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1. Introduction

Here is presented calculation methods for single-pylon 
suspension structures, stiffened by girders (Figure 1).

The common assumptions about the linear elas-
tic strain-stress dependence of materials and absence 
of elongations of hangers are taken into account. The 
cables are regarded as geometrically nonlinear rods 
without bending rigidity, and stiffening girder – as 
bended linear bar. The mutual action between the car-
rying cables and stiffening members are regarded as a 
nodal contact load in supporting nodes of hangers.  

Discrete analysis is based on condition of equili-
briums, made for the nodal points of the cable. under 
uniformly distributed load the cable will take parabo-
lic form. in reality, the cable is loaded by concentrated 
forces and it takes the form of a string polygon. The 
conditions of equilibrium are written for every node 
of polygon and elongation of the cable was determined 
using equation of deformations compatibility for every 
section of the cable. These conditions form nonlinear 
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pylons in both ends of the bridge and anchor cables. alternate form of a suspension bridge is a bridge, with 
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of the material and absence of horizontal displacements of hangers. Hanger elongation is taken into account.
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Fig. 1. The schemes of the single-pylon suspension  

bridges stiffened by a girder
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equation system, which give after solving all nodes dis-
placements and internal forces for cables and for stiffe-
ning girder.

Here is used the scheme described as follows:
The initial balance of the cable (before the follo-
wing loading) is described. 
The final balance of the cable is described (the 
non-connected pieces of the stiffening girder 
are hanging on the cable and the cable is defor-
med).
The final balance of the whole structure is des-
cribed (the stiffening girder is consistent and in 
initial solution takes approximately 10% of all 
load, 90% of load is imposed to the cable).

2. Basic equations

2.1. Discrete model for elastic cable

The initial state of equilibrium of the cable loaded by a 
concentrated load is shown in Figure 2.

From the equilibrium considerations of forces we 
may write for every node (kulbach, Õiger 1986)

, (1)

where F0,i – initial external force; H0 – initial force hori-
zontal component of the cable (cable force); z0,i–1, z0,i, 
z0,i+1 – initial vertical coordinates of the cable nodes; 
a0,i–1, a0,i – horizontal distance between hangers.

For a cable which has supporting nodes on different 
level we may calculate H0 as (kulbach, Õiger 1986)

1.

2.

3.

, (2)

where L0 – span of the cable.
By the action of the temporary loads ΔFi (Figure 3), 

the equilibrium equation for the node i is expressed as 
(kulbach, Õiger 1986)

 (3)

where Fi, – final external nodal forces (Fi  = F0,i + ΔFi); 
H – thrust from temporary and initial load; wi–1, wi, 
wi+1 – vertical displacements of the nodes.

There are two unknown parameters in Eq. (3): wi 
and H. Thus we need another equation for calculating 
them. We can use the compatibility condition of the re-
lative elongation of the cable. The relative elongation of 
the cable is expressed as (kulbach, Õiger 1986)

 (4)

 
Fig. 2. a initial discrete scheme of the cable in  

the state of equilibrium

 
Fig. 3. Deformation of the cable under additional load
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and from condition of linear deformation

, (5)

where EA – stiffness of the cable in tension; ui–1, ui, 
ui+1 – horizontal displacements of the nodes. 

taking into account (4) and (5), this compatibility 
condition may be presented as (kulbach, Õiger 1986)

 (6)

Horizontal displacements of the internal nodes ui 
may be eliminated by means of summation of the equ-
ations of deformation compatibility (6) and after repla-
cing (kulbach, Õiger 1986)

, (7)

where un+1 u0 – horizontal displacements of the sup-
port nodes of the cables.

We may write the Eq. (6) in the form (kulbach, Õi-
ger 1986)

 (8)

in case of single-pylon suspension bridge, we have 
two spans, which are carried by the main cable. Becau-
se we have two spans, we must calculate two different 
girder-stiffened cable systems, which are connected to 
the central pylon. Then, for the first span, we have ho-
rizontal displacements for cable ends: u0,1 = 0; un+1,1 is 
unknown. For the second span, u0,2 = un+1,1; un+1,0 = 0.

For initial form of the bridge, when a bridge is 
symmetrical, we can obtain HI = HII. in loaded state, 
the central pylon has horizontal deformation and if the 
bottom support of pylon is fixed, then the final cable 
forces HI ≠ HII; if bottom support of the pylon has rele-
ased, then HI = HII (Figure 4). The relations between H 
and HII can be described, when bending rigidity of py-
lons is constant, as (idnurm, J., kiisa, idnurm, s. 2009)

, (9)

where hp – height of the central pylon; EpIp – pylon’s 
bending rigidity; up – horizontal displacement in top of 
the pylon.

single pylon suspension bridge has two unknown 
cable forces HI, HII and one unknown horizontal dis-
placement up. For this kind of bridge, we can calculate 
all displacements of internal nodes of both cable and 
contact forces in hangers, if HI, HII and up is determi-
ned. The best way is to take initial displacement up = 0 
and solve this system is to calculate both spans sepa-
rately. after solving the systems, we can calculate new 
value of up using condition (9), and repeat this process 
until change of pylon top displacement Δup = 0. if bot-
tom support of the pylon has released, then we can’t 
calculate up directly, but then we can search the value 
of up, to find condition HI = HII. 

2.2. Analysis of the stiffening girder
The different schemes of a girder are presented in Figu-
res 5–7. Let us consider only the stiffening girder. The 
equation that describes the deflection of the girder can 
be written as follows (Jürgenson 1985):

 (10)

 
Fig. 4. The calculation scheme of the cable internal forces 

depending on the characterization of the pylon
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where w0 – initial deflection of rotation at the first point 
of the girder; φ0 – angle of rotation at the first point of 
the girder; Mj – concentrated  moments; Pk – concentrat-
ed forces (internal forces in the hangers, vertical support 
reactions and external loads); pl – uniformly distributed 
loads; EbIb – rigidity of the stiffening girder in bending; 

 – the Heaviside’s function.

Equation (10) can be used for calculating deflec-
tion from the sum of applied external concentrated 
moments, concentrated forces and from the uniformly 
distributed loads. The constants w0 and φ0 are all diffe-
rent on schemes described in Figures 5–7. They can be 
calculated using Equation (10) in points, where displa-
cements are known (on supports). 

2.3. Discrete model for the girder stiffened cable

There are different solutions described to calculate the 
stiffening girder and the cable as a integrated construc-
tion (idnurm 2004). The new solution plan is defined 
as follows:

The cable and the stiffening girder can be cal-
culated separately. The final solution is found 
when vertical displacements of the cable and 
stiffening girder are the same in points which 
are connected with the same hanger.
The first step is to calculate the cable initial for-
ces H0 and the shape of the cable zi using only 
self-loads (the non-connected blocks of the stif-
fening girder are hanging on the cable).
10% of the successive load is imposed to the gir-
der and vertical displacements wi of the points 
where hangers are connected will be found (the 
contact forces of the hangers are not taken into 
account). 
The cable initial forces HI and HII can be found 
in loaded condition.
The inside forces of the hangers can be calcula-
ted using the equilibrium considerations of for-
ces of cable nodes.
Vertical displacements wi of the points where 
hangers are connected will be found again using 
all loads placed on the girder and also the con-
tact forces of the hangers.
The final step is to compare displacements 
found in subsection 6 with displacements 
found in subsection 3 using the next formula: 

. if this sum total is near the 

0, then calculated inside forces and displace-
ments are final and solution is finished. if the 
sum total is not 0, the calculation process must 
be repeated from the subsection 3 using loads 
which are corrected by comparison with men-
tioned 10%.

3. Numerical results

Comparison of results for classical suspension bridge 
from different calculation methods are presented in 

1.

2.

3.

4.

5.

6.

7.

 
Fig. 5. The stiffening girder as 2-span continuous beam

 
Fig. 6. The stiffening girder as single beam

 
Fig. 7. The stiffening girder as 2-span single beam



170 M. Kiisa, J. Idnurm, S. Idnurm. Discrete Analysis for Single-pylon Suspension Bridges

(idnurm 2004; kulbach, idnurm, J., idnurm, s. 2002; 
kulbach 1995, 1998, 1999, 2007). There the results from 
analytical (continual) method (aare,  kulbach 1984) 
and discrete method give similar results, which are 
more exact than results, got from linear finite element 
method (because of finite element method defines the 
cable as many single segments which are connected).

For the numerical results we used single-pylon sus-
pension bridge with spans 90 m. Height of the pylon is 
taken 20 m.

in the calculation, three different calculation meth-
ods were used: discrete methodology, linear finite element 
method (FEM), non-linear FEM. For FEM is used com-
mercial software staad/Pro v8i. The loads and basis of 
modelling using FEM are the same as for the analytical 
(continual) method and discrete method.

The calculations were carried out with the combi-
nations of the cross-sections of two different cables, with 
cross-section areas 31800 mm2 and 45800 mm2. The 
modulus of elasticity for the cable was taken 170 GPa, 
for the hangers and girder the modulus of elasticity was 
210 GPa. The moment of inertia of the girder was taken 
3.38·1010 mm4. 

The prestressing load, which consist self-weight of 
the girder and deck structure is p0 = 30 kN/m (at that mo-
ment there are no deflections of the girder and the cable 
because the cable is prestressed), additional self-weight 
load is p1 = 20 kN/m, and traffic load pt = 30 kN/m. 

The geometry and loads for bridge is presented in 
Figure 8. total load p for this calculation is taken between 
p20 = 20 kN/m to p50 = 50 kN/m. Then, maximum dis-
placement from traffic load pt = 30 kN/m can be calcu-
lated wt = w from p50 – w from p20.

Maximum deflections of the girder are presented 
in table 1.

Table 1. Maximum deflections of the girder, m

p, 
kN/m

A = 31800 mm2 A = 45800 mm2

Discrete Linear Non-linear Discrete Linear Non-linear

20 –0.193 –0.215 –0.213 –0.150 –0.163 –0.161

30 –0.283 –0.323 –0.301 –0.220 –0.245 –0.239

40 –0.370 –0.430 –0.386 –0.289 –0.326 –0.305

50 –0.454 –0.538 –0.467 –0.355 –0.407 –0.369

Comparison of displacements is presented in Fi-
gure 9.

The discrete method gives smallest deflection of the 
girder. smallest displacement from traffic load wt = –0.208 
m come from non-linear scheme when cross-section of 
the cable is 45800 mm2. Displacement from the traffic 
load in case of discrete scheme wt = 0.205 mm is prac-
tically similar as displacement from non-linear scheme. 
Displacements from linear scheme are noticeably larger 
than displacements from non-linear or discrete scheme. 

in case of self-anchoring scheme, displacement from 
load p1 = 20 kN/m was wp1 = 0.188 m, displacement from 
load p = p1 + pt = 50 kN/m was wp = 0.395 m and displace-
ment from traffic load only was wt = 0.395 – 0.188 = 0.207 
m. This is practically same as displacements from bridge, 
where cables are anchored to the abutments. 

4. Conclusion

The geometrically nonlinear equations for discrete 
analysis of single-pylon suspension bridge presented 
in this paper enable adequate determination of deflec-
tions and inner forces for these structures. Numerical 
examples demonstrated a very good accordance bet-
ween results of discrete method and non-linear analy-
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Fig. 8. Calculation scheme for the single-pylon bridge
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Fig. 9. Maximum displacements of the stiffening girder
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sis. if discrete loadings are predicted for the suspensi-
on bridge, then the discrete calculation model should 
be used for the calculation of the bridge. The continual 
model fits well in situations where the influence of dis-
crete loadings is insignificant. The continual method 
also has the advantage of good and quick convergence 
over the discrete model.
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KABAMOJO TILTO SU VIENU PILONU DISKREČIOJI ANALIZĖ

M. Kiisa, J. Idnurm, S. Idnurm

Santrauka. straipsnyje pateikiamas skaičiavimo metodas, pasiūlytas talino technikos universiteto mokslininkų (idnurm 
2004; kulbach 2007) ir skirtas kabamųjų tiltų su vienu pilonu standumo sijai skaičiuoti. klasikiniai kabamieji tiltai susideda 
iš geometriškai nietiesiško lyno, kuris tampriomis atotampomis sujungtas su standumo sija. Paprastai lynas būna pakabintas 
tarp dviejų pilonų, inkaruotų inkariniais lynais. alternatyvi kabamųjų tiltų konstrukcija yra tokia, kai naudojamas tik vienas 
pilonas tilto viduryje, o pagrindinis geometriškai netiesiškas lynas yra inkaruojamas standumo sijos galuose. skaičiuojant 
kabamuosius tiltus, pagrindinė problema yra parabolinio lyno geometrinio netiesiškumo elgsena. tiesinė analizė tinkama tik 
mažiems tarpatramiams. Geometrinio netiesiškumo modelis ypač naudingas klasikinės apkrovos atveju – vienodai išskirs-
tytai apkrovai visam arba pusei tarpatramio. tačiau šiuolaikinius transporto modelius sudaro koncentruotos ir vienodai iš-
skirstytos apkrovos. Diskretusis kabamojo tilto modelis leidžia mums taikyti visų tipų apkrovas, tokias kaip koncentruotos ir 
išskirstytos. Diskrečiojo modelio prielaidos yra tokios: taikoma medžiagų ir horizontalių atotampų poslinkių tiesinė įtempių 
ir deformacijų priklausomybė. atotampų pailgėjimas taip pat yra įvertintas.
Reikšminiai žodžiai: lynų konstrukcijos, standumo sijos, kabamasis lynas, didelių tarpatramių konstrukcijos, 
diskrečioji analizė, geometrinis netiesiškumas.
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