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1. Introduction

two basic conventional methods are generally utili-
zed for analyzing the load-carrying capacity of steel 
structures by EurOCODEs, i.e. stability solution with 
buckling length and the geometric non-linear soluti-
on. stability solution is still employed by designer en-
gineers and can be expected it will not be rejected from 
the field of practical applications for some years (kala, 
Omishore 2006). 

in complex structures with numerous load case 
combinations, it is not common practice to perform 
stability calculation for all loading cases; another sour-
ce of uncertainty is determining joint stiffness and 
their combinations.

The buckling length (parameter) of a member of a 
structural system is therefore frequently chosen for all 
loading cases as one value by the designer’s expertise. 
Buckling length cannot be statistically evaluated as it is 
a typical vague characteristic of the solution that can be 
mathematically modelled utilizing fuzzy sets (Omisho-
re, kala 2006). 

2. Support Joint Stiffness as a fuzzy Number

The vagueness of mathematical modelling rests in 
the emulation of the function of the studied object by 
another object called the model. EurOCODE 3 lists 
a number of methods for the solution of the carrying 
capacity of the frames in Fig. 1: analysis of buckling 
length, geometric non-linear solutions, a combination 
of the fore mentioned methods and simplified proce-
dures according to the first-order theory.  

The determination of the internal forces and desi-
gn of members utilizing the geometric non-linear solu-
tion is limited by a correct determination of initial ge-
ometric imperfections for each structure. Even though 
EurOCODE 3 lists the initial geometric imperfecti-
ons for the basic frame cases, imperfections in atypi-
cal structures are not listed. The geometric non-linear 
solution is frequently utilized in scientific workplaces 
for the analysis of ‘well-defined’ structures (kala 2007a, 
2007b, 2007c; koteš, Vičan 2005). On the contrary, sta-
bility solution is more general and provides a solution 
for all types of structures that frequently occur in buil-
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dings. The structure presented in Fig. 1 is one of many 
structures of nuclear power plants temelín (čr) and 
Mochovce (sr). The majority of the structures of NPP 
are of an atypical shape. This, due to the above-mentio-
ned reasons, eliminates the utilization of the geometric 
non-linear solution and predetermines the application 
of stability solution with buckling length.

One of the frequent sources of error in determi-
ning buckling length is in an erroneous assignment 
of boundary conditions for the member support. The 
fuzzy number of the rotational stiffness of the semi-
rigid joint of support is given by the unfamiliarity of 
the locations of welding the column base into the an-
chor base plate. The fuzzy number in Fig. 3 was defined 
from the imprecise measurements of firm EGV, s.r.o. 
They experimentally obtained two rotational stiffness 
values of the anchor base plate: 14.7 kNm/rad and 230 

kNm/rad. information on the locations of the anchora-
ge of plates and on the manner by which stiffness was 
experimentally obtained was not provided by the firm. 
From realization experience, a more commonly reali-
zed variant was 14.7 kNm/rad. Conditions for welding 
the place of the anchorage of stiffness made 230 kNm/
rad and was not often fulfilled; a horizontal deviation 
of the locations of welding the columns of the structure 
meant a decrease in rotational stiffness. The evaluation 
of the truth degree of stiffness realization is depicted 
in Fig. 3.

3. Beam-to-Column Joint Stiffness as a fuzzy 
Number

another factor on which the correct determination of 
buckling length is dependent is the stiffness of joint 
connections, see Fig. 4. Gross errors in the realization 
of the joint connections of the frame knees were elici-
ted from inspection. The number of bolts did not cor-
respond to design and in some cases, bolt connection 
was replaced by the poorly performed welded connec-
tions. 

 
fig. 1. The geometry of a steel plane frame

 
fig. 3. stiffness of support joints

 
fig. 2. Buckling a frame with a semi-rigid joint

 
fig. 4. an example of a real semi-rigid joint
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The fuzzy number of the stiffness of the frame knee 
joints (see Fig. 5) was defined with the aid of stiffness 
obtained according to EurOCODE 3 for different va-
riants of solutions according to software iDa-NEXis. 
support for the fuzzy number of joint stiffness was de-
fined as the interval 〈0; ∞〉, see Fig. 5. The stiffness of 
zero corresponds to a hinge and that of ∞ to a perfectly 
rigid joint. Both of these possibilities are extreme and 
unrealistic cases, i.e. they were allocated for the degree 
of zero membership.

The stiffness of zero (hinge) or infinity (clamped 
end) frequently idealizes real joint stiffness in compu-
tational models. Maximal stiffness that could be in re-
ality secured by the structural design is the stiffness of 
approximately 4 MNm/rad, see Fig. 6.

The ideal hinge is the boundary member of the 
set. in real joint connections, joints with two bolts ap-
proach zero stiffness, see Fig. 7. The realization of such 
joint would be a gross structural error. However, it is 
necessary to incorporate such type of realization into 
the set of achievements occurring due to different re-
asons. Joint stiffness holds value 0.2 MNm/rad. The 

membership degree of such stiffness was estimated as 
0.14, see Fig. 5. The analysis of joint stiffness was car-
ried out utilizing the programme iDa-NEXis.

a set of the variants of other values exists between 
the boundary values. The behaviour of the members-
hip function was estimated from the obtained results. 
Linear segments were used to substitute behaviour be-
cause we did not have further refining information at 
our disposal.

The membership function increases steeply in the 
interval 〈0; 1〉 MNm/rad. The most frequent occurren-
ces of stiffness realization are assumed in the interval 
of rotational stiffness of 〈1; 4〉 MNm/rad which corres-
ponds to the chosen membership function. stiffness 
over 4 MNm/rad does not correspond to any common-
ly utilized structural design for this structural detail. it 
could pertain to additionally welded joints or any other 
structural amendments by which the gross error was 
solved during joint realization.

it could be objected that the fuzzy set in Fig. 5 
should be discrete because the set of bolts and plates 
has a finite number of members. Due to the fact that 
there exist a high number of combinations (including 
welds) to realize them and that there is a deviation from 
nominal values, joint stiffness may be assumed as a po-
sitive real number. a subjective evaluation of the mo-
dels of membership functions displayed in Fig. 3 and 5 
may differ. Generally, it would be very valuable to draw 
considering the experiences of designers and the ana-
lysis of the damage and wreckage of structures.

4. Conclusions

The aim of the study was to analyse the influence of 
the uncertainty of joint stiffness on the uncertainty of 
the buckling lengths of both columns. Buckling lengt-
hs were analysed utilizing stability solution according 

 
fig. 5. stiffness of semi-rigid joints

 
fig. 6. semi-rigid joint stiffness modelled

 
fig. 7. semi-rigid joint stiffness modelled
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to the second-order theory. The beam finite element 
method with shape functions sin and sinh was utilized 
in the conducted analysis. The plane frame is single-
variably incrementally loaded until the determinant of 
the tangential stiffness matrix reaches zero. The attai-
ned critical load value determines the axial forces in 
members. The buckling length of the column is calcu-
lated as the length of a simply supported beam under 
the action of the Euler critical load (with bending the 
stiffness of a corresponding column) that looses stabi-
lity and buckles. 

The fuzzy analyses of buckling lengths were eva-
luated for the parameter δ ∈ {1.0, 0.8, 0.6, 0.4, 0.2, 0} 
according to the general extension principle (Dubois 
1980). in the fuzzy sets theory, basic arithmetic ope-
rations with fuzzy numbers are developed (addition, 
subtraction, multiplication, division) (Dubois 1980). 
The result of the operation is a fuzzy number, to which 
a membership function appertains. For computational 
procedures, simplifying assumptions and realization 
examples are possible, see (Ferracuti et al. 2005; Möl-
ler et al. 2005; Möller, reuter 2007; Wagenknecht et 
al. 1999; Štemberk, kalafutová 2008; tanyildizi 2007; 
unal et al. 2007; kala 2004, 2005, 2007d, 2007e, 2007f, 
2007g, 2008; kala, Omishore 2005). The solution is ba-
sed on the so-called response function by which the 
computational model is approximated. Then, fuzzy 
arithmetic with this substitutive function is realized. 

The example illustrates the application of fuzzy 
sets to the analysis of uncertainty during the design of 
steel structures. Even though a number of publications 
concerning this field are available, specialized textbo-
oks for application fields are absent. Complex design 
models practically compromise fuzzy analysis due to a 
large number of necessary simulation runs.

The fuzzy sets of buckling lengths are illustrated 
in Figs 8 and 9. in the case that we want to examine 
if the frame satisfies the ultimate limit state according 
to EurOCODE 3, it is necessary to defuzzify the fuz-
zy set of buckling length, see COG, MOM methods 
(Dubois 1980). Defuzified buckling length is a single-
ton by the aid of which the buckling coefficients and 
load-carrying capacity of the frame according to Eu-
rOCODE 3 can be evaluated. Valuable information on 
the uncertainties of input data was taken into account 
in the analysis containing a number of other valuable 
data. The membership functions are distinctively sharp 
functions, see Figs 8 and 9. 

in the case that the right column is unloaded, the 
core of the buckling length of the left column shifts to 
the left and the core of the buckling length of the right 

column shifts to the right. The support of the buckling 
length of the left column widens with decreasing δ 
while that of the right column narrows down.

The fuzzy sets depicted in Fig. 8 and Fig. 9 present 
fundamental fuzzy outputs that do not make provision 
for the degree of the membership of parameter δ. in 
the event that information on the parameter of loading 
column δ is not available, i.e. each  is assigned 
to the degree of membership 1.0, the fuzzy number of 
buckling length can be obtained utilizing the theoretic 
operation of union, see Fig. 10 and Fig. 11.

 
fig. 8. Fuzzy buckling length of the left column

 
fig. 9. Fuzzy buckling length of the right column

 
fig. 10. Fuzzy buckling length of the left column
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The paradox about buckling lengths is that if axi-
al critical Euler force approaches zero, buckling length 
transcends above all limits. The defuzzification of buc-
kling lengths would require the elimination of zero 
joint stiffness and the zero loading of the right column. 
infinite buckling lengths have a zero degree of mem-
bership and are on the boundaries of the fuzzy sets. The 
problem requires an elaborate mathematical analysis, 
the basis of which could be an analytical derivation 
of the dependence between the stiffness and buckling 
lengths of the frame.

Even though technical regulations are apparently 
strict, their realizations are always performed by peo-
ple, i.e. more or less vaguely. This example demonstra-
tes a clear and specific application of fuzzy sets in mo-
delling uncertainties emanating from vagueness. This 
phenomenon occurs virtually during all human activi-
ties, even though we might not like to admit it.
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fORMALIOSIOS LOGIKOS ANALIzĖS PRITAIKYMAS PLOKšČIŲ RĖMŲ 
SKAIČIUOJAMŲJŲ ILGIŲ NUSTATYMUI

z. Kala, A. Omishore, L. Puklický

Santrauka. straipsnis pateikia siūlomą skaičiuojamojo ilgio nustatymo metodą, grįstą formaliąja logika, sukeltą esant ne-
pastoviam jungčių standumui ir elemento atramų ribinėms sąlygoms. Pateiktas pavyzdys demonstruoja aiškų ir specifinį 
formaliosios aibės pritaikomumą modeliuojant nepastovumą projektavimo metu. skaičiuojamasis ilgis buvo analizuojamas 
panaudojant stabilumo sprendinius taikant antros eilės teoriją. sijos baigtinių elementų metodas su sinuso ir hiperbolinio 
sinuso formos funkcijomis buvo pritaikytas analizėje. Įvedamų duomenų nepastovumas taip pat buvo įvertintas analizėje.

Reikšminiai žodžiai: plienas, betonas, konstrukcija, projektavimas, patikimumas, atsitiktinis, formalioji logika, trūkumas.
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