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Abstract. Most cold-formed steel columns display open and rather thin-walled cross-sections which mean
that their structural behaviour is strongly affected by local and global buckling. The local mode, that occurs for
shorter profiles, is characterized by (i) the local plate mode (LPM) characterized by the simultaneous flexural
buckling of the web and flanges and (ii) by the distortional mode (DM) characterized by the displacements
of flange-stiffener edges (that remain plane). The global mode occurring for long profiles is characterized by
(i) the flexural mode (FM) characterized by the translation of the whole section in the direction of the major
principal axis and (ii) by the flexural-torsional mode (FTM) characterized by the simultaneous translation
and rotation of the whole section. The possibility of using the results of linear stability analysis in the nation-
al codes of thin-walled cold-formed steel structural elements (for instance, European and Brazilian Codes)
arises, i.e. local and global buckling instability modes and corresponding bifurcation stresses determining the
ultimate strength of members. Two powerful numerical methods are chosen to perform a linear stability anal-
ysis of a cold-formed steel structural member: (i) the Finite Strip Method, (i;) the Semi-Analytical Finite Strip
Method (trigonometric functions are used in the approximation of displacement) used for simply supported
boundary conditions, (i,) the Spline Finite Strip Method (‘spline’ functions are used in the approximation of
displacement) used other boundary conditions and (ii) the Finite Element Method. The linear local and global
stability results of for Z, C and rack cold-formed columns are used to obtain ultimate strength through the
procedures adopted in the Eurocode 3, Part 1.3 and in the Brazilian Code (NBR 14.762/2001). The obtained
numerical estimates by specifications are compared with experimental results available in literature

Keywords: cold-formed, finite strip, finite element, local buckling modes, global buckling modes, code specifica-

tions.

1. Introduction

Most cold-formed steel profiles display open and rather
thin walled cross-sections which mean that their struc-
tural behavior is strongly affected by local and global
buckling. The local mode, which occurs for shorter
bars, involves plate deformations (remain your axis in
original configuration). Local modes can be character-
ized by (i) the local plate mode (LPM) that involves only
the flexural deformations of the web and flange and (ii)
the distortional mode (DM) that includes the displace-
ments of flange-stiffener edges remaining plane. The

global mode occurring for long profiles is characterized
by axis deformations. The global mode can be char-
acterized by (i) the flexural mode (FM) that involves
the translation of the whole section in the direction of
the major principal axis and (ii) the flexural-torsional
mode (FTM) that occurs in the translation and rota-
tion of the whole section. The aim of this article is (i)
to present the numerical procedures based on Finite
Strip and Finite Element in order to perform the stabil-
ity analysis of thin-walled profiles and (ii) to study the
ultimate strength of Z, C and rack cold-formed columns
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by means of the results of linear stability analysis illus-
trated in Figure 1.

The buckling modes of cold-formed profiles with Z
cross-sections with inclined stiffeners are shown in Fig-
ure 2: (i) LPM (Figure 2a), (ii) DM (Figure 2b) and (iii)
FM in the direction of the minor principal axis (Figure
2¢).

Figure 3 shows buckling modes that occur in the
behavior of C columns. Local modes are similar to Z
sections (Figure 2a, b). The global mode in section C is
FTM (Figure 3c). Figure 4 shows rack buckling modes:
(i) the local plate mode (LPM — Figure 4a) caused for
web buckling, (ii) the distortional mode (DM — Figure
4b) involving horizontal and vertical stiffeners and (iii)

the flexural-torsional mode (FTM — Figure 4c).
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Fig. 2. Buckling modes of Z sections:
(a) LPM (b) DM (c) EM
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Fig. 3. Buckling modes of C sections:
(a) LPM (b) DM (c) FTM

Fig. 4. Buckling modes of rack sections:
(a) LPM (b) DM (¢) FTM
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Linear Stability Analysis is carried out by compu-
tational programs developed by the authors of this pa-
per: (i) the Finite Strip Method where the results were
obtained by two computer programs developed by Pro-
la (2001): (i;) the Semi-Analytical Finite Strip Method
(trigonometric functions are used in the approximation
of displacement) used for simply supported boundary
conditions, (i,) the Spline Finite Strip Method (‘splin€’
functions are used in the approximation of displace-
ment) used for other boundary conditions and (ii) the
Finite Element Method where the results are obtained
by a computer program developed by Pierin (2005).

The linear local and global stability results of Z, C
and rack cold-formed columns are used to obtain ulti-
mate strength through the procedures adopted in the
Eurocode 3, Part 1.3 (European Committee... 1996),
the North-American Code (American Iron... 1997),
the Brazilian Code (Associag¢do... 2001) and the Di-
rect Strength Method (DSM) (American Iron... 2004).
The obtained numerical estimates by specifications are
compared with experimental results available in litera-
ture.

2. Linear Stability Analysis

The methods of Finite Strip and Finite Element were
developed by the authors to perform Linear Stability
Analysis (LSA).

2.1. The Finite Strip Method

The Finite Strip Method (FSM), which constitutes a
modification of the Finite Element Method (FEM), is
particularly advantageous for application to structures
with regular geometric configurations, simple bounda-
ry conditions and applied loads. The subdivision of the
structure in ‘finite’ strips presupposes (i) that its geo-
metry remains unaffected in the longitudinal directi-
on (e.g., prismatic bars) and (ii) knowledge of a functi-
on that approximates the longitudinal variation of the
field of displacements with great precision and simul-
taneously satisfies respective boundary conditions. Fi-
gure 5 illustrates, for the case of a thin-walled profile C,
the discretization of the structure in FSM.

The approach to the displacement field in each fi-
nite strip in the longitudinal direction is made through
(i) polynomials that assure compatibility among the
strips in the traverse direction and (ii) continuous
functions (typically, trigonometric functions) that have
to satisfy boundary conditions. Analytic solutions that
supply the real configuration of the modes of instabi-
lity can be frequently used as longitudinal functions.
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Fig. 5. Discretization in FSM

Due to this fact, the method is called the semi-analytic
finite strip method. As mentioned above, in the traverse
direction, the field of displacements is approximated in
each finite strip for polynomials the degree of which is
conditioned by compatibility among adjacent strips.

In spite of its usefulness and efficiency, computa-
tional FSM presents the important limitation of easily
applicable to simply supported boundary conditions
(local and global displacements). To overcome this li-
mitation, Lau and Hancock (1998) developed an alter-
native formulation of the method of finite strips where
the longitudinal variation of the field of displacements
is approximated by a linear combination of speci-
al functions designated by B;-Spline the properties of
which allow simulating different boundary conditions
and loads.

The use of functions B;-Spline implies dividing
each line nodal in several stations (Figure 6), which, lo-
gically, significantly increases the number of the degre-
es of freedom in the bar, and thus approximates FSM
of FEM. However, a comparative analysis of applying
the before mentioned two methods indicates that the
incorporation of functions B3-Spline in the formulati-

stations

Fig. 6. Stations in SFSM

on of FSM (now called the spline finite strip method -
SFSM) leads to a larger computational efficiency in re-
lation to FEM (Hancock 1998).

The formulation of each finite strip (FSM and
SFSM) involves the following steps:

(i) The identification of the degrees of freedom and
the choice of approximation functions for mem-
brane and flexure displacements.

(ii) A definition of deformation-displacement (cine-
matic) relationships.

(iii) Stress-deformation (constitutive) relationships.

(iv) Determination by means of the potential ener-
gy minimization or the principle of the virtual
work of the equilibrium equations.

Figure 7 shows, respectively, the degrees of free-
dom in a semi-analytic finite strip and displacements
with functions B;S (in this case, the degrees of freedom
are, in fact, the coefficients of functions). Each strip has
length a, width b, thickness ¢ and is delimited by no-
dal lines i and j. It is observed that, in the first case,
eight degrees of freedom exist (four for line nodal): (i)
longitudinal displacements (membrane) u; and wj, (ii)
lateral displacements (membrane) v; and v;, (iii) trans-
verse displacements (flexural) w; and w;and (iv) rota-
tions (flexural) 0; and 0; (0 = ow/dy). In the second
case, 8(m+3) the degrees of freedom (half in each line
nodal) allowing to obtain correspondents u,v, w and 6
in each one of the (m+3) stations are located in each
line nodal.

In the lateral direction of each finite strip (axis y),
the displacements are approximate for the polynomials
of (i) one degree (membrane displacements u and v)
and (ii) three degrees (flexural displacements w and 6).
For a given value of x:

e v O v (0 5 W

v(xy)

w(e)=[N, ()] [w, )| B, } @)

where (see in Prola 2001):

(i) N, and Nyare one degree (membrane displace-
ments) and three (flexural displacements) de-
grees polynomials, respectively.

(ii) W, e Yrare trigonometric functions (for FSM)
or functions B;S (for SFSM).

To satisfy boundary conditions in the end of each
nodal line, it is necessary to define modified functions
B;S obtained through a procedure presented in Prola
(2001).
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Fig. 7. Degrees of freedom: finite strip (a) semi-analytic (b) and
having functions B;S

The equilibrium equations of a finite strip are
found by means of applying the Minimum Potenti-
al Energy Principle following the definition of stress-
strain (Hooke law‘s) and strain-displacement relations-
hips.

The coordinates, transformation and assemblage
of matrixes lead to the equilibrium equations of the

structural element, given by:
([K]+2[G]){s }={0}, 3)

where [K] and [G] are the stiffness and geometric ma-
trix of the structural element (bar), {3} is the displace-
ment vector (eigenvector) and A (eigenvalue) is para-
metric stress.

Equation (3) constitutes a problem of eingenvalu-
es and eigenvectores the resolution of which supplies
(i) the values of bifurcation stress and (ii) respective
instability mode configuration. The Subspace Method
(Bathe 1998) and LAPACK (Anderson et al. 1999) rou-
tines are used to solve this problem.

Two computer programs developed by Prola
(2001) are used for obtaining the results given by the
Finite Strip Method (FSM and SFSM).

2.2. The Finite Element Method

The application of FEM leads to an eigenvalue problem
similar to equation (3). In fact, the structural element
is divided in finite elements (elements with simple ge-
ometries and linked to each other by nodes). Inside the
finite element, the field of displacements is approxi-
mated by a linear combination of functions usually
polynomials the coefficients of which are nodal dis-
placements.

Figure 8 shows the element discretization of co-
lumn C in FEM. Besides the transversal direction, the
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element is divided in the longitudinal one. (see diffe-
rence with FSM in comparison with Figure 5).

Fig. 8. Discretization in FEM

Pierin (2005) used four nodes shell element to
perform linear stability analysis of thin-walled cross-
sections in the corner of which (i.e. web-flange edge),
in order to become compatible, rotations between ele-
ments in different planes and the sixth degree of free-
dom (0_) with null stiffness are included in each node.
The finite element has 24 degrees of freedom (3 transla-
tions and 3 rotattions per node).

A four nodes quadrilateral finite element based on
Discrete Kirchhoff Theory (DKQ) (Batoz, Tahar 1982)
is developed without the consideration of shear defor-
mation at discrete points on the sides of the element.

Each node has one transversal displacement w
and two rotations about x and y.

6, =0 and0, =0/ (4)

P and P, are normal vector rotations about the planes
of the plate parallel to planes x-z e y-z, respectively, de-
fined by cubic incomplete polynomial:

Bx = ZNini
" (5)
By = Z NiByi

where shape functions N;are the functions of eight no-
des Serendipity element (Cook et al. 1989). The values
of B,; and P,; are affected by corner nodes (externals)
and intermediate nodes (internals) of the sides of DKQ
element (see Figure 8). For corner nodes (externals):

W 0
P tw, = fori=1,2,3,4 6)
Byi + wyi 0
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and for intermediate nodes (internals):

aTw, =0 for k=5,6,7,8 (7)
where: s - a parallel to the element side and wy, the de-
rivation of traverse displacement w in relation to s in
the intermediate node k (w is defined by cubic expres-
sion along of the each side of the element):

3 1
Wa = 72_117(“’;' -w; )7Z(Wsi +wy )) 8

where: k=5, 6,7, 8 is the intermediate node of sides
Jj =12,23,34,41, respectively, and [;; is the length of the
element side ij (Figure 9).
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Fig. 9. Geometry of DKQ element

It is important to observe that: (i) displacement w
is not defined in the interior of the element and varies
independently along of the side of the element; (ii) the
Kirchhoft hypothesis is satisfied along of the boundary
of the entire element (w;, and [, are quadratic expres-
sions along of the sides); (iii) DKQ element presents
convergence for thin plate elements where shear effects
are not important; (iv) DKQ element is compatible
along the entire boundary.

The computer program implemented by Pierin
(2005) is used for obtaining the results given by the Fi-
nite Element Method.

3. Numerical Results of Linear Stability Analysis

The curves represented in the next figures illustrate
the variation of buckling coeflicient K, with the ele-
ment length/width ratio (a/b;) represented in the lo-
garithmic scale for three types of columns displaying
sections C, Z and Rack. The buckling coefficient K, is
related to column local (cross-section) critical bifur-
cation stress G, by the expression:

KrE (Y
Gb:LZ | (9)
12(-v}) | b

where E is the Young's modulus and v is the Poisson

coeflicient.

3.1. Sections Z and C

Figures 10 and 11 indicate the variation of the buc-
kling coefficient vs. aspect ratio a/b; for columns Z
and C (b,/b,;=0.5 e b,/t=50) where the buckling mode
assumingly occurs with half sine wave (n=1). Cur-
ves in Figures 10 and 11 show two local minima, the
first of which corresponds to LPM (Figures 12 and
13) and the second one - to DM (Figures 14 and 15).
The critical local buckling mode corresponds to the
minor value of the two local minima. For long profi-
les (a/b, >10), the global mode (Figures 16 and 17) is
critical.

The observation of the curves for sections Z and
C allows establishing the following comparisons: (i)
local buckling behaviour (LPM and DM) is identical
and (ii) the values of the global stress are slightly dif-
ferent, although they correspond to the buckling mo-
des of distinct nature (FM for section C and FTM for

section Z).
124
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Fig. 10. Variation of ky, vs. a/b, for bs/b,=0.07
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Fig. 11. Variation of ky, vs. a/b; for by/b; = 0.10
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Fig. 16. The global flexural torsional buckling mode

Fig. 12. The local plate buckling mode (LPM) of column C (FTM) of column C

Fig. 13. The local plate buckling mode (LPM) of column Z Fig. 17. The global flexural buckling mode

(GFM) of column Z

3.2. Rack Section

Figure 18 shows the variation of the buckling coefhi-

cient vs. aspect ratio a/b; for rack columns with sim-

ili‘i.{i‘\\t§{\ A\ ply supported endings. Geometrical parameters for
mn‘:‘:?tll‘i‘i‘l"-ﬁﬁ‘l\lil the rack column are: b,/b; = 0.5, bs/b; = 0.2, b,/b; =
fiilmn"}ff“ 0.3 and b,/t = 50. Two methods including (i) SFM and

i
E{(E;ﬂ% i (ii) FEM were used. In case of the curve obtained with
' SFM, the buckling mode assumes a half sine wave and
the curve has two local minima associated to the oc-
currence of LPM (Figure 19) and DM (Figure 20). The
critical local mode is DM and, for long profiles, the

global mode is FTM (Figure 20).

Fig. 14. The distortional buckling mode (DM) of column C
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Fig. 15. The distortional buckling mode (DM) of column Z Fig. 18. The results of simply supported rack columns
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Fig. 19. The local plate buckling mode (LPM)
of Rack column

AT
R
SR

Fig. 20. The distortional buckling mode (DM)
of Rack column

Fig. 21. The global flexural buckling mode
(FTM) of Rack column

The curve carried out by FEM shows the critical
buckling coefficient. For shorter profiles (a/b;<3.2),
the buckling mode is LPM and the number of the half
sine wave (indicated in parenthesis) varies from 1 to 4.
For the values of a/b; between 3.2 and 12, the buckling
mode is DM with a half sine wave. For long profiles
(a/by>12), FTM is critical. Transition between local
and global modes occurs for columns with a/b;~10.

A comparison of the results between FEM and
SESM for the fixed column is presented in Figure 22.
For both local modes (LMP and DM), critical buckling

— FEM
—=— SFSM

Fig. 22. The results of the fixed-end rack columns

coeflicients are similar to those for simply supported
columns. Boundary conditions for the columns only
influence the results of the lower numbers of the half
sine wave.

More information about the influence of fixing
the warping and rotation of the boundary sections of
the columns in the buckling coefficient can be found
in Prola (2001). In case of the fixed columns, the cri-
tical buckling coefficient is not influenced by warping
conditions for boundary sections. The fixed boundary
condition is equivalent to restrict the warping of sim-
ply supported columns.

3. Ultimate Strength Evaluation

3.1. The Direct Strength Method

Schafer and Pekoz (1998) proposed the Direct Strength
Method (DSM) as the alternative one to the Width
Effective Method (WEM), a procedure used in sev-
eral normative national codes for determining the
ultimate strength of cold-formed profiles. The AISI
(Associagdo... 2001) published the manual of cold-
formed projects using DSM.

The use of DSM (i) requires determining critical
buckling loads by means of LSA and (ii) by means of
a series of the curves of strength allows determining
the ultimate strength of the profiles. Nominal ultimate
strength due to local buckling (P,) is given by (Ameri-
can Iron... 2004):

P,=F,

n

for A, <0.776

0.4 0.4
Ao, A0, (10)
P, =P, [1—0.15| £ [gpl] for A, > 0.77

ne

where A, is the cross section area, \; is the reduced
slender due to the local mode effects given by:

(11)
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being o, critical local stress obtained from LSA and
P,. - nominal ultimate strength for flexural, torsional
and flexural-torsional buckling given by:

P, =(0658" )a,/, for 2, <15

12)
0.877 . (
R’E:[ X ]Agjy for A, >1.5
where,

A, f,
W e X 13
: P (13)

in which f, is steel yielding stress and P, is minimum
global elastic buckling load determined by:

2

noEl
NEx = 12

n’El,
No=—F (14)

*El

N, =L G+ T

7 /

being E the modulus of elasticity, I,, I, the moment of
inertia about the centroid axis, I, the torsional constant,
G the shear modulus, r,,, 1y, asymmetrical parameters
and r, the polar radius of gyration.

The nominal value of ultimate strength (P,;) cor-
responding to distortional buckling is given by:

P,=4,f, for A, <0561
0,6 0,6
) ) 15

Po=d f|1-025|Zas | | G | gorn 50561 (1)
nd g Jy f f dist
where,

G,
A’dist = [ (16)

/s

and oy is critical distortional stress obtained from
LSA.

3.2. The Brazilian Code

According to the Brazilian Code NBR 14.762/2001
(Associagdo... 2001), the nominal value of ultimate
strength (P,;) due to local buckling is determined by:

P, = p-Ae/'fy (17)
where A, is the effective area, f, is the steel yielding
stress and p is a reducing factor due to local buckling
given by:
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N (18)
B+(B %)

B =0.5[1+o(h,—02)+2] (19)

with:

A = A?;D'fy (20)

and f, is the steel yielding stress and P, is the minimal
of critical elastic column buckling load determined by
expression (14).

For flexural buckling, the initial imperfection
parameter oo depends on the geometry of the cross-
section and the flexural axis found in Table 7 of the
Brazilian Code (Associagdo... 2001). In case of flexu-
ral and torsional-flexural buckling, o = 0.34 must be
adopted.

The nominal value of ultimate strength (P,;) due
to distortional buckling is determined by:

Py =A4,f,(1-025),,)

dist

for A,, <1.414
P,=A4,.f, [0.055.(7%, —3.6) + 0.237} (21)

for 1.414<),, <3.6

1.3. Eurocode 3- Part 1.3

According to the Eurocode 3 (European Committee...
1996), the nominal value of the ultimate strength of
the column (P,) is determined by:

P.=A,F

oy Eo (22)

where A, is the effective area of the cross-section and
F, is nominal stress that corresponds to the collapse
by global buckling:

F,=x%.1, (23)

being % a reducing factor for buckling resistance:

:;S 1,0
e T (24)

and ¢ is given by:

¢:0,5[1+a(7T70,2)+7T2]. (25)

Relative slenderness A for the relevant buckling mode
shall be determined from:
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(26)

AL

where G,,, is the global critical stress and 4 is a coef-

e,
ficient thjt relates to the effective area (A.y) and to the
gross area (Ap) of the cross-section. The o coeffici-
ent is named the imperfection parameter. For flexural
instability, o (i.e. the dimension curve) depends on
the geometry of the cross-section and the flexural axis
found in Tables 6.1 and 6.2 of EC3 (European Com-
mittee... 1996).

The general method of EC3 to define the effective
area is based on a structural analysis of the model sho-
wed in Figure 13 (a case of a simple stiffener) where
rotation spring simulates restriction to rotation given
for the web to the flange. For the distortional mode,
the method defines a fictitious column supported in
the elastic foundation the cross-section of which is
the effective zone of the stiffener (area A,) — see Figu-
re 23. The translational rigidity of elastic foundation
is defined here by C, (in EC3, the assignment is ‘K’)
and is supplied by the flexural of the flange in around
of the web-flange junction.

The procedure of determining the effective area of
the general method is described in the PhD thesis by
Prola (2001).

Fig. 23. Stiffener effective area and a ‘fictitious column’
supported in elastic foundation.

4. Ultimate Strength

Linear stability results for Z, C and rack cold-formed
columns are used to obtain the ultimate strength of
these columns and are compared with experimental
results available in literature. Ultimate strength is ob-
tained by means of procedures adopted in the (i) Di-
rect Strength Method (DSM) (America Iron... 2004),
(ii) the North American Code (American Iron...
1997), (iii) the Eurocode 3, Part 1.3 (European Com-
mittee... 1996) and (iv) the Brazilian Code (Associa-
¢do... 2001).

4.1. Sections Z and C

Experimental work on Z sections with the edges of
sloping stiffeners was performed by Polyzois, Sudhar-
mapal (1990) and Punardi et al. (1990). The authors
carried out experiments on profiles with four lengths
(a =457-914-1524-2438 mm) and four angles of the
stiffeners (o0 = 0°-30°-50°-80°).

Table 1 indicates that three different yielding
stresses of steel f, = 289.4-392.7-420.3 MPa (E =
203 GPa and v = 0.3) were used. The ends of the co-
lumns were placed in direct contact with rigid pla-
tes in which a device was mounted to prevent lateral
displacements. A system of spheres was placed in the
external surface of these plates in order to permit the
flexural rotation of the sections, and therefore to as-
sure that the boundary condition of the column was
simply supported (hinge).

Table 1 contains: (i) the local (6., — LPM or DM)
and global (6., — FM) buckling stress of all columns
obtained from LSA and along with 6, the buckling
mode is indicated; (ii) the estimates of strength ulti-
mate following the procedures adopted in the Euro-
code 3- Part 1.3 (P, pc3), in the Brazilian Code (P,y.
gr)> in the North-American Code (P, 4;5) and in the
Direct Strength Method (P, psy,); (iii) the experimen-
tal values (P,,) (the number in the parenthesis indi-
cates the number of the carried out experiments). In
LSA, columns were considered to be simply suppor-
ted and restrained to warp at both ends.

The estimates obtained through EC3 are more
conservative, whereas the other estimates (AISI, NBR
and DSM), in some cases, exceed the experimental
results of ultimate strength. The EC3 estimates are
always the lowest values and, in general, the values
obtained with DSM are the highest ones. In longer
columns, where FTM is critical, all estimates are in a
safety side in comparison with experimental results.

Experimental results for section C with the stif-
feners of slopping edges were obtained Young et al.
(1999). They carried out 8 tests. All columns had the
same geometry (a ~ 1504 mm, b; = 97 mm and b3 =
11 mm). The columns were divided into two groups
(CI and C2). Each group had four columns with a
different angle of stiffeners (o0 = 30-45-60-90°),
thickness, flange width and the yielding stress (CI:
b/t = 50, by/b; ~ 0.5 and f, ~ 505 MPa; C2: b/t ~
40, by/b; ~ 1 and f,~ 420 MPa — E ~ 200 GPa and v
= 0.3 for both groups). The geometrical characteris-
tics, material proprieties and experimental value of
ultimate strength for groups CI and C2 are shown in
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Table 1. Analytical and experimental results — Z sections
oy | A1 | b | By | bt | @ e e | Trese | T ke | Frams | Fros
0681 | 428 | 077 | 000 | 59 | 000 | py | 3102 | 507 1719(5.18(?2)) is | 953 | 11571 | 10538
i [ 1o | om | om | a | o | 32 | o | 2 |0 | ma || o
9921 | 461 | 065 | 020 | 482 | 519 L“gf/[ 3330 | 289.4 | 153.7(4) | 1403 | 118.5 | 145.62 | 149.54
99.42 | 460 | 064 | 021 | 489 | 77.8 519134 3247 | 2894 | 1515(3) | 1407 | 130.6 | 146.30 | 14544
9931 | 921 | 081 | 000 | 483 | 0.00 LII(,’SA 758 | 3927 | 101.6(2) | 100.0 | 86.8 |100.57 | 124.23
99.16 | 922 | 064 | 020 | 482 | 330 gﬁ 837 | 3927 | 1452(2) | 1427 | 1143 | 14530 | 144.85
9924 | 921 | 063 | 020 | 482 | 504 5131131 832 | 3927 | 1563(2) | 1533 | 1340 | 156.12 | 160.41
9926 | 921 | oes | 021 | a2 | zen | S5 | 814 | 3927 | 1529(2) | 1607 | 1402 | 16130 | 16118
99.42 | 1533 | 081 | 000 | 483 | 0.00 ngf\‘/[ 273 | 4203 | 765() | 777 | 688 | 78.43 | 93.63
9944 | 1533 | 062 | 019 | 489 | 33.1 13)?5[ 296 | 4203 | 1302(2) | 1132 | 841 | 10553 | 118.28
9949 | 1532 | 063 | 020 | 490 | 490 L41§)1€1 300 | 4203 | 133.1(2) | 1193 | 957 | 107.61 | 120.27
9921 | 1536 | 063 | 020 | 488 | 780 | A% | 202 | 4203 | 1307(2) | 1220 | 97.8 | 10658 | 11449
9982 | 2443 | 080 | 000 | 5.7 | 000 L?:ll\/[ 109 | 289.4 | 47.6(2) | 368 | 349 | 3724 | 47.99
9840 | 2478 | 064 | 020 | 503 | 31.1 S\Z 117 | 2894 | 64.8(4) | 514 | 400 | 49.98 | 50.30
99.87 | 2442 | 062 | 019 | 517 | 500 gﬁ 117 | 2894 | 643(2) | 508 | 445 | 4536 | 47.27
99.77 24.44 0.64 0.20 51.7 80.4 L3P61\1/I 115 289.4 63.4 (3) 50.2 45.0 46.80 46.91

Tables 2 and 3, respectively. The endings of the co-
lumns were placed in direct contact with rigid plates
in order to restrain rotations in any axis (Young et
al. 1999). In this way, the authors assured that, in ex-
tremity sections, (i) warping was restrained and (ii)
local and global fixed condition was perfect.

The influence of changes in the centroid of the
effective section (displacement in the direction of the
symmetric axis) is considered in the procedure of
EC3. This device transforms the column in a beam-
column [1]. To evaluate the influence of this effect, in
Tables 2 and 3, the estimates of the ultimate strength
are included in parenthesis.

The experimental and numerical results presen-
ted in Tables 2 and 3 (relative to eight tests) show that
the estimates obtained by means EC3 and DSM are
the lowest and the highest values, respectively. AISI
and DSM estimates never exceed the experimental

results of group CI and exceed all the tests of group
C2. The Brazilian Code estimates are conservative
in case of group CI and the results are very similar
with the experimental results of group C2. Taking
into account changes in the position of centroid, the
numerical results of EC3 are always conservative in
comparison with the experimental ones. In fact, dis-
regarding this effect, P,pc; values are close to other
estimates bearing in mind an exception it still leads
low values from experimental results.

4.2. Rack Sections

Batista et al. (1999, 2001) carried out 32 buckling tests
on rack columns. The conducted tests can be grouped
into three categories (CI to C3).

All columns had the same cross-section defined
by geometrical relations b,/b; = 0.6, b3/b; = 0.2 and
by/b; = 0.35 (Figure 1c). The groups differ from each
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Table 2. Analytical and experimental results — C sections (CI)

b, o Ol Gcrg Poexp | Paawst | Pavcs | Pansr | Papsm
(mm) | /P | Db bbb o) Ty | Py | KN | RN) | RN) | (RN) | (KN)

7.5 5.4 0.52 0.11 52 31.2 230.6 645.3 117.5 103.4 (;Zg) 101.03 110

7.1 5.5 0.52 0.11 51 46.6 290.7 658.6 126.6 111.6 (17052'34) 119.36 | 124.29

7.3 5.4 0.52 0.11 51 60.7 332.3 669.0 139.1 114.5 (1803406) 131.37 | 132.76

8.4 53 0.49 0.11 52 89.1 362.3 680.0 144.8 114.5 (1900401) 134.78 | 134.78

Table 3. Analytical and experimental results — C sections (C2)

b, o Ol Oerg Poexp | Pnatst | Porcs | Paner | Pnpsm
(mm) | /O Db BB BE o) vy | PRy | KN) | RN) | (RN) | ORN) | (KN)
96.6 15.6 1.0 0.12 40 28.6 119.0 501.8 127.9 149.1 (1932620) 126.97 | 131.49
97.0 15.5 1.0 0.12 41 43.7 147.2 538.9 137.4 156.0 (19355'00) 136.73 | 144.29
96.8 15.5 1.0 0.12 41 60.4 176.5 545.3 149.0 160.1 (19321'00) 146.11 | 157.39
98.0 15.3 1.0 0.12 41 89.9 214.1 572.1 161.7 166.5 (1935406) 162.43 | 177.26

other in the length and thickness of the walls and the
yielding stress of the utilized steel (E = 205 GPa and
v = 0.3). Column lengths were chosen in a way of the
buckling mode to always occur either in LPM (CI1- 15
tests) or in DM (CI — 10 tests, C2 — 5 tests and C3 —
2 tests). The ending sections of the columns were (i)
placed in direct contact with stiff plates (CI — 25 tests
and C2 — 5 tests) or (ii) fixed in these plates (C3 — 2
tests). In this case, the fixed condition was obtained
by means of using composite laminated plates rigidly
molded around the walls of the sections and consequ-
ently, placed in direct contacts with extremity plates.
The global simply supported condition of the columns
is obtained with spheres placed in the exterior faces of
the extremity plates.

A direct contact between ending sections and ex-
tremity plates (i) partially restricted the rotation of the
transversal edges of the walls, (ii) partially fixed war-
ping and (iii) allowed some transversal displacement
in the initial phase of loading. The numerical estimates
consider the following cases: (i) the edges of the walls
are fixed (C3) and (ii) extreme simply supported secti-
ons could not warp (CI and C2).

Tables 4 and 5 show analytical (in terms of critical
bifurcation stress, local, global, and ultimate strength
estimates) and experimental results (ultimate strength)

obtained from tested columns CI, C2 and C3. For
groups CI and C2, two values of the local critical stress
(LPM or DM) are calculated corresponding to simply
supported columns with free (in the parenthesis) and
fixed (in brackets) warping. The number of the half-
wavelengths of buckling modes is placed along with
the designation of the buckling mode. When the war-
ping of simply supported columns is considered fixed,
LPM is critical. The experimental results of ultimate
strength correspond to the medium values of the car-
ried out tests the numbers of which are indicated in
the parenthesis.

As P, \pr estimates depend on the nature of the
critical buckling mode (MLP or MD), Table 4 shows
different estimates of values for each critical mode.
However, as P, pgy; estimates depend on the value of
the critical buckling stress, this table discloses different
estimates for each critical stress value.

The estimates obtained from EC3 and presen-
ted in parenthesis were obtained without considering
changes in the centroid of the effective section.

The results placed in Table 4 related to group CI
indicate that all analytical estimates are inferior to the
received experimental results. EC3 estimates are al-
ways lower than AISI ones even when the warping of
simply supported columns is considered fixed, LPM is
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Table 4. Analytical and experimental results — rack sections (CI)
b, a/b b/t f, Ol Gerg Py exp Py ast Py pcs Py ner P, psm
(mm) 1 1 (MPa) (MPa) (MPa) | (KN) (KN) (KN) (KN) (KN)
309
(LPM - 3) ) 304 200 231.5
127 243 58 294 [343] 1 (5) 230 (216) 236.31 2395
(LPM) (3)
227
(DM -1) 276 200 183.53 182.4
127 7.42 58 294 [314] 8289 (4) 230 (216) 236,31 219.4
(LPM - 9)
431
(LPM - 3) (1) 324 264 310.4
127 2.44 50 311 [476] (5) 298 (283) 306.39 320.2
(LPM - 3)
275
(DM -1) 340 264 240.69 236.1
127 6.86 50 311 [436] 9720 () 298 (283) 306.39 2955
(LPM - 38)
322
(LPM - 3) W 380 278 336.3
147 2.42 57 317 (359] (5) 339 (310) 344.44 3486
(LPM — 3)
232
(DM -1) 376 278 261.37 260.7
147 6.82 57 317 [328] 9460 2) 339 (310) 344 44 321
(LPM - 9)
() The global critical stress value is higher (Gerg > 75000 MPa) and do not influence the P, value
Table 5. Analytical and experimental results — rack sections (C2 and C3)
b, £, Ol Gerg Py exp Py ast Py pcs Py ner P, psm
Group | (mm) | @0 | BU D by | vpa) | P | KN) | KN) | (KN) | (KN) | (KN)
213
DM(2) 226 214.9 222.4
C2 137 12.5 60 362 [299] 3316 230(3) 293 (257) 260.6 7589
DM(2)
215
DM(3) 182 216.4 223.4
C2 137 18.2 60 362 [255] 524 222(2) 232 (203) 2411 2415
DM(2)
299 236
C3 137 12.5 60 362 DM(2) 3316 258(1) 293 (260) 260.6 258.9
255 182
C3 137 18.2 60 362 DM(2) 524 220(1) 232 (203) 241.5 241.5

critical. The results obtained from NBR and DSM are
quite similar and higher than those of EC3 when war-
ping is taken as fixed.

The numerical results presented in Table 5, con-
cerning groups C2 and C3 show that (i) AISI estimates
are always greater than experimental results, (ii) EC3
estimates are lower than experimental results when
changes in the position of the centroid are taken into
account (on the another hand, when changes in the
position of the centroid are not considered, some re-

sults are not conservative) and (iii) some results of NBR
and DSM are higher than the experimental ones.

5. Conclusions

This paper initially presents a review of studies on
buckling modes in the cold-formed steel columns. A
brief description of Finite Strip and Finite Element
Methods is formulated. The following four different
methods of determining ultimate strength columns
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are described: (i) the Direct Strength Method (Ameri-
can Iron... 2004), (ii) the specifications of the Brazil-
ian Code (Associagdo... 2001), (iii) the specifications
of the European Code EC3 (European Committee...
1996) and (iv) North-American specifications (Ameri-
can Iron... 1997).

Linear Stability Analysis based on the Finite Strip
Method and the Finite Element Method is then perfor-
med. These methods were computationally implemen-
ted by the authors and applied to analyze the columns
of C, Z and rack sections. The results of critical bifurca-
tion stress and corresponding instability mode showed
very good correlation between the methods.

The obtained numerical results along with four
described different methods were used to estimate ul-
timate strength and then compared to the results of the
experiments available in literature. An important point
to be emphasized in this case is the advantages of ha-
ving the computer method available to obtain critical
buckling modes and stresses, in sense of applying the
modern national codes of cold-formed steel structures.

Although the testing sample is limited and does
not allow establishing definitive conclusions, the esti-
mates of ultimate strength given by the Direct Strength
Method, the Brazilian Code and the North-American
Code exceed experimental values in some columns.
The estimates given by the European Code are always
on the safety side, whereas change in the position of the
centroid of the effective section was taken into account
as required by this code.
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SALTAI FORMUOTU PLIENINIU KOLONU LAIKOMOSIOS GALIOS [VERTINIMAS
NAUDOJANT BAIGTINIU STRYPU IR ELEMENTU TIESINIO PASTOVUMO
SKAICIAVIMO REZULTATUS

L. C. Prola, I. Pierin

Santrauka. Dauguma $altai formuoty plieniniy kolony turi atvirus arba plonasienius skerspjavius, todél jy konstrukciné
elgsena daugiausia priklauso nuo vietinio arba bendrojo klupumo. Vietinis klupumas, kuris biidingas (1) trumpesniems
profiliuo¢iams, gali buti apibaidinamas vietinés plokstelés modeliu (LPM), pasiZzyminc¢iu vienalaikiu lenkiamuoju juosty
ir sieneliy klupumu ir (2) i$kraipomuoju modeliu (DM), kurj apibuadina juosty ir sastandy krasty (kurie islieka ploksti)
poslinkiai. Bendrasis klupumas, kuris badingas ilgiems profiliuo¢iams apibadinamas (1) lenkiamuoju modeliu (FM). Jam
budingas viso skerspjtvio isilgai pagrindinés asies pasislinkimas ir (2) lenkiamasis sukamasis (FTM) modelis, kuris pa-
sizymi viso skerspjavio pasislinkimu ir pasisukimu. Nacionalinése $altai formuoty plonasieniy plieniniy elementy nor-
mose (taip pat Europos ir Brazilijos) yra galimybé taikyti tiesinj pastovumo skai¢iavima, t. y. nustatant ribine elemento
laikomaja galig naudoti vietinio ir bendrojo klumpamojo nepastovumo modelius bei atitinkamus i$sisakojimo jtempiu.
Saltai formuoty plieniniy elementy tiesiniam pastovumui skai¢iuoti pasirinkti du veiksmingi skai¢iavimo metodai: 1.
Baigtiniy strypy metodas: 1.1- pusiau analitinis baigtiniy strypy metodas (trigonometrinés funkcijos naudojamos poslin-
kiui aproksimuoti), kuris taikomas lankstinio atrémimo kra$tinémis salygomis; 1.2- kreiviniy baigtiniy strypy metodas
(»kreivinés“ funkcijos naudojamos poslinkiui aproksimuoti), taikomas kitokiomis krastinémis salygomis. 2. Baigtiniy
elementy metodas. Z ir C skerspjaviy ir spragotyjy $altai formuoty kolony tiesinio vietinio ir bendrojo pastovumo rezul-
tatai naudojami nustatyti ribine laikomaja galia remiantis Eurokodo 3 (1.3 dalies) ir Brazilijos normy (NBR 14.762/2001)
priimtomis metodikomis. Pagal instrukcijas gautieji skaitiniai jverciai palyginti su literatiiroje randamais eksperimentiniy
tyrimy rezultatais.

Reik$miniai ZodzZiai: $altai formuotas, baigtinis strypas, baigtinis elementas, vietinio klumpamojo nepastovumo modelis,
bendrojo klumpamojo nepastovumo modelis, normy reikalavimai.





