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Abstract. In the present article an alternative approach for the coupled thermal and mechanical analysis of 
composite cross sections under temperature effects is introduced, which uses the mathematical optimization 
as a consistent methodical base. By applying the principle of the virtual source energy for the thermal and 
the principle of the minimum of the total potential energy for the mechanical analysis, an accurate deter-
mination of temperature fields as well as residual strain and stress distributions is possible. The coupling is 
enabled by the thermal strains, which are determined based on the temperature field and passed to the non-
linear mechanical analysis as tension free pre-strains. The energy functional of the heat conduction problem 
is derived and implemented. The resulting optimization task is strictly convex and represents an implicit for-
mulation, which does not impose any stability criteria. The performance of the introduced method is dem-
onstrated on a principle example and an outlook is given on possible further extensions and applications.
Keywords: composite cross sections, thermal effects, restraint effects, heat conduction, energy principles, 
variation principles, optimization task, transient thermal analysis, nonlinear mechanical analysis.

Introduction

Thermal effects lead to mechanical deformations of 
structures. When such deformations are restrained, 
they create internal stresses through the coupling of 
thermal and mechanical behaviour. Such restraint 
effects are of importance to many structures, for ex-
ample in relation to environmental effects (e.g. solar 
radiation), to fire conditions or under the influence of 
internal energy sources such as hydration processes in 
concrete. Purely mechanical restraint effects are pos-
sible due to imposed deformations such as creep and 
shrinkage of concrete or differential support settlement 
of structures.

Restraint effects may be significant to the design 
of structures, e.g. in integral bridges (Jung et al. 2013; 
Morgenthal, Olney 2016) and their accurate prediction 
therefore requires appropriate simulation techniques 

which combine the thermal and mechanical analysis 
and the accurate consideration of influencing param-
eters. A framework for such analysis is presented in 
this paper.

Figure 1 gives an overview on the approach for the 
determination of temperature fields and residual strain 
distributions in composite cross sections subjected to 
thermal constraints. For the temperature field analysis, 
thermal material properties like the thermal conduc-
tivity λ, the density ρ and the heat capacity c, which 
may be temperature and/or time dependent, have to 
be considered. Furthermore, thermal boundary and 
matching conditions, like given temperature functions 
or heat flows at the edges or heat transition between 
two materials, have to be satisfied. The coupling is ena-
bled by the thermal strains, which are computed based 
on the determined temperature field and passed to the 
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mechanical analysis as tension free pre-strains. The re-
sidual strains es are the result of the mechanical anal-
ysis, which is performed under consideration of the 
mechanical material properties (which can be temper-
ature and/or time dependent) and under satisfaction of 
the compatibility conditions for the total strains etot, 
like e. g. the Bernoulli-hypothesis, and static boundary 
conditions. The scheme shows, that the results of the 
mechanical analysis are highly sensitive to uncertain-
ties in the calculation of the temperature field, because 
of the error in the committed thermal strain distribu-
tion as well as the high temperature dependency of 
the mechanical material parameters, especially in the 
cases of fire conditions or young concrete (Achenbach, 
Morgenthal 2014). Thus, an accurate thermal analysis 
is strictly necessary. 

Closed analytical solutions do only exist for spe-
cial cases of the heat conduction problem. Usually, nu-
merical approximations based on the Finite Element 
Method find a use (Baehr, Stephan 2013; Häfner et al. 
1992). An alternative approach for the calculation of 
temperature fields in composite cross sections is in-
troduced in the present article. It is based on a direct 
transformation of the extremum principle of heat con-
duction into an optimization task, which can be solved 
using solver-tools for nonlinear optimization, which 
are implemented in mathematical standard software 
like MS Excel or Matlab. 

The mechanical analysis will be also realized us-
ing an alternative method, which is based on the mini-
mum of the potential energy by Lagrange and on a 

kinematical description of the mechanical problem. 
The resulting optimization task can be solved by stand-
ard software, too. This approach for the mechanical 
analysis of composite cross sections under load and/or 
constraint influences is well investigated and published 
(Raue 2005, 2007; Schröter 2014). 

By using these alternative methods, combined 
thermal and mechanical phenomena in composite 
cross sections under arbitrary combinations of loads 
and temperature constraints can be depicted. Due to 
the degree of nonlinearity, fire exposed and young 
concrete are taking on special positions, because of the 
temperature and time dependency of the thermal and 
mechanical material properties. In the present article, 
a fire exposed cross section will be taken as a principle 
example for illustrating the performance of the intro-
duced method.

1. Thermal analysis of composite cross sections

1.1. The functional form of the heat  
conduction problem

For showing the basics of the calculation method, a do-
main G which is exposed to thermal influences within 
the time interval T = [t1,t2] is considered as shown in 
Figure 2. The edge R of the domain is subdivided into 
3 parts, that represent different boundary conditions: 
fixed temperature function f (R1) and fixed flux density 
function qn (R2) in normal directions as well as linear 
combinations of both of them (R3) to satisfy transition 
conditions between adjoining materials. Further, the 
domain is influenced by an internal heat source W, 

Fig. 1. Scheme for the approach of coupling the mechanical analysis with an upstream thermal analysis
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which has a temperature, place and time dependency. 
The material properties are assumed to be temperature 
dependent.

Analogous to other physical field problems, the 
heat conduction problem can be expressed as an ex-
tremum principle. From all possible temperature dis-
tributions inside the cross section, the one will occur, 
for which the total energy reaches a minimum. The 
corresponding functional equation can be derived 
from the partial differential equation of heat conduc-
tion:

 ( ) ( ) ( ) ( ), , ,c W x t
t

Τ∂ϑ  ρ ϑ ϑ =∇ λ ϑ ∇ϑ + ϑ ∂
 (1)

where: J – temperature; ρ – density; c – specific heat 
capacity; λ – thermal conductivity; W – internal heat 
sources; t –time; ∇ – Nabla-operator. 

For making the derivation more clear, the follow-
ing conventions will be made:

 
( ) ( ) ( )

( ) ( ) ( ) ( )

1, , , ,

, .

c c
c

t

•

ϑ = ρ ϑ = ρ λ ϑ = λ κ =
ρ

∂ ∂ ′= =
∂ ∂ϑ

 
(2)

Considering this conventions, Eq. (1) can be ex-
pressed as
 0.WΤϑ− κ∇ λ∇ϑ − κ =  

  (3)

The multiplication of Eq. (3) by a virtual variation 
of the specific thermal source energy δe, leads to

 ( ) d d 0.
T G

W e V tΤϑ− κ∇ λ∇ϑ − κ δ =  ∫ ∫   (4)

By setting this specific thermal source energy to

 ,e Τ= ϑ− κ∇ λ∇ϑ  
  (5)

the insertion into Eq. (4) results in the following 
statement:
 ( ) d d 0.

T G
e W e V t− κ δ =∫ ∫  (6)

This expression is denoted as the principle of the 
virtual source energy, which is a special form of the 
virtual energy transmission (Mazilu 1982; Kaempf 
1983). The Transformation to

 21 d d 0,
2T G

e We V t δ − κ = 
 

∫ ∫  (7)

enables the exposition in the substituted and resubsti-
tuted functional form:

 21 d d ,
2T G

e We V t Φ = − κ 
 

∫ ∫  (8)
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( )
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2 d d .

T G
V t

W

Τ

Τ

 ϑ− κ∇ λ∇ϑ −   Φ =  
 κ ϑ− κ∇ λ∇ϑ   

∫ ∫




 (9)

The numerical evaluation of this expression is 
relatively difficult. Thus, it has to be transformed for 
better implementation into program codes. The expan-
sion of the functional terms in Eq. (9) leads to:
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2

2

2

1 d d d d
2

1 d d
2

d d d d .

T G T G

T G

T G T G

V t V t

V t

W V t W V t

Τ

Τ

Τ

Φ = ϑ − ϑκ∇ λ∇ϑ +  

κ∇ λ∇ϑ −  

κ ϑ + ϑκ ∇ λ∇ϑ  

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫ ∫

 
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(10)

By using the mathematical relation

 

( ) ,

Τ

Τ Τ

Τ Τ Τ
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(11)

the second term of Eq. (10) can be transformed into

 
d d d d

d d d d ,
T G T G

T G T G

V t V t

V t V t

Τ Τ

Τ Τ

 ϑκ∇ λ∇ϑ = ∇ ϑκλ∇ϑ −    

∇ ϑκλ∇ϑ − ϑ∇ κλ∇ϑ

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

 

 

(12)

where the gradient of the material parameter κ is:

 
( )2

1 .c c
c c

Τ Τ
Τ Τ   ∇ ρ+ ∇ ρ

∇ κ =∇ = − ρ  ρ
 (13)

The gradient used in Eq. (13) cannot be evaluated 
easily. A simple transformation, as exemplarily shown 
on the specific heat capacity c below, is able to remedy. 
For the other material parameters, this transformation 
can be done analogously:

 .c cΤ Τ′∇ = ∇ ϑ  (14)

Fig. 2. Domain G and edge R of the heat conduction problem 
(Kaempf 1983)
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Thus, Eq. (12) can be written as

 ,Τ Τ′∇ κ = κ ∇ ϑ  (15)

where:
 

( )2
.c c

c

′ ′ρ + ρ′κ = −
ρ

 (16)

One advantage of the introduced approach is the 
possibility to consider thermal boundary conditions 
directly by the evaluation of corresponding terms. 
Therefore, the first integral term of Eq.  (12) can be 
transformed into a boundary integral by partial inte-
gration:

 d d d d ,
T G T R

V t A tΤ Τ ∇ ϑκλ∇ϑ = ϑκλ∇ ϑ ∫ ∫ ∫ ∫ n   (17)

where: n  – normalized normal vector to define the 
edge.

Because of the boundary condition at edge R3 is 
depicting a linear combination of the conditions at the 
edges R1 and R2, the boundary integral in Eq. (17) can 
be divided into two independent integral terms. By re-
placing the derivation of the temperature with respect 
to time by the function f defining the temperature on R1 

 ( ),f tϑ= x  (18)

and by replacing the thermal conductivity multiplied 
with the derivation of the temperature with respect to 
the direction of the vector n by the flux density func-
tion qn on R2

 ( ), ,nq tΤ∂ϑ
λ = λ∇ ϑ = −
∂

n x
n

 (19)

Eq. (17) can be expressed as:

                     
( )

2

, d d ,n
T R

q t A tϑκ∫ ∫ x

 

=

 
( )

1

, d d
T R

f t A tΤκλ∇ ϑ −∫ ∫ x n

                   
( )

2

, d d ,n
T R

q t A tϑκ∫ ∫ x

 
(20)

where: ( )1 2, , ..., nx x x Τ=x   – vector containing the 
space coordinates for ḟ and qn.

The next step contains the elimination of the time 
gradient in the second integral term of Eq. (12). With 
the relationship

  ( )1 1 1
2 2 2

•Τ Τ Τ Τ∇ ϑ∇ϑ= ∇ ϑ∇ϑ+ ∇ ϑ∇ϑ= ∇ ϑ∇ϑ    (21)

follows

  ( )1d d d d .
2T G T G

V t V t
•Τ Τ∇ ϑκλ∇ϑ = κλ ∇ ϑ∇ϑ∫ ∫ ∫ ∫  (22)

Thus, the derivation of the temperature with re-
spect to the time can be annulled:

 
( )

2

1

1d d d
2

1 1d d d ,
2 2

t t
T G G

t t
G T G

V t V

V V t

Τ Τ
=

•Τ Τ
=

 ∇ ϑκλ∇ϑ = κλ∇ ϑ∇ϑ − 

 κλ∇ ϑ∇ϑ − κλ ∇ ϑ∇ϑ 

∫ ∫ ∫

∫ ∫ ∫



(23)
where:

 ( )
( )2

.c c c
c c

•
•  λ λ ρ−λ ρ−λ ρ

κλ = = ρ  ρ





 (24)

Because of the material parameters are only de-
fined to be temperature dependent, die partial deriva-
tions with respect to the time in Eq.  (24) cannot be 
taken easily. Again, a simple transformation can help 
solving this problem. As in Eq. (14), it is exemplarily 
shown on the specific heat capacity c, but can be ap-
plied to all material properties:

 .c c′= ϑ  (25)

Thus, Eq. (24) can be expressed as

 ( ) ,a• ′κλ = ϑ  (26)

where:
 

( )2
.c c ca

c

′ ′ ′λ ρ−λ ρ−λ ρ′ =
ρ

 (27)

The third term that describes the heat conduction 
in the functional Eq. (10) will be transformed. By us-
ing

 
,

Τ Τ Τ

Τ Τ

∇ λ∇ϑ =∇ λ∇ϑ+λ∇ ∇ϑ=  
′λ ∇ ϑ∇ϑ+λ∇ ∇ϑ

 
(28)

the integral could be expressed as:

                 ( )21 d d
2 T G

V tΤκ∇ λ∇ϑ =  ∫ ∫

 
( ) ( )2221 d d

2 T G
V tΤ′κ λ ∇ ϑ∇ϑ +∫ ∫

 

2 d d
T G

V tΤ Τ′κ λ λ∇ ϑ∇ϑ∇ ∇ϑ +∫ ∫

                 
( )22 21 d d .

2 T G
V tΤκ λ ∇ ϑ∇ϑ∫ ∫  (29)

At the end, Eq. (28) can also be used to transform 
the last integral term of Eq. (10) into
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Τ
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(30)
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Thus, the functional Eq.  (10) for calculating the 
temperature field can be written in its final form for 
temperature dependent material properties:

( )
1

21 d d , d d
2 T G T R

V t f t A tΤΦ = ϑ − κλ ∇ ϑ −∫ ∫ ∫ ∫ x n

( )
2

2

1, d d d
2n t t

T R G
q t A t VΤ

=
 κ ϑ + κλ∇ ϑ∇ϑ − ∫ ∫ ∫x 

1

1 1d d d
2 2t t

G T G
V a V tΤ Τ

=
  ′κλ∇ ϑ∇ϑ − ϑ∇ ϑ∇ϑ + ∫ ∫ ∫ 

( ) ( )2221d d d d
2T G T G

V t V tΤ Τ′ ′κ λϑ∇ ϑ∇ϑ + κ λ ∇ ϑ∇ϑ +∫ ∫ ∫ ∫

2 d d
T G

V tΤ Τ′κ λ λ∇ ϑ∇ϑ∇ ∇ϑ +∫ ∫

( )22 21 d d d d
2 T G T G

V t W V tΤκ λ ∇ ϑ∇ϑ − κ ϑ +∫ ∫ ∫ ∫ 

2 2d d d d ,
T G T G

W V t W V tΤ Τ′κ λ ∇ ϑ∇ϑ + κ λ ∇ ∇ϑ∫ ∫ ∫ ∫  
(31)

where: term 1 of Eq.  (31)  – term 1 of Eq.  (10); 
terms 2 to 7(31) – term 2(10); terms 8 to 10(31) – term 
3(10); term 11(31) – term 4(10); terms 12 and 13(31) – 
term 5(10).

For some cases, especially when the changes of 
the temperature field are comparatively small, the as-
sumption of constant material parameters could be 
valid. Thus, the following statements can be made:

 ( ) ( ) ( ), , , , const. ,c cλ ϑ ϑ ρ ϑ = λ ρ =  (32)

 , , 0.c′ ′ ′λ ρ =  (33)

If the derivations of the material parameters with 
respect to the temperature are equal to zero, 5 of the 
13 integral terms of Eq.  (31) can be eliminated and 
the functional can be expressed in the form derived in 
(Kaempf 1983): 

( )
1

21 d d , d d
2 T G T R

V t f t A tΤΦ = ϑ − κλ ∇ ϑ +∫ ∫ ∫ ∫ x n

( )
2

2

1, d d d
2n t t

T R G
q t A t VΤ

= κ ϑ + κλ∇ ϑ∇ϑ − ∫ ∫ ∫x 

( )1

22 21 1d d d
2 2t t

G T G
V V tΤ Τ

= κλ∇ ϑ∇ϑ + κ λ ∇ ∇ϑ − ∫ ∫ ∫
2d d d d .

T G T G
W V t W V tΤκ ϑ + κ λ ∇ ∇ϑ∫ ∫ ∫ ∫                 (34)

For the evaluation of the energy functional (31) 
and (34), the temperature field at the time t = t1 has to 
be known. For the calculation of stationary tempera-
ture fields, the upper limit of the time interval has to 
be set very high (t2 → ∞). However, the elimination of 

all derivations with respect to the time is not possible, 
because of the boundary conditions couldn’t be evalu-
ated any longer. 

For using first type boundary conditions, it has to 
be ensured, that f (t = t1,x) is equal to the temperature 
at the edge R1, because of only the time gradient of f is 
considered in the functional term. To avoid the modi-
fication of the temperature field at the edge for t = t1, 
the constraint temperature at the edge may could be 
expressed as a function, that increases continuously up 
to the wanted temperature level.

The introduced functional F describes the total 
thermal energy of the domain G and within the time 
interval T. The partial differential equation of heat con-
duction (1) is solved for a temperature field at t = t2, 
that leads to a minimum of the functional value F. An 
advantage of the heat conduction problem is its strict 
convexity. Thus, there always will be only one tem-
perature field, which satisfies this condition. Because 
of the boundary conditions are considered with terms 
within the energy functional, in general the problem 
is describable as an unconstrained optimization task:

 ( ) min.Φ ϑ →  (35)

1.2. Numerical implementation

The introduced methods are numerically implement-
ed to perform 2D thermal and mechanical analysis on 
composite cross sections. A 3D implementation could 
be realized analogously. Cross sections will be divided 
into parts as shown in Figure 3 (left) for a composite 
T cross section. On the one hand side, this allows a 
different mesh density in different parts of the cross 
section (e.g. for thin webs of steel beams), on the other 
hand side this simplifies the evaluation of the energy 
functional, if every part only consists of one homog-
enous material. Thus, only at the part transitions in-
side the cross section, a more accurate treatment has 
to be made, that considers the materials of the adjoin-
ing parts. Every single part is again divided into a grid 
with equal grid distance, as shown in Figure 3 (right).

For this first implementation, difference quotients 
are used to approximate the single and double deriva-
tion of the temperature field with respect to the co-
ordinate directions. The occurring approximation er-
ror decreases with an increasing mesh density. At the 
edges between two parts, the temperature and the flux 
density are equal by definition. Considering the edge 
of part 1, which adjoins to an edge of part 2 with differ-
ent material, this leads to the following relationships:



46 Ch. Taube et al. Coupled thermal and mechanical analysis of composite cross sections using mathematical ...

 1 2 ,ϑ = ϑ ; (36)

 1 2 2

1
.

∂ϑ ∂ϑ λ
=

∂ ∂ λn n
 (37)

For evaluation by using the boundary integrals in 
Eq. (31) or (34), these conditions can be transformed 
into:
 1 2 ,f = ϑ = ϑ   ; (38)

 

1 2
1 2

2 1
.nq

∂ϑ ∂ϑ 
− λ λ ∂ ∂ =
λ −λ

n n
 (39)

Because of the approximation error within the 
first derivation of the temperature field in the edge 
points by using difference quotients, only the continu-
ity of the edge temperatures is ensured in this first ap-
proach of the present article. This leads to sufficiently 
accurate results. The inclusion of shape functions for 
differentiation, which use the temperature and the 
temperature gradients of the grid points, would lead to 
a higher approximation accuracy and enable the easier 
evaluation of the equations introduced above. 

2. Mechanical analysis of composite cross sections

2.1. The energy functional  
of the mechanical problem

The mechanical analysis is based on the principle of 
the minimum of the total potential energy by Lagrange 
and uses a kinematical description of the mechanical 
problem. The calculation scheme is shown in Figure 4. 
Based on a provided compatibility, which should be 
Bernoulli’s hypothesis in this case, the total strain in 
every fibre i inside a cross section under interaction 

of normal force and bending moments could be de-
termined by using three parameters, the strain in the 
coordinate origin e0 as well as the curvatures κy and κz 
which describe the gradient of the strain plane (Raue 
2007):
 ( ), 0 0, , .i tot y z y i z iy zε ε κ κ = ε + κ + κ  (40)

The stress generating strains es are consisting of 
the total strains and a share of pre-strains e(0), which 
may are impressed into the cross section from a former 
load step. For the case of pure mechanical load influ-
ences, e(0) is equal to zero and the stress generating 
strains are equal to the total strains.

 ( ) ( ) ( )0
, 0 , 0, , , ,i y z i tot y z iσε ε κ κ = ε ε κ κ + ε  (41)

Using the material law, the stress in every fibre 
can be calculated as well as the specific strain energy 
W, which is defined as the area under the stress-strain-
function (Fig. 4 bottom):

 ( ) ( )0 ,, , ,i y z i σσ ε κ κ = σ ε ; (42)

 ( ) ( )
,

0
0

, , d .
i

i y zW
σε

σε κ κ = σ ε ε∫  (43)

An advantage of this approach is the possibility 
of the implementation of arbitrary material models 
without the application of changes in the calculation 
scheme, as long as they could be integrated steadily 
within defined strain ranges. Thus, a physically non-
linear calculation can be done very easily. 

The integration of the specific strain energy over 
the cross section area results in the internal potential 
energy of the cross section

   ( ) ( )int int 0 0, , , , d .CS CS
y z y z

CS
W AΠ =Π ε κ κ = ε κ κ∫  (44)

Fig. 3. Division of a composite T cross section into parts (left) and definition of the grid points inside of one part (right)
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The potential energy of the external loads is de-
fined by:

( ) ( )0 0, , .CS CS
ext ext y z y z z yN M MΠ =Π ε κ κ = − ε + κ + κ  

(45)

Summing up the two shares leads to the total po-
tential energy of the cross section, which represents 
the energy functional of the mechanical problem and 
which still depends only on the three introduced pa-
rameters e0, κy and κz:

 

( ) ( )
( )

0 int 0

0

, , , ,

, , .

CS CS CS
tot tot y z y z

CS
ext y z

Π =Π ε κ κ =Π ε κ κ +

Π ε κ κ  (46)

2.2. Formulation of the optimization task

Considering the cross section geometry, the material 
law and the external loads to be known, e0, κy and κz 
are the parameters of the naturally unconstraint opti-
mization task to solve the extremum problem. Of all 
kinematic possible total strain states inside the cross 
section, only the one will occur, which leads to a mini-
mum of the total potential:

 ( )0 , , min.CS
tot y zΠ ε κ κ →  (47)

If the task should be restricted, e. g. by prescribing 
one of the three input parameters to a certain value 
or by setting limits for calculated strains or stresses, 
constraints have to be defined. Because of the external 
potential is equal to zero in the case of no external 
loads, the total potential is equal to the strain energy 
of the cross section, as shown in Eq. (48). In this case, 

the resulting strain state causes a residual stress distri-
bution inside the cross section, which does not lead to 
internal forces (Schröter 2014).

      ( ) ( )0 int 0, , , , minCS CS
tot y z y zΠ ε κ κ =Π ε κ κ → . (48)

For both linear and nonlinear material models, 
the optimization problem behaves strictly convex, 
as long as the stress-strain-functions are extremely 
monotonic increasing. In the case of softening or ideal 
plastic material behaviour, local minima are possible. 
This phenomenon can be simulated with path-con-
trolled calculations only and needs a stepwise increase 
of the mechanical exposures and an adaption of the 
unknown start values for the next calculation step.

2.3. Equations of equilibrium and internal forces

The equilibrium conditions are satisfied automatically 
if the optimization task is solved. Thus, they are not 
needed for the calculation of the strain and stress dis-
tribution inside the cross section. This offers the pos-
sibility to use the equations of equilibrium to check 
the quality of the determined results by comparing the 
internal forces with the external loads. The internal 
forces can be calculated with:

 d ,
CS

N A= σ∫ ; (49)

 d ,y
CS

M z A= σ∫ ; (50)

 d ,z
CS

M y A= σ∫ . (51)

Fig. 4. Calculation scheme for the mechanical analysis based on the minimum of the total potential energy
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2.4. Coupling of the mechanical  
with the thermal analysis

As shown in Figure 4, the total strains inside the cross 
section can be divided into stress generating strains 
and tension free thermal strains. Consequently, the 
stress generating strains can be calculated by:

  ( ) ( ) ( )0
, 0 , 0 ,, , , , ,i y z i tot y z i th iσε ε κ κ = ε ε κ κ − ε + ε  (52)

where the thermal strains are determined on the base 
of the given temperature field:
 ( ), , .i th i thε = ε ϑ  (53)

Using a material law, which may could be time 
and/or temperature dependent, leads to the stress:

 ( ) ( )0 ,, , , , .i y z i tσσ ε κ κ = σ ε ϑ  (54)

The specific strain energy can be determined and 
integrated over the cross section by using Eqs.  (43) 
and (44). The determination of the external and to-
tal potential energy remains the same, too. Thus, the 
optimization task can be established as described in 
section 2.2.

3. Application on a principle example

The performance of the alternative approach for the 
determination of temperature fields and residual strain 

and stress states in cross sections exposed to thermal 
and mechanical influences will be demonstrated on a 
brief example of a composite cross section subjected to 
fire conditions. The geometry and material parameters 
are shown in Figure 5. Because of this cross section is 
assumed to be a single part of a whole throughed sus-
pended floor, the left and right edge both are modelled 
as adiabatic edges for the thermal analysis. Only the 
bottom of the floor is exposed to fire conditions. Fur-
ther, the reinforcement is neglected during the thermal 
analysis, because of its influence on the temperature 
field can be assumed to be comparatively small (Fig. 5, 
left). For the mechanical analysis, the reinforcement 
has to be considered, of course. (Fig. 5, right). There-
fore, it is assigned to have the same temperature as the 
surrounding concrete.

The “standard fire curve” taken from (EC1 2002) 
and shown in Figure 6 (left) describes the time-devel-
opment of the gas temperature for fire design of struc-
tural members. The thermal and mechanical parame-
ters as well as the equations for temperature expansion 
of the building materials concrete, reinforcement and 
construction steel are taken from the respective parts 
of the Eurocode (EC2 2004; EC3 2005). As an exam-
ple, the temperature dependent developments of the 
concrete material parameters are shown in Figure  6 
(middle and right). 

Fig. 5. Cross section properties for the thermal (left) and the mechanical (right) analysis

Fig. 6. Development of the outside temperature level (left), temperature dependent thermal  
material parameters (middle) and mechanical material parameters of concrete (right)
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Using equations for heat convection and radia-
tion, a flux density can be determined and set on the 
cross section edge (EC1 2002):

  ( ) ( )4 4
273 273 ,n m f gas surfq  = Φε ε σ ϑ + − ϑ +  

 (55)

where: Jgas – gas temperature; Jsurf– surface tempera-
ture, F – configuration factor; em – emissivity of the 
surface; ef – emissivity of the radiator (=1,0 for fire).

The results of the thermal analysis are shown in 
Figure 7 for 30, 60 and 90 minutes fire exposition. The 
influence of the structural steel profile on the tem-
perature field distribution is clearly apparent. Its up-
per flange and web are representing thermal bridges 
which conduct a high amount of heat into the inner of 
the cross section. However, the upper edge of the cross 
section is nearly untouched due to the fire exposition. 
The reinforcement was not considered during the ther-
mal analysis, but implemented now for the calculation 

of the thermal strains as shown in Figure 8 (top left) 
for t = 60 minutes. These thermal strains are assumed 
to be tension free. To satisfy the compatibility (plane 
cross section), the stress generating strains computed 
in the mechanical analysis have to be distributed like 
shown in Figure  8 (bottom left). The corresponding 
residual stresses (Fig. 8 bottom right) show, that the 
edges of the cross section, which are heated the most, 
underwent compression, whilst the shielded inner 
parts are under tension.

Conclusions

The introduced numerical approach is a powerful 
method for the coupled thermal and mechanical anal-
ysis of composite cross sections subjected to combined 
thermal and mechanical influences, which uses the 
mathematical optimization as a uniform methodical 
base.

Fig. 7. Temperature fields for 30 (left), 60 (middle) and 90 minutes fire exposition (right)

Fig. 8. Thermal, stress free strains (top left), stress generating strains (bottom left), total strains (top right)  
and residual stresses (bottom right) for 60 minutes fire exposition
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The derived optimization task for the heat con-
duction problem represents an implicit method, whose 
stability does not impose any stability criteria in time 
or space discretisation. Hence, the maximum time step 
is only limited by the required accuracy. Furthermore, 
higher order shape functions can help to increase the 
accuracy in the approximation of the temperature field 
and its gradients and to satisfy the compatibility at ma-
terial transitions.

The coupling between the thermal and mechani-
cal analysis is performed by using the thermal (stress 
free) strains and temperature dependent material pa-
rameters. Through the consideration of the compat-
ibility conditions (e. g. plane cross section after de-
formation), the stress generating as well as the total 
strains can be determined by solving the optimization 
task of the mechanical problem. The residual strains 
and stresses can be superimposed with arbitrary me-
chanical loads or constraints.

An advantage of the presented methods is the 
ability of easy implementation of the algorithms con-
sidering nonlinear material models and parameters. 
The performance is demonstrated on a composite cross 
section subjected to fire conditions. By modification of 
the thermal and/or mechanical influences as well as 
the material laws, other phenomena, like solar radia-
tion, technical heating and cooling or the hydration 
period of young concrete can be simulated. In the case 
of young concrete, also the mechanical analysis has to 
be performed in time increments, because of the time 
dependence of the mechanical material parameters. 

The explained methods can be extended from the 
cross section level to the element level by the applica-
tion of pseudo-3D or 3D temperature field analysis, by 
the use of equations for the compatibility between the 
element deformations and the cross section distortions 
and by the integration of the strain energy over the ele-
ment using quadrature formulas. Thus, the geometri-
cally and physically nonlinear analysis of whole struc-
tures subjected to combined mechanical and thermal 
constraints becomes possible.
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