters of a Hirvonen 
signal covariance function 
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where the two defining parameters are the signal variance 

0C  and the correlation length .l  r  is the inter-point 

distance. 
In order to determine the error, we apply a 

discretised Stokes integration. We divide the area to the 
other side of the border into squares of size ,l  ie we 

choose ,lyx =∆=∆  the correlation length: 
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Here, i and j are block subscripts in the two 

geographical directions x and y, and the „blocks“ of 
gravimetric data are of size .ll ×  

For simplicity, we consider a straight line border 
only, extending to infinity. On the left side of the border, 
good gravimetric data is available. On the right side, we 
have a missing component in the gravimetric data which 
is described by 0C  and .l  We assume the ll ×  size 

blocks to be statistically independent from each other, 
with each being characterised by a signal variance of 0C . 

Then we obtain using propagation of variances on 
Eq (5): 
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Now we replace the right-hand side sum by an 
integral: 
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where δ  is the distance of the evaluation point from the 
border. We have here used a plane coordinate system 
centered upon the evaluation point ,0=x  ,0=y  while 

the border is .δ=y  See the figure. 

 

 
 

Geometry for estimating out-of-area geoid error 
 

Clearly the plane approximation breaks down here – 
we get an infinite total error. Also for the limit 0→δ  the 
result diverges. Both these effects are non-physical. We 
eliminate the lower bound problem by requiring it to be at 
least ,l  ie we replace δ  by max ( )., lδ  

For the upper bound, we introduce a limiting value 
λ  equal to the semi-wavelength for which the global 
reference model becomes precise. For current models that 
would be ,20max =n  corresponding to 

km;100040km/000,20 ==λ  once the GOCE results 

are in, we would more likely have 100max =n  or 

.km200=λ  Then our integral becomes 
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integrating over a disc of radius λ  around the evaluation 
point. Instead of this difficult integral, we use the upper 
bound 
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like above. Obviously, also for δ<λ  this would become 
negative ( l<λ  would be unphysical), so we change this 

to  
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These are obviously very crude tricks. 

So now we have 
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From Eq (4) we can derive the variance of the 

difference between two gravity anomalies in points P  
and Q  as a function of point separation :d  
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This expression describes the prediction accuracy 

obtained when trying to predict the gravity anomaly Qg∆  

from the given value ,Pg∆  with the distance between 

points P  and Q  being .PQr  Substituting ,drPQ →  the 

average point spacing of the gravimetric survey, we may 

call this the variance of prediction, ,2
g∆σ  of the survey:  
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which we substitute into Eq (6), yielding 
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Substituting the constants (like )2sm81,9 −

=γ  and 

introducing units yields 
 

[ ] [ ]

[ ] ( )
( )

.
,max

,max
lnmGal

1km101,4mm

22

2

2
22222

δ

δλ
σ

×












+⋅=σ

∆

−

l

d

l
l

g

N

 

 
5.1. Application to the Finnish gravimetric survey 

 
With this formula we have computed Table 3 for the 

Finnish gravimetric survey parameters d  and .g∆σ  A 

realistic value for the correlation length may well be 
km20=l  or a little longer. As seen, improvement of the 

out-of-area gravity field brought about by the satellite 
gravity missions, bringing down the shortest well-
represented half-wavelength from 500 to 100 km, will 
somewhat improve the quality of the local geoid, though 
not spectacularly so. 

Remember, though, that the values tabulated here 
only apply close to the border: the error will diminish 
going in-land (increasing δ ), though not very quickly, as 
δ    appears    within   the   logarithm.   For   λ≥δ   (and  

thus l>δ ), the logarithm will vanish. This will actually 
happen inland in Finland when the new GOCE 
geopotential model is available with its small 

.km200=λ  Let us remember that the values in Table 3 

are valid only in the border zone, and the width of this 
border zone may be taken as the half-wavelength λ  of 
the global reference model used. Using a better (higher-
degree) expansion will narrow down the border zone 
influenced by these errors, an additional benefit of GOCE 
that is not obvious from the Table: in the second 
rightmost column, the italicised value 27,80 represents 
the error 100 km inland from the border. 

Thus, while a clear improvement is to be expected 
from these missions, it will not certainly do away with 
the need to obtain a good, dense gravimetric coverage for 
the problem areas immediately outside Finland's borders. 
Where terrestrial gravimetry is not available, airborne 
gravimetry recommends itself. 

 
5.2. Application to the Estonian gravimetric survey 

 
Doing the same computation for Estonia, with the 

earlier quoted parameter values d  and ,g∆σ  yields the 

results listed in Table 4. Here one may guess that the 
correlation length in Estonia is a bit shorter than in 
Finland, more like 10 km, producing plausible-looking 
geoid mean errors for a wide range of ( )δλ,  

combinations. 
Otherwise the conclusions are similar to those for 

Finland. Due to the smallness of Estonia, the values in 
this table underestimate the true uncertainty of the 
absolute geoid, which will improve substantially due to 
the satellite missions. But also here, even more so, good 
gravimetric survey data immediately across the borders 
must also be obtained. 

 
 

 

Table 3. Out-of-area gravimetric geoid standard deviation, Finnish gravimetric survey parameters: mGal,2±=σ∆g  km5=d  

Units: mm 
 

( )
( )→δ

→δλ↓

,max

,max

l

l
 

1000 
20 

200 
20 

1000 
50 

200 
50 

1000 
100 

 

200 
100 

200 
200 

10 17,91 13,74 15,67 10,66 13,74 7,54 0,00 
20 66,05 50,67 57,80 39,32 50,67 27,80 0,00 
50 402,49 308,79 352,21 239,60 308,79 169,42 0,00 
100 1604,00 1230,60 1403,60 954,82 1230,60 675,16 0,00 

 

Table 4. Out-of-area gravimetric geoid standard deviation, Estonian gravimetric survey parameters: mGal,3±=σ∆g  km4=d  

Units: mm 
 

( )
( )→δ

→δλ↓

,max

,max

l

l
 

1000 
20 

200 
20 

1000 
50 

200 
50 

1000 
100 

 

200 
100 

200 
200 

10 32,49 24,92 28,43 19,34 24,92 13,67 0,00 
20 123,00 94,40 107,70 73,24 94,40 51,79 0,00 
50 756,50 580,40 662,00 450,30 580,40 318,40 0,00 
100 3019,00 2316,00 2642,00 1797,00 2316,00 1271,00 0,00 
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